При любых колебаниях энергия системы
расходуется на работу против сил
сопpотивления сpеды. Поэтому амплитуда
колебаний со временем убывает, и колебания
прекращаются.
Допустим, что сила сопротивления линейно
зависит от скорости, т. е.
Fс = – r υ = – r
dx/dt,
здесь r– коэффициент сопротивления
среды. Знак минус указывает, что силаFси скорость
имеют противоположные направления.
С учётом всех сил второй закон Ньютона
записывается в виде
или.
(1.17)
Величину
= r / (2m) (1.18)
называют коэффициентом затухания.
Выражение (1.17) является дифференциальным
уравнением затухающих колебаний.Его решением служит функция
x = A0 e–
t сos(ω t + ).
(1.19)
Обpатим внимание на то, что
– циклическая частота затухающихколебаний, а ω0–собственнаяциклическая частота, т. е. частота
колебаний той же колебательной системы
в отсутствие сил сопpотивления (r =
0).
Амплитуда затухающих колебаний (рис.
1.14) изменяется по экспоненциальному
закону
A = A0 e –
t
. (1.20)
Сравним периоды затухающих и незатухающих
колебаний:
.
Видно, что для очень малого коэффициента
затухания ( <<
ω0)T = T0 = 2
/ ω0.
При > ω0период является мнимой величиной, а
движение точки носитапериодический
(непериодический) характер (рис. 1.15).
Степень
затухания характеризуетлогарифмический
декремент затухания – натуральный
логарифм отношения двух соседних
амплитуд, т.е. амплитуд, взятых через
период колебаний (рис. 1.14):(1.21)
Коэффициент затухания
и логарифмический декремент затухания являются
важнейшими хаpактеpистиками колебательного
пpоцесса. Они показывают, как быстpо
пpоисходит уменьшение во вpемени амплитуды
колебаний и, следовательно, как быстpо
pасходуется пеpвоначально запасенная
энеpгия, пpопоpциональная квадpату
амплитуды.
Рассмотpим физический смысл и. Пpедставим, что
за вpемяе амплитуда колебаний уменьшилась в “е”
pаз (e – основание натурального
логаpифма), пpичем за это вpемя пpоизошлоNeполных колебаний (по смыслуNe = е
/T). Пользуясь фоpмулой (1.20), получим
для отношения амплитуд
откуда
коэффициент затухания= 1 /е, т.е.
это величина,обpатная вpемени, в
течение котоpого амплитуда уменьшается
в e pаз. Тогда из фоpмулы (1.21) следует,
что
Следовательно,логаpифмический
декpемент затухания обpатно пpопоpционален
числу полных колебаний, по истечении
котоpых амплитуда уменьшается в “e”
pаз.
В соответствии с физическим смыслом β
и δ коэффициент затухания измеpяется в
c-1, а логаpифмический декpемент
затухания является величиной безpазмеpной.
П р и м е р 8. Дифференциальное
уравнение затухающих колебаний имеет
вид
.
Найти коэффициент затухания и циклическую
частоту этих колебаний.
Р е ш е н и е. Приведем уравнение к виду
(1.17):
откуда найдем
Тогда циклическая частота затухающих
колебаний
П р и м е р 9. После десяти полных
колебаний материальной точки ее амплитуда
уменьшается от 10 см до 6 см. Коэффициент
затухания равен 0,2c-1.
Записать закон движения точки.
Р е ш е н и е. Для записи закона
движения в уравнении (1.19) необходимо
найти циклическую частоту затухающих
колебаний.
Отношение амплитуд по истечении
10 колебаний
Промежуток времени между колебаниями
(t2 – t1)
= 10T, так как прошло
десять полных колебаний. Тогда
Найдем циклическую частоту затухающих
колебаний
ω =2π/T= 2π∙10β/ln1,67 = 7,8π,
с-1.
Полагая начальную фазу равной нулю,
запишем уравнение колебаний, выражающее
закон движения точки:
Уравнение затухающих колебаний
Затухание колебаний
Свободные колебания в реальных условиях не могут длиться вечно. Для механических систем всегда имеет место сопротивление среды, в результате чего энергия движения объекта рассеивается трением. В электромагнитных цепях колебания затухают из-за сопротивления проводников.
