Как найти циклическую частоту через уравнение

Формула циклической частоты колебаний в физике

Формула циклической частоты колебаний

Определение и формула циклической частоты колебаний

Определение

Циклическая частота – это параметр, характеризующий колебательные движения. Обозначают эту скалярную
величину как $omega $, иногда ${omega }_0$.

Напомним, что уравнение гармонических колебаний параметра $xi $ можно записать как:

[xi left(tright)=A{cos left({omega }_0t+{varphi }_0right) }left(1right),]

где $A={xi }_{max}$ – амплитуда колебаний величины $xi $; $left({omega }_0t+{varphi }_0right)$=$varphi $ – фаза колебаний; ${varphi }_0$ – начальная фаза колебаний.

Циклическую частоту при гармонических колебаниях определяют как частную производную от фазы колебаний ($varphi $) по времени ($t$):

[{omega }_0=frac{?varphi }{partial t}=dot{varphi }left(2right).]

Циклическая частота колебаний связана с периодом ($T$) колебаний формулой:

[{omega }_0=frac{2pi }{T}left(3right).]

Циклическую частоту с частотой $?$$?$ связывает выражение:

[{omega }_0=2pi nu left(4right).]

Формулы для частных случаев нахождения циклической частоты

Пружинный маятник совершает гармонические колебания с циклической частотой равной:

[{omega }_0=sqrt{frac{k}{m}}left(5right),]

$k$ – коэффициент упругости пружины; $m$ – масса груза на пружине.

Гармонические колебания физического маятника происходят с циклической частотой равной:

[{omega }_0=sqrt{frac{mga}{J}}left(6right),]

где $J$ – момент инерции маятника относительно оси вращения; $a$ – расстояние между центром масс маятника и точкой подвеса; $m$ – масса маятника.

Частным случаем физического маятника является математический маятник (физический маятник, масса которого сосредоточена в точке), циклическая частота его колебаний может быть найдена как:

[{omega }_0=sqrt{frac{g}{l}}left(7right),]

где $l$ – длина подвеса, на которой находится материальная точка.

Частота колебаний в электрическом контуре равна:

[{omega }_0=frac{1}{sqrt{LC}}left(8right),]

где $C$ – емкость конденсатора, который входит в контур; $L$ – индуктивность катушки контура.

Если колебаний являются затухающими, то их частоту находят как:

[omega =sqrt{{omega }^2_0-{delta }^2}left(9right),]

где $delta $ – коэффициент затухания; в случае с затуханием колебаний, ${omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание. В электрический колебательный контур (рис.1) входит соленоид, длина которого $l$, площадь поперечного сечения $S_1$, число витков $N $и плоский конденсатор с расстоянием между пластинами $d$, площадью пластин $S_2$. Какова частота собственных колебаний контура (${omega }_0$)?

Формула циклической частоты колебаний, пример 1

Решение. Основой для решения задачи служить формула для частоты колебаний в электрическом контуре:

[{omega }_0=frac{1}{sqrt{LC}}left(1.1right).]

Элементом, обладающим индукцией в нашем контуре является соленоид. Индуктивность соленоида равна:

[L=mu {mu }_0frac{N^2S_1}{l}left(1.2right),]

где $mu =1$, ${mu }_0$ – магнитная постоянная.

Емкость плоского конденсатора вычислим по формуле:

[C=frac{varepsilon {varepsilon }_{0 }S_2}{d}left(1.3right),]

где $varepsilon =1$, ${varepsilon }_{0 }$ – электрическая постоянная.

Правые части выражений (1.2) и (1.3) подставим в (1.1) вместо соответствующих величин:

[{omega }_0=frac{1}{sqrt{LC}}=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}left(1.4right).]

Ответ. ${omega }_0=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}$

Пример 2

Задание. Чему равна циклическая частота гармонических колебаний материальной точки, если амплитуда скорости точки равна ${dot{x}}_{max}=v_0$, амплитуда ее ускорения: ${ddot{x}}_{max}=a_0$? Начальная фаза колебаний равна нулю.

Решение. Из контекста условий задачи понятно, что колебания совершает координата $x$, поэтому уравнение колебаний (в общем виде) запишем как:

[xleft(tright)=A{cos left({omega }_0t+{varphi }_0right)= }A{cos left({omega }_0tright) }left(2.1right),]

По условию задачи ${varphi }_0$=0. Тогда уравнение для скорости изменения параметра $xleft(tright)$ имеет вид:

[dot{x}left(tright)=vleft(tright)=-A{omega }_0{sin left({omega }_0tright)left(2.2right). }]

Из выражения (2.2) следует, что:

[{dot{x}}_{max}=v_0=A{omega }_0left(2.3right).]