График затухания
Затухающее уравнение
Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме он записывается следующим образом:
Из этого выражения вы можете получить другую каноническую форму:
либо
Здесь x и t – координаты пространства и времени, A – начальная амплитуда. – коэффициент затухания, который зависит от сопротивления среды r и массы осциллирующего объекта m:
Чем больше сопротивление среды, тем больше энергии рассеивается вязким трением. И наоборот – чем больше масса (и, следовательно, инерция) тела, тем дольше он будет продолжать двигаться.
Циклическая частота свободных колебаний (той же системы, но без трения) учитывает упругую силу в системе (например, жесткость пружины k):
Строго говоря, в случае затухающих колебаний невозможно говорить о периоде – время между повторяющимися движениями системы постоянно увеличивается. Однако, если колебания медленно исчезают, для них с достаточной точностью вы можете определить период T:
Циклическая частота затухающих колебаний
Другой характеристикой затухающих колебаний является циклическая частота:
Время релаксации – это коэффициент, указывающий, как долго амплитуда колебаний уменьшается в e раз:
Отношение амплитуды переменной в два последовательных периода называется коэффициентом затухания:
Такая же характеристика в расчетах часто представляется как логарифм:
Коэффициент качества Q характеризует, насколько упругие силы системы превышают силы сопротивления среды, предотвращая диссипацию энергии:
Примеры решения проблем
ПРИМЕР 1
После того, как груз был подвешен к весне, он растянулся на 9,8 см. Весна колеблется в вертикальном направлении .Определите период колебаний.
Поскольку весна растягивается под весом, на ней действует гравитация:
Сила тяжести противодействует пружинной силе:
Из двух выражений получаем коэффициент упругости:
Замените коэффициент упругости в формуле для периода затухающих колебаний:
Зная, что декремент логарифмического демпфирования , из него выражаем неизвестную величину , подставляем в знаменатель формулы и выражаем T:
Т = 0,7 с
ПРИМЕР 2
Затухающие колебания характеризуются следующими параметрами: периодом T = 4 с, логарифмическим декрементом демпфирования . В начальный момент не было фазового отклонения. Когда система прошла четверть периода, отклонение точки составляло 4,5 см. Получите уравнение этого колебания, а также график.
Используйте уравнение для затухающих колебаний в канонической форме:
Поскольку при t = 0 не было фазового отклонения, второй член в аргументе косинуса равен нулю.
Определите циклическую частоту:
Найти коэффициент затухания:
Подставим найденные параметры, а также отклонение точки в момент времени в каноническое уравнение:
Тогда уравнение для этих колебаний примет окончательный вид:
В соответствии с этим мы вычисляем значения x для моментов времени до t = 3T = 12 c включительно и строим график.
Формула циклической частоты колебаний в физике
Формула циклической частоты колебаний
Определение и формула циклической частоты колебаний
Определение
Циклическая частота – это параметр, характеризующий колебательные движения. Обозначают эту скалярную
величину как $omega $, иногда ${omega }_0$.
Напомним, что уравнение гармонических колебаний параметра $xi $ можно записать как:
[xi left(tright)=A{cos left({omega }_0t+{varphi }_0right) }left(1right),]
где $A={xi }_{max}$ – амплитуда колебаний величины $xi $; $left({omega }_0t+{varphi }_0right)$=$varphi $ – фаза колебаний; ${varphi }_0$ – начальная фаза колебаний.
Циклическую частоту при гармонических колебаниях определяют как частную производную от фазы колебаний ($varphi $) по времени ($t$):
[{omega }_0=frac{?varphi }{partial t}=dot{varphi }left(2right).]
Циклическая частота колебаний связана с периодом ($T$) колебаний формулой:
[{omega }_0=frac{2pi }{T}left(3right).]
Циклическую частоту с частотой $?$$?$ связывает выражение:
[{omega }_0=2pi nu left(4right).]
Формулы для частных случаев нахождения циклической частоты
Пружинный маятник совершает гармонические колебания с циклической частотой равной:
[{omega }_0=sqrt{frac{k}{m}}left(5right),]
$k$ – коэффициент упругости пружины; $m$ – масса груза на пружине.
Гармонические колебания физического маятника происходят с циклической частотой равной:
[{omega }_0=sqrt{frac{mga}{J}}left(6right),]
где $J$ – момент инерции маятника относительно оси вращения; $a$ – расстояние между центром масс маятника и точкой подвеса; $m$ – масса маятника.
Частным случаем физического маятника является математический маятник (физический маятник, масса которого сосредоточена в точке), циклическая частота его колебаний может быть найдена как:
[{omega }_0=sqrt{frac{g}{l}}left(7right),]
где $l$ – длина подвеса, на которой находится материальная точка.