Уравнение для ускорения материальной точки, используя (2.2) запишем как:

[ddot{x}left(tright)=aleft(tright)=-A{{omega }_0}^2{cos left({omega }_0tright)left(2.4right). }]

Получаем, что:

[{ddot{x}}_{max}=A{{omega }_0}^2=a_0 left(2.5right).]

Мы получили следующую систему из двух уравнений с двумя неизвестными:

[left{ begin{array}{c}
v_0=A{omega }_0 \
a_0=A{{omega }_0}^2 end{array}
right.left(2.6right).]

Найдем отношение $frac{a_0}{v_0}$, получим:

[frac{a_0}{v_0}={omega }_0.]

Ответ. ${omega }_0=frac{a_0}{v_0}$

Читать дальше: формула частоты колебаний пружинного маятника.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Циклическая частота колебаний

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний.

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим $<omega >_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2 $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол $<varphi >_0$. Через некоторый промежуток времени этот угол изменится на величину $<omega >_0t$ и будет равен $<omega >_0t+<varphi >_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ – это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О – центра окружности), называется амплитудой колебаний.

Параметр $<omega >_0$ – циклическая частота колебаний. $varphi =(<omega >_0t+<varphi >_0$) – фаза колебаний; $<varphi >_0$ – начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

При $<varphi >_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна $<varphi >_0=frac<pi ><2>$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ – это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

Циклическую частоту с частотой $?$$?$ свяжем выражением:

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

Размерность циклической частоты:

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник – идеальная модель) совершает гармонические колебания с круговой частотой равной:

$k$ – коэффициент упругости пружины; $m$ – масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

где $J$ – момент инерции маятника относительно оси вращения; $a$ – расстояние между центром масс маятника и точкой подвеса; $m$ – масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

где $l$ – длина подвеса.

Угловая частота затухающих колебаний находится как:

где $delta $ – коэффициент затухания; в случае с затуханием колебаний $<omega >_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна $<dot>_=10 frac<см><с>$, а ее максимальное ускорение $<ddot>_=100 frac<см><с^2>$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

Вычислим циклическую частоту:

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

где $J$ – момент инерции маятника относительно оси вращения; $a$ – расстояние между центром масс маятника и точкой подвеса; $m$ – масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $frac<2>$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

Циклическая частота колебаний – формула

Любые колебательные процессы в Природе (в том числе и непериодические) могут быть представлены в виде бесконечной суммы простых гармонических колебаний. Поэтому в первую очередь изучаются гармонические колебания. Рассмотрим такую характеристику этих колебаний, как циклическая частота.

Период и частота гармонических колебаний

Впервые гармоническими колебаниями заинтересовались еще античные философы, изучая вопросы музыкальной гармонии. Поэтому простейшие колебания, происходящие по закону круговых функций (синуса или косинуса), называются гармоническими.

Формула гармонических колебаний:

Рис. 1. График гармонических колебаний.

Как можно видеть из графика колебаний (а также из изучения круговых функций в математическом анализе), функции эти регулярно повторяют свои значения. Более того, регулярно повторяется форма графика колебаний. Это свойство функции называется периодичностью. То есть, функция, обладающая периодичностью, имеет равные значения на промежутках, равных своему периоду.

Период обозначается латинской буквой $T$. Однако, физический и математический подход к измерению периода немного различен.

В математике в качестве аргумента круговой функции рассматривается угол поворота вектора, образующего ее, и этот угол удобно измерять в радианах (каждый радиан равен дуге, имеющей длину радиуса). В радианах измеряется и период круговой функции. Для простого синуса или косинуса $T = 2pi$.

Рис. 2. Период синуса и косинуса.

В физике угол поворота менее важен, нередко такой угол даже невозможно указать (например, для колебаний пружинного маятника). Поэтому в физике период измеряется в единицах времени – секундах. Дополнительно это дает возможность ввести специальную характеристику, позволяющую определить «скорость» колебаний – частоту (обозначается греческой буквой $nu$ («ню»).

Если период показывает, за сколько времени совершается одно колебание, то частота показывает, сколько колебаний совершается за одну секунду:

Частота измеряется в колебаниях в секунду или Герцах (Гц). Один герц – это одно колебание в секунду.

Круговая частота

Как видим, физический и математический подход к описанию периода функций несколько отличаются, и возникает вопрос их связи.

Из приведенной выше формулы гармонических колебаний можно видеть, что она имеет период:

В эту формулу входит параметр $omega$, который обратно пропорционален периоду. При сравнении этой формулы с формулой частоты можно получить:

Или, после упрощений:

Таким образом, параметр $omega$ в $2pi$ раз больше частоты колебаний. Поскольку в одном круге $2pi$ радиан, то параметр $omega$ называется «круговой» или «циклической» частотой.

Физический смысл частоты – это количество колебаний, происходящих в системе за единицу времени, а физический смысл круговой частоты – это количество радиан, проходящих функцией, описывающей систему, за единицу времени.

Рис. 3. Круговая (циклическая) частота.

Таким образом, удобный и наглядный параметр частоты может быть легко преобразован для вида, удобного в математических преобразованиях.

Что мы узнали?

Круговая (циклическая) частота – это важный параметр гармонического колебания, удобный в математической обработке функций. Круговая частота обозначает количество радиан, прошедших гармонической функцией за единицу времени. Она прямо пропорциональна обычной частоте.

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_ <0>) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac<1> right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^ <-1>right) ), потому, что по свойствам степени ( large displaystyle frac<1> = c^ <-1>).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac<text<рад>> right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac<1> ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_ <0>).

(large varphi_ <0>left(text <рад>right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Рассмотрим теперь, как величина (large varphi_ <0>) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_ <0>) принимаем равной нулю.

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_ <0>) будет отличаться от нулевого значения.

Определим угол (large varphi_ <0>) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_ <0>) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_ <0>).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text <сек>right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac<Delta t >):

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

(large displaystyle frac<1> <4>cdot 2pi = frac<pi > <2>=varphi_ <0>)

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac<pi > <2>) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac<pi > <2>) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_ <0>= 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_ <0>) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_<0>) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_<0>) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_<0>) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

( large varphi_<01>) – для первого процесса и,

( large varphi_<02>) – для второго процесса.

Определим разность фаз между первым и вторым колебательными процессами:

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text <шт>right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

(large nu left( text <Гц>right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:
  • Связь между частотой и циклической частотой колебаний:

(large displaystyle omega left( frac<text<рад>> right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

(large varphi_ <0>left( text <рад>right) ) — начальная фаза;

(large varphi left( text <рад>right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:
  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

[spoiler title=”источники:”]

http://kupuk.net/uroki/fizika/ciklicheskaia-chastota-kolebanii-formyla/

[/spoiler]

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

18 Понятие колебательного движения.
Период и частота колебаний

Колеба́ния —
повторяющийся в той или иной степени
во времени
процесс изменения состояний системы
около точки равновесия. Например, при
колебаниях маятника
повторяются отклонения его в ту и другую
сторону от вертикального положения;
при колебаниях в электрическом
колебательном
контуре
повторяются величина
и направление тока,
текущего через катушку.

Колебания
почти всегда связаны с попеременным
превращением энергии
одной формы проявления в другую форму.

Колебания
различной физической природы имеют
много общих закономерностей и тесно
взаимосвязаны c волнами.
Поэтому исследованиями этих закономерностей
занимается обобщённая теория
колебаний и волн
. Принципиальное
отличие от волн: при колебаниях не
происходит переноса энергии, это, так
сказать, «местные» преобразования
энергии.

Выделение
разных видов колебаний зависит от
подчёркиваемых свойств колеблющихся
систем (осцилляторов)

[править]
По физической природе

  • Механические
    (звук,
    вибрация)

  • Электромагнитные
    (свет,
    радиоволны,
    тепловые)

  • Смешанного
    типа
     —
    комбинации вышеперечисленных

[править]
По характеру взаимодействия с окружающей
средой

  • Вынужденные —
    колебания, протекающие в системе под
    влиянием внешнего периодического
    воздействия. Примеры: листья на деревьях,
    поднятие и опускание руки. При вынужденных
    колебаниях может возникнуть явление
    резонанса:
    резкое возрастание амплитуды колебаний
    при совпадении собственной
    частоты

    осциллятора
    и частоты внешнего воздействия.

  • Свободные
    (или собственные)
     —
    это колебания в системе под действием
    внутренних сил, после того как система
    выведена из состояния равновесия (в
    реальных условиях свободные колебания
    всегда затухающие).
    Простейшими примерами свободных
    колебания являются колебания груза,
    прикреплённого к пружине, или груза,
    подвешенного на нити.

  • Автоколебания —
    колебания, при которых система имеет
    запас потенциальной
    энергии
    ,
    расходующейся на совершение колебаний
    (пример такой системы — механические
    часы
    ).
    Характерным отличием автоколебаний
    от свободных колебаний является, то
    что их амплитуда определяется свойствами
    самой системы, а не начальными условиями.

  • Параметрические —
    колебания, возникающие при изменении
    какого-либо параметра колебательной
    системы в результате внешнего воздействия.

  • Случайные —
    колебания, при которых внешняя или
    параметрическая нагрузка является
    случайным процессом.

[править]
Характеристики

  • Амплитуда —
    максимальное отклонение колеблющейся
    величины от некоторого усреднённого
    её значения для системы,

    (м)

  • Период —
    промежуток времени, через который
    повторяются какие-либо показатели
    состояния системы (система совершает
    одно полное колебание),

    (сек)

  • Частота —
    число колебаний в единицу времени,


    (Гц,
    сек
    −1).