Частота колебаний в электрическом контуре равна:
[{omega }_0=frac{1}{sqrt{LC}}left(8right),]
где $C$ – емкость конденсатора, который входит в контур; $L$ – индуктивность катушки контура.
Если колебаний являются затухающими, то их частоту находят как:
[omega =sqrt{{omega }^2_0-{delta }^2}left(9right),]
где $delta $ – коэффициент затухания; в случае с затуханием колебаний, ${omega }_0$ называют собственной угловой частотой колебаний.
Примеры задач с решением
Пример 1
Задание. В электрический колебательный контур (рис.1) входит соленоид, длина которого $l$, площадь поперечного сечения $S_1$, число витков $N $и плоский конденсатор с расстоянием между пластинами $d$, площадью пластин $S_2$. Какова частота собственных колебаний контура (${omega }_0$)?
Решение. Основой для решения задачи служить формула для частоты колебаний в электрическом контуре:
[{omega }_0=frac{1}{sqrt{LC}}left(1.1right).]
Элементом, обладающим индукцией в нашем контуре является соленоид. Индуктивность соленоида равна:
[L=mu {mu }_0frac{N^2S_1}{l}left(1.2right),]
где $mu =1$, ${mu }_0$ – магнитная постоянная.
Емкость плоского конденсатора вычислим по формуле:
[C=frac{varepsilon {varepsilon }_{0 }S_2}{d}left(1.3right),]
где $varepsilon =1$, ${varepsilon }_{0 }$ – электрическая постоянная.
Правые части выражений (1.2) и (1.3) подставим в (1.1) вместо соответствующих величин:
[{omega }_0=frac{1}{sqrt{LC}}=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}left(1.4right).]
Ответ. ${omega }_0=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}$
Пример 2
Задание. Чему равна циклическая частота гармонических колебаний материальной точки, если амплитуда скорости точки равна ${dot{x}}_{max}=v_0$, амплитуда ее ускорения: ${ddot{x}}_{max}=a_0$? Начальная фаза колебаний равна нулю.
Решение. Из контекста условий задачи понятно, что колебания совершает координата $x$, поэтому уравнение колебаний (в общем виде) запишем как:
[xleft(tright)=A{cos left({omega }_0t+{varphi }_0right)= }A{cos left({omega }_0tright) }left(2.1right),]
По условию задачи ${varphi }_0$=0. Тогда уравнение для скорости изменения параметра $xleft(tright)$ имеет вид:
[dot{x}left(tright)=vleft(tright)=-A{omega }_0{sin left({omega }_0tright)left(2.2right). }]
Из выражения (2.2) следует, что:
[{dot{x}}_{max}=v_0=A{omega }_0left(2.3right).]
Уравнение для ускорения материальной точки, используя (2.2) запишем как:
[ddot{x}left(tright)=aleft(tright)=-A{{omega }_0}^2{cos left({omega }_0tright)left(2.4right). }]
Получаем, что:
[{ddot{x}}_{max}=A{{omega }_0}^2=a_0 left(2.5right).]
Мы получили следующую систему из двух уравнений с двумя неизвестными:
[left{ begin{array}{c}
v_0=A{omega }_0 \
a_0=A{{omega }_0}^2 end{array}
right.left(2.6right).]
Найдем отношение $frac{a_0}{v_0}$, получим:
[frac{a_0}{v_0}={omega }_0.]
Ответ. ${omega }_0=frac{a_0}{v_0}$
Читать дальше: формула частоты колебаний пружинного маятника.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Затухающие колебания в контуре и их уравнение
Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, – затухающие.
Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.
Характеристики затухающих колебаний
Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:
m a = – k x – y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .
Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,
Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e – период времени уменьшения амплитуды в e раз.
Для R L C контура применима формула с ω частотой.
При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C – собственная частота, отсюда ω ≈ ω 0 .
При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :
Q = 1 R L C = ω 0 L R , где R , L и C – сопротивление, индуктивность, емкость, а ω 0 – частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:
Q = R L C = R ω 0 L .
R является входным сопротивлением параллельного контура.
Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:
Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.
Уравнения затухающих колебаний
Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:
q ( t ) = q 0 e ( – β t ) cos ω t + a ‘ 0 = q 0 e – β t cos ( ω t ) .
Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.
Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.
Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .
Функция изображается аналогично рисунку 2 .
Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту – ω 0 .
Решение
Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C – контуре:
q ( t ) = q 0 e ( – β t ) cos ω t + a ‘ 0 = q 0 e – β t cos ( ω t ) .
Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение
Для нахождения I ( t ) :
I ( t ) = – ω 0 q 0 e ( – 2 β t ) sin ( ω t + α ) , где t g α = β ω .
Очевидно, что электрическая энергия W q запишется как:
W q = q 2 2 C = q 0 2 2 C e ( – 2 β t ) cos 2 ( ω t ) = W 0 e ( – 2 β t ) cos 2 ( ω t ) .
Тогда значение магнитной энергии контура W m равняется:
W m = L 2 ω 0 2 q 0 2 e ( – 2 β t ) sin 2 ω t + a = W 0 e – 2 β t sin 2 ω t + a .
Запись полной энергии будет иметь вид:
W = W q + W m = W 0 e ( – 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .
Где sin α = β ω 0 .
Ответ: W ( t ) = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .
Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.
Решение
Если колебания в контуре затухают медленно, то:
Очевидно, выражение энергии, запасенной в контуре, вычислим из
W ( t ) = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( – 2 β t ) .
Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .
Ответ: W ( t ) = W 0 e ( – 2 β t ) . Энергия в контуре убывает по экспоненте.
Уравнение затухающих колебаний вывод уравнения
§6 Затухающие колебания
Декремент затухания. Логарифмический декремент затухания.
Добротность
Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.
Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.
Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения
где r – коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.
Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона
где β – коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.
– дифференциальное уравнение затухающих колебаний.
– у равнение затухающих колебаний.
ω – частота затухающих колебаний:
Период затухающих колебаний:
Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно говорить, когда β мало.
Если затухания выражены слабо (β→0), то . Затухающие колебания можно
рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону
В уравнении (1) А0 и φ0 – произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания
Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз
τ – время релаксации.
Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:
Логарифмический декремент затухания равен логарифму D :
Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний уменьшилась в е раз. Логарифмический декремент затухания – постоянная для данной системы величина.
Еще одной характеристикой колебательной система является добротность Q .
Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.
Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.
Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.
Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.
§7 Вынужденные колебания.
Резонанс
В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.
Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.
По второму закону Ньютона:
(1)
– дифференциальное уравнение вынужденных колебаний.
Это дифференциальное уравнение является линейным неоднородным.
Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:
Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:
(2)
Частное решение этого уравнения будем искать в виде:
т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,
Это комплексное число удобно представить в виде
где А определяется по формуле (3 ниже), а φ – по формуле (4), следовательно, решение (2),в комплексной форме имеет вид
Его вещественная часть, являвшаяся решением уравнения (1) равна:
(3)
(4)
Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механической системы, называется резонансом.
Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).
Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то
При ω→0 все кривые приходят к значению – статическое отклонение.
Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие “солнышко” за счет изменения положения центра тяжести система.(То же в “лодочках”.) См. §61 .т. 1 Савельев И.В.
Вывод дифференциального уравнения свободного колебания
На тело, совершающее свободные колебания, действуют две силы:
1. Сила, определяемая по второму закону Ньютона:
где m – масса тела;
а – ускорение;
х – смещение;
t – время.
2. Сила упругости, выраженная по закону Гука:
где k – коэффициент упругости. Знак минус показывает, что сила упругости Fупр всегда направлена в сторону положения равновесия.
На основании второго закона Ньютона (произведение массы тела на его ускорение равно сумме всех действующих сил) получаем:
.
Перенесем –kx в левую часть равенства, получим:
.
Введем замену: ,
где ω0 – круговая (циклическая) частота колебаний (ω0=2πν)
Получили дифференциальное уравнение второго порядка относительно смещения х.
Решением этого уравнения будет:
или (см. рис.1 и рис. 2).
,
где А – амплитуда колебания;
φ0 – начальная фаза;
ω0t+φ0 – фаза колебания в момент времени t;
ω0t= ∆φ – изменение фазы колебания за время t.
Выведем уравнения мгновенной скорости и мгновенного ускорения, если колебания совершаются по закону косинуса.
Затухающие колебания.
Все реальные гармонические колебания происходят при воздействии сил сопротивления, на преодоление которых тело затрачивает часть своей энергии, в результате амплитуда колебания уменьшается со временем, т.е. колебания носят затухающий характер.