Период
колебаний

и
частота

 —
обратные величины;


и

В
круговых или циклических процессах
вместо характеристики «частота»
используется понятие круговая
(циклическая)

частота

(рад/сек,
Гц, сек
−1),
показывающая число колебаний за 2π
единиц времени:

  • Смещение
    — отклонение тела от положения
    равновесия. Обозначение Х, Единица
    измерения метр.

  • Фаза
    колебаний
     —
    определяет смещение в любой момент
    времени, то есть определяет состояние
    колебательной системы.

19 Гармонические
колебания. Векторная диаграмма
гармонического колебания. Циклическая
частота, фаза, начальная фаза

Гармоническое
колебание
 —
явление периодического изменения
какой-либо величины, при котором
зависимость от аргумента имеет характер
функции синуса или косинуса. Например,
гармонически колеблется величина,
изменяющаяся во времени следующим
образом:

x(t)
= Asin(ωt
+ φ)

или

x(t)
= Acos(ωt
+ φ),

Графики
функций f(x)
= sin(x)
и g(x)
= cos(x)
на декартовой плоскости.

где
х —
значение изменяющейся величины, t —
время, остальные параметры – постоянные:
А —
амплитуда колебаний, ω —
циклическая частота колебаний, (ωt
+ φ) — полная фаза колебаний,

 —
начальная фаза колебаний.

Обобщенное
гармоническое колебание в дифференциальном
виде

(Любое
нетривиальное

решение этого дифференциального
уравнения – есть гармоническое колебание
с циклической частотой ω.)

Способ
векторных диаграмм.

Пусть величина х изменяется со временем
по закону

На
плоскости выбирают произвольно
направленную координатную ось Ох.
Из начала координат под углом

равным
начальной фазе колебаний, проводят
вектор

,
модуль которого равен амплитуде
гармонического колебания A (рис. 13.5).
Если вектор

вращается
вокруг точки О с постоянной угловой
скоростью

против
часовой стрелки, то угол

между
вращающимся вектором и осью Ох
в любой момент времени определится
выражением

Проекция
конца вектора

будет
перемещаться по оси Ох
и принимать значения от —А до +А, а
колеблющаяся величина будет изменяться
со временем по закону

Рис.
13.5

Таким
образом, гармоническое колебание можно
представить проекцией на некоторую
произвольно выбранную ось вектора
амплитуды

,
отложенного от произвольной точки оси
под углом

,
равным начальной фазе, и вращающегося
с угловой скоростью

вокруг
этой точки.

Циклическая частота
колебний (ω)
– число колебаний за 2π
секунд.



связь циклической частоты с частотой
колебаний и периодом.

Циклическая
частота в уравнениях колебаний:

циклическая частота колебаний
математического маятника.

Фа́за
колеба́ний
 —
физическая величина, при заданной
амплитуде
и коэффициенте
затухания
,
определяющая состояние колебательной
системы в любой момент времени.[1]
Если колебания системы описываются
синусоидальным (косинусоидальным) или
экспоненциальным законами:

Acos(ωt
+ φ0),

Asin(ωt
+ φ0),


,

то
фаза колебаний определяется как аргумент
периодической функции,
описывающей гармонический колебательный
процесс (ω— угловая
частота

(чем величина выше, тем на большее
значение изменяется угол за ед. времени),
t
время,
φ0
(угол в начале колебаний) начальная фаза
колебаний, то есть фаза колебаний в
начальный момент времени t
= 0).

Фаза
обычно выражается в угловых единицах
(радианах,
градусах)
или в циклах
(долях периода):

1
цикл = 2π радиан = 360 градусов.

Строго
говоря, этот термин относится только к
колебаниям, но его также применяют и к
другим периодическим и квазипериодическим
процессам.

20 Гармонические
колебания под действием упругой силы
(вывод закона Гука)

Пружинный
маятник состоит из пружины и массивного
шара, насаженного на горизонтальный
стержень, вдоль которого он может
скользить. Пусть на пружине укреплен
шарик с отверстием, который скользит
вдоль направляющей оси (стержня). На
рис. 7.2,а показано положение шара в
состоянии покоя; на рис. 7.2,б – максимальное
сжатие и на рис. 7.2,в -произвольное
положение шарика.

Под
действием возвращающей силы, равной
силе сжатия, шарик будет совершать
колебания. Сила сжатия F = -kx , где k –
коэффициент жесткости пружины. Знак
минус показывает, что направление силы
F и смещение х противоположны. Потенциальная
энергия сжатой пружины


кинетическая


.

Для
вывода уравнения движения шарика
необходимо связать х и t. Вывод основывается
на законе сохранения энергии. Полная
механическая энергия равна сумме
кинетической и потенциальной энергии
системы. В данном случае :


.