Представим график затухающего колебания:
Вывод дифференциального уравнения затухающего колебания.На тело, кроме силы силы упругости действует сила сопротивления:
где r – коэффициент сопротивления.
Согласно второму закону Ньютона можно записать:
.
Разделим на массу m, получим:
.
Введем обозначения: ,
где β – коэффициент затухания.
Получили дифференциальное уравнение затухающего колебания:
.
Решение уравнения существенно зависит от знака разности ,
где ω– круговая частота затухающих колебаний, ω0 – круговая частота собственных колебаний системы (без затухания).
При ω>0 решение дифференциального уравнения будет следующим:
.
Амплитуда затухающего колебания в любой момент времени t определяется равенством:
,
где А0 – начальная амплитуда, указанная на графике (см. рис 3).
Период Т затухающих колебаний определяется по формуле:
.
Скорость затухания (быстрота уменьшения амплитуды) определяется величиной коэффициента затухания β: чем больше β, тем быстрее уменьшается амплитуда.
Для характеристики скорости затухания ввели понятие декремента затухания.
Декрементом затухания называется отношение двух соседних амплитуд, разделенных периодом:
На практике степень затухания характеризуется логарифмическим декрементомзатухания λ, равным:
Выведем формулу, связывающую логарифмический декремент затухания λ с коэффициентом затухания β и периодом колебания Т.
.
Выведем размерность коэффициента затухания
.
Вынужденные колебания. Вынужденными колебанияминазываются колебания, возникающие в системе при воздействии на неё внешней силы, изменяющейся по периодическому закону.
Пусть на систему действует сила:
где F0 – максимальное значение,
ω – круговая частота колебаний внешней силы.
На систему действуют сила сила сопротивления и сила упругости .
С учетом всех четырех сил на основании второго закона Ньютона запишем:
.
Разделим обе части равенства на m, получим:
.
Получили дифференциальное уравнение вынужденного колебания:
.
Представим график вынужденных колебаний:
В начале амплитуда колебаний возрастает, а затем становится постоянной А.
Для установившихся вынужденных колебаний:
(см. рис. 4)
Резонанс.Если ω0 и β для системы заданы, то амплитуда А вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной. Достижение максимальной амплитуды вынужденных колебаний для заданных ω0 и β называется резонансом.
Резонансная круговая частота определяется формулой:
а резонансная амплитуда:
.
Если отсутствует сопротивление (β=0), то амплитуда неограниченно возрастает.
Представим на графиках зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы ω при различных значениях коэффициента затухания:
По виду резонансной кривой резонанс может быть острым при β→0, тупым – при β→1. (см. рис. 5).
По механизму возбуждения резонанс классифицируется на:
– механический; акустический; электромагнитный; парамагнитный; ядерномагнитный.
Возникновение резонансных явлений в организме может быть как полезным, так и вредным. Например, на акустическом резонансе основано восприятия звука, инфразвук может вызвать разрыв тканей внутренних органов.
Автоколебания.При затухающих колебаниях энергия системы расходуется на преодоление сопротивления среды. Если восполнять эту потерю энергии, то колебания станут незатухающими. Пополнять эту потерянную системой энергию можно за счет источника энергии извне, а можно сделать так, чтобы колеблющаяся система сама бы управляла внешним воздействием.
Незатухающие колебания, возникающие в системе за счет источника энергии, не обладающего колебательными свойствами, называются автоколебаниями, а сами системы – автоколебательными.
Классическим примером автоколебаний являются часы: заведенная пружина; поднятая гиря – источник энергии; анкер – регулятор поступления энергии от источника; маятник или баланс – колебательная система.
Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы.
Автоколебания осуществляется по следующей схеме:
Через канал обратной связи регулятор, получив информацию о состоянии колебательной системы, осуществляет регулирующую подачи энергии от источника к системе.
К автоколебательным системам относятся сердце, легкие и т.д.
Автоколебательная система сердца может быть представлена в следующем виде:
Порядок выполнения работы:
- Включить кимограф, записать положение равновесия.
- Отклонив маятник в сторону, отпустить его, одновременно включив секундомер.
- После записи последнего n-го колебания отключить секундомер.
- После последнего колебания зарегистрировать положение равновесия и отключить кимограф.
- Записать графики 3-го – 5-го колебательных процессов.
- С помощью линейки для каждого графика определить величину начальной амплитуды (А0) и последней амплитуды (Аn).
- Подсчитать число полных колебаний на графике (n).
- Определить период колебания T:
где t – время по секундомеру.