В
положении б)

:


.

Так
как в рассматриваемом движении выполняется
закон сохранения механической энергии,
можно записать:


.

Определим
отсюда скорость:

Но
в свою очередь

и,
следовательно,


.

Разделим
переменные


.

Интегрируя
это выражение, получим:


,

где



постоянная интегрирования.

Из
последнего следует, что

(7.2)

Сравнивая
(7.1) с (7.2), получаем

(7.3)

Таким
образом, под действием упругой силы
тело совершает гармонические колебания.
Силы иной природы, чем упругие, но в
которых выполняется условие F = -kx,
называются квазиупругими. Под действием
этих сил тела тоже совершают гармонические
колебания. При этом:

смещение:

скорость:

ускорение:

Сила
упругости, возникающая в теле при его
деформации, прямо пропорциональна
величине этой деформации

Для
тонкого растяжимого стержня закон Гука
имеет вид:

Здесь
F — сила натяжения стержня, Δl —
абсолютное удлинение (сжатие) стержня,
а k называется коэффициентом
упругости
(или жёсткости).

Коэффициент
упругости зависит как от свойств
материала, так и от размеров стержня.
Можно выделить зависимость от размеров
стержня (площади поперечного сечения
S и длины L) явно, записав коэффициент
упругости как

Величина
E называется Модулем
упругости первого рода или модулем Юнга

и является механической характеристикой
материала.

Если
ввести относительное удлинение

и
нормальное напряжение в поперечном
сечении

то
закон Гука в относительных единицах
запишется как

В
такой форме он справедлив для любых
малых объёмов вещества.

Также
при расчёте прямых стержней применяют
запись закона Гука в относительной
форме

Следует
иметь в виду, что закон Гука выполняется
только при малых деформациях. При
превышении предела
пропорциональности
связь между
напряжениями и деформациями становится
нелинейной. Для многих сред закон Гука
неприменим даже при малых деформациях.

21 Циклическая частота
и период колебаний под действием упругой
силы. Энергия колебания.

ЧАСТИЧНО НЕ НАЙДЕНО

При
механических
колебаниях колеблющееся тело (или
материальная точка) обладает кинетической
и потенциальной энергией. Кинетическая
энергия тела W:

(Скорость
тела v
= ds/dt)

        Для
вычисления потенциальной энергии тела
воспользуемся самой общей формулой,
связывающей силу и потенциальную энергию
тела в поле этой силы:

где
U – потенциальная энергия, набираемая
(или теряемая) телом, движущимся в силовом
поле F от точки 0 (точки, в которой
потенциальная энергия принимается
равной 0) до точки х.

        Для
силы, линейно зависящей от смещения
(как в случае наших механических
маятников, такие силы носят общее
название квазиупругих сил) мы имеем:

Сравнивая
формулы

для
кинетической и потенциальной энергии
механического маятника, можно сделать
следующие выводы:

1.
Полная механическая энергия тела не
изменяется при колебаниях:

2.
Частота колебаний кинетической и
потенциальной энергии в 2 раза больше
частоты колебаний маятника.

3.
Колебания кинетической и потенциальной
энергии сдвинуты друг относительно
друга по фазе на 
(на полпериода). Когда кинетическая
энергия достигает максимума, потенциальная
– минимума (нуля) и наоборот. Энергия при
колебаниях постоянно перекачивается
из потенциальной в кинетическую и
обратно.

        В
случае электрических колебаний энергия
в конуре представляет собой сумму
энергии электрического поля, запасенной
между обкладками конденсатора, и энергии
магнитного поля, запасенной в катушке
с индуктивностью. Вычислим обе
составляющие.

       
Сравнивая
эти формулы, можно сделать следующие
выводы:

1.
Полная энергия в контуре остается
неизменной:

2.
Частота колебаний энергий в 2 раза
превосходит частоту колебаний заряда
и тока в контуре.

3. Электрическая и
магнитная энергии сдвинуты по фазе на
полпериода друг относительно друга;
происходит непрерывное перекачивание
энергии из одной формы в другую и обратно.

       
Поскольку
в контуре происходят колебания
электрической и магнитной энергий,
электрический колебательный контур
также называют электромагнитным.

22 Сложение одинокого
направленных гармонических колебаний.

Колеблющееся
тело может принимать участие в нескольких
колебательных процессах, тогда следует
найти результирующее колебание, другими
словами, колебания необходимо сложить.
В данном разделе будем складывать
гармонические колебания одного
направления и одинаковой частоты

применяя
метод вращающегося вектора амплитуды,
построим графически векторные диаграммы
этих колебаний (рис. 1). Tax как векторы A1
и A2
вращаются с одинаковой угловой скоростью
ω0,
то разность фаз (φ2
– φ1)
между ними будет оставаться постоянной.
Значит, уравнение результирующего
колебания будет


(1)

В формуле (1) амплитуда А и начальная
фаза φ соответственно определяются
выражениями


(2)

Значит,
тело, участвуя в двух гармонических
колебаниях одного направления и
одинаковой частоты, совершает при этом
также гармоническое колебание в том же
направлении и с той же частотой, что и
складываемые колебания. Амплитуда
результирующего колебания зависит от
разности фаз (φ2
– φ1)
складываемых колебаний.

Рис.1

Исследуем
выражение (2) в зависимости от разности
фаз (φ2
– φ1):

1) φ2
– φ1
= ±2mπ (m = 0, 1, 2, …), тогда A=A1+A2,
т. е. амплитуда результирующего колебания
А будет равна сумме амплитуд складываемых
колебаний;

2) φ2
– φ1
= ±(2m+1)π (m = 0, 1, 2, …), тогда A=|A1–A2|,
т. е. амплитуда результирующего колебания
будет равна разности амплитуд складываемых
колебаний.

Для практики представляет
особый интерес случай, когда два
складываемых гармонических колебания
одинакового направления мало отличаются
по частоте. После сложения этих колебаний
получаются колебания с периодически
изменяющейся амплитудой. Периодические
изменения амплитуды колебания, которые
возникают при сложении двух гармонических
колебаний с близкими частотами, называются
биениями.

Пусть амплитуды складываемых
колебаний равны А, а частоты равны ω и
ω+Δω, причем Δω<<ω. Выберем начало
отсчета так, чтобы начальные фазы обоих
колебаний были равны нулю:

Складывая
эти выражения и учитывая, что во втором
сомножителе Δω/2<<ω, получим


(3)

Результирующее колебание (3) можно
считать как гармоническое с частотой
ω , амплитуда Аσ
которого изменяется по следующему
периодическому закону:


(4)

Частота изменения Аσ
в два раза больше частоты изменения
косинуса (так как берется по модулю), т.
е. частота биений равна разности частот
складываемых колебаний:

Период
биений

Вид
зависимости (3) показан на рис. 2, где
сплошные жирные линии представляют
график результирующего колебания (3), а
огибающие их линии – график медленно
меняющейся согласно уравнению (4)
амплитуды.

Рис.2

Нахождение
частоты тона (звука определенной высоты)
биений между эталонным и измеряемым
колебаниями — наиболее часто используемый
на практике метод сравнения измеряемой
величины с эталонной. Метод биений
применяется для настройки музыкальных
инструментов, анализа слуха и т. д.

При
исследовании сложного колебательного
процесса нужно знать, что любые сложные
периодические колебания s=f(t) можно
представить в виде суперпозиции
(наложения) одновременно совершающихся
гармонических колебаний с различными
амплитудами, начальными фазами, а также
частотами, которые кратны циклической
частоте ω0
:


(5)

Представление в виде (5) любой
периодической функции связывают с
понятием гармонического
анализа сложного периодического
колебания
,
или разложения
Фурье
.
Слагаемые ряда Фурье, которые определяют
гармонические колебания с частотами
ω0,
0,
0,
…, называются первой
(или основной),
второй,
третьей
и т. д. гармониками
сложного периодического колебания.

23 Колебания физического
маятника.

Физический маятник
осциллятор,
представляющий собой твёрдое
тело
, совершающее колебания
в поле
каких-либо сил
относительно точки, не являющейся
центром
масс
этого тела, или неподвижной
оси, перпендикулярной направлению
действия сил и не проходящей через центр
масс этого тела.

Определения



  • угол отклонения маятника от равновесия;



  • начальный угол отклонения маятника;



  • масса маятника;



  • расстояние от точки подвеса до центра
    тяжести маятника;



  • радиус инерции относительно оси,
    проходящей через центр тяжести.



  • ускорение свободного падения.

Момент
инерции
относительно оси,
проходящей через точку подвеса:


.

[Править] Дифференциальное уравнение движения физического маятника

Основная
статья
: Приведённая
длина

Пренебрегая
сопротивлением среды, дифференциальное
уравнение колебаний физического маятника
в поле силы тяжести записывается
следующим образом:


.

Полагая

,
предыдущее уравнение можно переписать
в виде:


.

Последнее
уравнение аналогично уравнению колебаний
математического
маятника
длиной

.
Величина

называется
приведённой
длиной
физического маятника.

[Править] Центр качания физического маятника

Центр
качания
— точка, в которой надо
сосредоточить всю массу физического
маятника, чтобы его период колебаний
не изменился.

Поместим
на луче,
проходящем от точки подвеса через центр
тяжести точку на расстоянии

от
точки подвеса. Эта точка и будет центром
качания маятника.