- Определить величину коэффициента затухания по формуле:
.
- Определить величину логарифмического декремента затухания: .
- Полученные данные занести в таблицу.
п/п | А0 (см) | Аn (см) | n | t(c) | T(c) | β(c -1 ) | λ |
Контрольные вопросы
- Определения и единицы измерения основных характеристик колебательного движения.
- Гармонические колебания. Вывод дифференциального уравнения гармонического колебания и его решение.
- Затухающие колебания. Вывод дифференциального уравнения затухающего колебания и его решение.
- Декремент затухания, логарифмический декремент затухания. Вывод формулы, связывающей логарифмический декремент с периодом колебания и коэффициентом затухания.
- Вынужденные колебания. Дифференциальное уравнение вынужденного колебания и его решение.
- Резонанс и его значение в медицине.
- Автоколебания.
Тестовые задания
- Циклической (круговой) частотой называется число полных колебаний за:
а) 1 с; б) 1 мин; в) 1 ч; г) 2π с.
- Укажите формулу, связывающую циклическую частоту ω с частотой ν:
а) ; в) ;
б) ; г) .
- Укажите формулу, по которой определяется амплитуда затухающего колебания в любой момент времени t:
а) ; в) ;
б) . г) .
- Декрементом затухания называется отношение:
а) двух соседних амплитуд;
б) двух соседних амплитуд, разделенных периодом;
в) первой и последней амплитуд;
г) двух амплитуд, разделенных полупериодом.
- Укажите единицу измерения коэффициента затухания β:
б) безразмерная величина; г) .
6. Укажите решение дифференциального уравнения свободного гармонического колебания:
а) ; в) ;
б) ; г) .
7. Укажите, сколько сил действует на систему, если она совершает свободные гармонические колебания:
8. Укажите дифференциальное уравнение свободного гармонического колебания:
а) ; в) ;
б) ; г) .
9. Укажите решение дифференциального уравнения затухающего колебания:
а) ; в) ;
б) ; г) .
10. Сколько полных колебаний тело должно совершить в одну минуту, чтобы частота его колебаний равнялась 1 Гц:
11. Укажите подстановку в уравнение смещения затухающего колебания:
:
а) ; в) ;
б) ; г) ;
12. Укажите, сколько сил действует на систему, если она совершает вынужденные колебания:
13. Укажите дифференциальное уравнение вынужденного колебания:
а) ; в) ;
б) ; г) .
14. Укажите блок – схему, по которой осуществляются автоколебания:
15. Укажите формулу, связывающую логарифмический декремент затухания λ с периодом колебания Т и коэффициентом затухания β:
а) ; в) ;
б) ; г) .
16. Укажите дифференциальное уравнение затухающего колебания:
а) ; в) ;
б) ; г) .
17. Укажите, по какой формуле определяется период колебания Т, если за время t тело совершило n полных колебаний:
а) ; в) ;
б) ; г) .
18. Укажите единицу измерения логарифмического декремента затухания:
б) с 2 ; г) безразмерная величина.
19. Укажите, какой параметр в уравнении смещения указывает на то, что процесс носит затухающий характер:
20. Укажите, какая сила вызывает уменьшение амплитуды при затухающих колебаниях:
а) ускоряющая сила;
б) сила упругости;
в) сила сопротивления;
г) сила давления.
21. Укажите, при каком значении декремента затухания процесс затухания будет проходить наиболее медленно:
а) ; в) ;
б) ; г) .
22. Укажите, на каком из графиков показан период колебания Т:
23. Укажите график вынужденного колебания:
24. Укажите, каков физический смысл знака «-» в формуле закона Гука
а) физический смысл отсутствует;
б) показывает, что направления силы упругости Fупр и смещения х совпадают;
в) показывает, что направления силы упругости Fупр и смещения х противоположны;
г) показывает, что направления силы упругости Fупр и смещения х взаимно перпендикулярны.
25. Частотой колебания ν называется величина, показывающая число полных колебаний:
а) за минуту; в) за час;
б) за секунду; г) за сутки.
26. Укажите, в каких единицах измеряется циклическая частота ω:
а) в секундах; в) в минутах;
б) в Гц ; г) в часах.
27. Укажите условие резонанса при β=0:
[spoiler title=”источники:”]
http://www.bog5.in.ua/lection/vibration_lect/lect4_vibr.html
http://lektsii.org/8-50511.html
[/spoiler]