Действительно,
если всю массу сосредоточить в центре
качания, то центр качания будет совпадать
с центром масс. Тогда момент инерции
относительно оси подвеса будет равен

,
а момент
силы
тяжести относительно той
же оси

.
Легко заметить, что уравнение движения
не изменится.

[править]
Теорема Гюйгенса

[править]
Формулировка

Если
физический маятник подвесить за центр
качания, то его период колебаний не
изменится, а прежняя точка подвеса
сделается новым центром качания.

[править]
Доказательство

Вычислим
приведенную длину для нового маятника:


.

Совпадение
приведённых длин для двух случаев и
доказывает утверждение, сделанное в
теореме.

[править]
Период колебаний физического маятника

Для
того, чтобы найти период колебаний
физического маятника, необходимо решить
уравнение качания. Для этого умножим
левую часть этого уравнения на

,
а правую часть на

.
Тогда:


.

Интегрируя
это уравнение, получаем.


,

где

произвольная
постоянная. Её можно найти из граничного
условия, что в моменты

.
Получаем:

.
Подставляем и преобразовываем получившееся
уравнение:


.

Отделяем
переменные и интегрируем это уравнение:


.

Удобно
сделать замену переменной, полагая

.
Тогда искомое уравнение принимает вид:


.

Здесь


нормальный
эллиптический интеграл Лежандра 1-го
рода
. Для периода колебаний
получаем формулу:


.

Здесь


полный
нормальный эллиптический интеграл
Лежандра 1-го рода
.

[Править] Период малых колебаний физического маятника

Если
амплитуда колебаний

мала,
то корень в знаменателе эллиптического
интеграла приближенно равен единице.
Такой интеграл легко берется, и получается
хорошо известная формула малых колебаний:


.

24 Колебания
математического маятника

Математи́ческий
ма́ятник
 —
осциллятор,
представляющий собой механическую
систему
,
состоящую из материальной
точки
,
находящейся на невесомой
нерастяжимой
нити или на невесомом стержне
в однородном поле сил тяготения.
Период
малых собственных колебаний
математического маятника длины l
неподвижно подвешенного в однородном
поле тяжести с ускорением
свободного падения

g
равен

и
не зависит[1]
от амплитуды
и массы
маятника.

Плоский
математический маятник со стержнем —
система с одной степенью
свободы
.
Если же стержень заменить на растяжимую
нить, то это система с двумя степенями
свободы со связью. Пример школьной
задачи, в которой важен переход от одной
к двум степеням свободы.

При
малых
колебаниях

физический
маятник

колеблется так же, как математический
с приведённой
длиной
.

Уравнение
колебаний маятника

Колебания
математического маятника описываются
обыкновенным
дифференциальным уравнением

вида

где
ω ― положительная константа, определяемая
исключительно из параметров маятника.
Неизвестная функция x(t)
― это угол отклонения маятника в момент
t
от нижнего положения равновесия,
выраженный в радианах;

,
где L
― длина подвеса, g
ускорение
свободного падения
.
Уравнение малых колебаний маятника
около нижнего положения равновесия
(т. н. гармоническое уравнение) имеет
вид:


.

[править]
Решения уравнения движения

[править]
Гармонические колебания

Маятник,
совершающий малые колебания, движется
по синусоиде. Поскольку уравнение
движения является обыкновенным ДУ
второго порядка, для определения закона
движения маятника необходимо задать
два начальных условия — координату
и скорость, из которых определяются две
независимых константы:

где
A —
амплитуда
колебаний маятника, θ0 —
начальная фаза
колебаний, ω — циклическая
частота
,
которая определяется из уравнения
движения. Движение, совершаемое маятником,
называется гармоническими
колебаниями

[править]
Нелинейный маятник

Для
маятника, совершающего колебания с
большой амплитудой, закон движения
более сложен:

где


 —
это синус
Якоби
.
Для

он
является периодической функцией, при
малых

совпадает
с обычным тригонометрическим синусом.

Параметр

определяется
выражением

где


 —
энергия маятника в единицах t−2.

Период
колебаний нелинейного маятника

где
K — эллиптический интеграл первого
рода.

[править]
Движение по
сепаратрисе

Движение
маятника по сепаратрисе является
непериодическим. В бесконечно далёкий
момент времени он начинает падать из
крайнего верхнего положения в какую-то
сторону с нулевой скоростью, постепенно
набирает её, и останавливается,
возвратившись в исходное положение.

25 Затухающие колебания.
Зависимость амплитуды от времени.

Затухающие колебания —
колебания, энергия которых уменьшается
с течением времени. Бесконечно длящийся
процесс вида

в
природе невозможен. Свободные колебания
любого осциллятора рано или поздно
затухают и прекращаются. Поэтому на
практике обычно имеют дело с затухающими
колебаниями. Они характеризуются тем,
что амплитуда колебаний A является
убывающей функцией. Обычно затухание
происходит под действием сил сопротивления
среды, наиболее часто выражаемых линейной
зависимостью от скорости колебаний

или
её квадрата.

Пускай
имеется система, состоящая из пружины
(подчиняющейся закону
Гука
), один конец которой жёстко
закреплён, а на другом находится тело
массой m. Колебания совершаются в
среде, где сила сопротивления
пропорциональна скорости с коэффициентом
c (см. вязкое
трение
).

Тогда
второй
закон Ньютона
для рассматриваемой
системы запишется так:

где
Fc — сила сопротивления,
Fy — сила упругости

Fc
= − cv, Fy = − kx, то
есть

ma + cv
+ kx = 0

или
в дифференциальной форме

где
k — коэффициент упругости в законе
Гука
, c — коэффициент
сопротивления, устанавливающий
соотношение между скоростью движения
грузика и возникающей при этом силой
сопротивления.

Для
упрощения вводятся следующие обозначения:

Величину
ω называют собственной частотой системы,
ζ — коэффициентом затухания.

Тогда
дифференциальное уравнение принимает
вид

Сделав
замену x = eλt,
получают характеристическое
уравнение

Корни
которого вычисляются по следующей
формуле

Циклическая частота колебаний


Циклическая частота колебаний

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.

Любые колебательные процессы в Природе (в том числе и непериодические) могут быть представлены в виде бесконечной суммы простых гармонических колебаний. Поэтому в первую очередь изучаются гармонические колебания. Рассмотрим такую характеристику этих колебаний, как циклическая частота.

Период и частота гармонических колебаний

Впервые гармоническими колебаниями заинтересовались еще античные философы, изучая вопросы музыкальной гармонии. Поэтому простейшие колебания, происходящие по закону круговых функций (синуса или косинуса), называются гармоническими.

Формула гармонических колебаний:

$$x=Asin(omega t+varphi)$$

Рис. 1. График гармонических колебаний.

Как можно видеть из графика колебаний (а также из изучения круговых функций в математическом анализе), функции эти регулярно повторяют свои значения. Более того, регулярно повторяется форма графика колебаний. Это свойство функции называется периодичностью. То есть, функция, обладающая периодичностью, имеет равные значения на промежутках, равных своему периоду.

Период обозначается латинской буквой $T$. Однако, физический и математический подход к измерению периода немного различен.

В математике в качестве аргумента круговой функции рассматривается угол поворота вектора, образующего ее, и этот угол удобно измерять в радианах (каждый радиан равен дуге, имеющей длину радиуса). В радианах измеряется и период круговой функции. Для простого синуса или косинуса $T = 2pi$.

Период синуса и косинуса

Рис. 2. Период синуса и косинуса.

В физике угол поворота менее важен, нередко такой угол даже невозможно указать (например, для колебаний пружинного маятника). Поэтому в физике период измеряется в единицах времени – секундах. Дополнительно это дает возможность ввести специальную характеристику, позволяющую определить «скорость» колебаний – частоту (обозначается греческой буквой $nu$ («ню»).

Если период показывает, за сколько времени совершается одно колебание, то частота показывает, сколько колебаний совершается за одну секунду:

$$nu= {1over T}$$

Частота измеряется в колебаниях в секунду или Герцах (Гц). Один герц – это одно колебание в секунду.

Круговая частота

Как видим, физический и математический подход к описанию периода функций несколько отличаются, и возникает вопрос их связи.

Из приведенной выше формулы гармонических колебаний можно видеть, что она имеет период:

$$T = {2pi over omega}$$

В эту формулу входит параметр $omega$, который обратно пропорционален периоду. При сравнении этой формулы с формулой частоты можно получить:

$$T = {2pi over omega}={1over nu}$$

Или, после упрощений:

$$omega = 2pi nu$$

Таким образом, параметр $omega$ в $2pi$ раз больше частоты колебаний. Поскольку в одном круге $2pi$ радиан, то параметр $omega$ называется «круговой» или «циклической» частотой.

Физический смысл частоты – это количество колебаний, происходящих в системе за единицу времени, а физический смысл круговой частоты – это количество радиан, проходящих функцией, описывающей систему, за единицу времени.

Круговая (циклическая) частота

Рис. 3. Круговая (циклическая) частота.

Таким образом, удобный и наглядный параметр частоты может быть легко преобразован для вида, удобного в математических преобразованиях.

Заключение

Что мы узнали?

Круговая (циклическая) частота – это важный параметр гармонического колебания, удобный в математической обработке функций. Круговая частота обозначает количество радиан, прошедших гармонической функцией за единицу времени. Она прямо пропорциональна обычной частоте.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 207.


А какая ваша оценка?

Добавить комментарий