Как найти d в физике оптика

Основные формулы по физике – ОПТИКА

Оптика – это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Световые волны – это электромагнитные волны. Длина волны световых волн заключена в интервале [0,4·10-6 м ÷ 0,76·10-6 м]. Волны такого диапазона воспринимаются человеческим глазом.

Свет распространяется вдоль линий, называемых лучами. В приближении лучевой (или геометрической) оптики пренебрегают конечностью длин волн света, полагая, что λ→0. Геометрическая оптика во многих случаях позволяет достаточно хорошо рассчитать оптическую систему. Простейшей оптической системой является линза. 

При изучении интерференции света следует помнить, что интерференция наблюдается только от когерентных источников и что интерференция связана с перераспределением энергии в пространстве. Здесь важно уметь правильно записывать условие максимума и минимума интенсивности света и обратить внимание на такие вопросы, как цвета тонких пленок, полосы равной толщины и равного наклона.

При изучении явления дифракции света необходимо уяснить принцип Гюйгенса-Френеля, метод зон Френеля, понимать, как описать дифракционную картину на одной щели и на дифракционной решетке.

При изучении явления поляризации света нужно понимать, что в основе этого явления лежит поперечность световых волн. Следует обратить внимание на способы получения поляризованного света и на законы Брюстера и Малюса.

Смотрите также основные формулы по физике – колебания и волны

Таблица основных формул по оптике

Физические законы, формулы, переменные

 Формулы оптики

Абсолютный показатель преломления

где с – скорость света в вакууме, с=3·108 м/с,

v – скорость распространения света в среде.

201

Относительный показатель преломления

где n2 и n1 – абсолютные показатели преломления второй и первой среды.

202

Закон преломления

где i – угол падения,

r – угол преломления.

203

Формула тонкой линзы

где F – фокусное расстояние линзы,

d – расстояние от предмета до линзы,

f – расстояние от линзы до изображения.

204

Оптическая сила линзы

где R1 и R2 – радиусы кривизны сферических поверхностей линзы.

Для выпуклой поверхности R>0.

Для вогнутой поверхности R<0.

205

Оптическая длина пути:

где n – показатель преломления среды;

r – геометрическая длина пути световой волны.

206

Оптическая разность хода:

L1 и L2 – оптические пути двух световых волн.

207

Условие интерференционного

максимума:

минимума:

где λ0 – длина световой волны в вакууме;

m – порядок интерференционного максимума или минимума.

208

209

Оптическая разность хода в тонких пленках

в отраженном свете:

в проходящем свете:

где d – толщина пленки;

i – угол падения света;

n – показатель преломления.

210

211

Ширина интерференционных полос в опыте Юнга:

где d – расстояние между когерентными источниками света;

L – расстояние от источника до экрана.

212

Условие главных максимумов дифракционной решетки:

где d – постоянная дифракционной решетки;

φ – угол дифракции.

213

Разрешающая способность дифракционной решетки:

где Δλ – минимальная разность длин волн двух спектральных линий, разрешаемых решеткой;

m – порядок спектра;

N – общее число щелей решетки.

214

Закон Малюса:

где I0 – интенсивность плоско-поляризованного света, падающего на анализатор;

I – интенсивность света, прошедшего через анализатор;

α – угол между плоскостью поляризации падающего света и главной плоскостью анализатора.

215

Связь интенсивности естественного света Iест с интенсивностью света, прошедшего поляризатор (и падающего на анализатор):

где k – относительная потеря интенсивности света в поляризаторе.

216

Дисперсия вещества

217

Средняя дисперсия

218

Групповая скорость света

219

Фазовая скорость света

220

Поделитесь ссылкой с друзьями:

Похожие таблицы

Комментарии:

Определение

Формула тонкой линзы — формула, связывающая три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы.

Условные обозначения:

  • расстояние от предмета до линзы — d (м);
  • расстояние от изображения до линзы— f (м);
  • фокусное расстояние линзы — F (м).

Вывод формулы

Обратимся к рисунку, который мы использовали для объяснения правила построения изображений в собирающих линзах:

Видно, что треугольники АОВ и А1В1О подобные (по двум углам). Следовательно:

BOOB1=ABA1B1

По двум углам также являются подобными треугольники COF и FA1B1. Отсюда делаем вывод, что:

COA1B1=OFFB1

Линия предмета образует с частью главной оптической оси, перпендикуляром, проведенным из верхней точки к линзе, и частью самой линзы прямоугольник. Следовательно, его противоположные стороны равны:

AB=CO

Следовательно:

ABA1B1=COA1B1

Отсюда следует, что:

BOOB1=OFFB1

BO является расстоянием от предмета до линзы. Обозначим его за d. OB1 является расстоянием от линзы до изображения. Обозначим его за f. OF является фокусным расстоянием линзы. Обозначим его за F. FB1 является разностью расстояния от линзы до изображения и фокусного расстояния линзы. Поэтому это выражение мы можем записать так:

df=FfF

Избавимся от знаменателей и получим:

fdFd=fF

Или можно записать так:

fF+Fd=fd

Теперь все члены равенства поделим на произведение Ffd. В результате вычислений получим формулу тонкой линзы:

Формула тонкой линзы

1d+1f=1F

Поскольку величиной, равной обратной фокусному расстоянию, является оптическая сила, формулу тонкой линзы можно записать следующим образом:

1d+1f=D

Величины d, ƒ и F могут быть как положительными, так и отрицательными. Отметим (без доказательства), что при применении формулы тонкой линзы знаки нужно ставить перед членами уравнения согласно следующим правилам.

Правила расстановки знаков перед членами уравнения в формуле линзы

  • Если линза собирающая, то ее фокус действительный, и перед членом 1F ставят знак «плюс» (1F).
  • Если линза рассеивающая, то ее фокус мнимый, и перед членом 1F ставят знак «минус» (1F).
  • Если изображение действительное, то перед величиной 1d ставят знак «плюс» (1d).
  • Если изображение мнимое, то перед величиной 1d ставят знак «минус» (1d).
  • Величина 1f всегда имеет знак «плюс», поскольку расстояние от предмета до линзы всегда положительное.

Иногда случается, что перед величинами F, f и d знаки неизвестны. Тогда при вычислениях перед ними ставят знаки «плюс». Но если в результате вычислений фокусного расстояния или расстояния от линзы до изображения либо до источника получается отрицательная величина, то это означает, что фокус, изображение или источник мнимые.

Пример №1. Фокусное расстояние линзы равно 10 см. Найти расстояние от предмета до линзы, если расстояние от нее до изображения составляет 15 см.

Переводить в СИ единицы измерения не будем, поскольку они однородны. Так как все величины выражены в см, то и ответ будет выражен в см.

Применим формулу тонкой линзы:

1d+1f=1F

1d+115=110

Умножим выражение на 150d:

150+10d=15d

5d=150

d=30 (см)

Увеличение линзы

Раньше мы уже упоминали, что изображение, полученное в линзе, может быть увеличенным или уменьшенным. Различие размеров предмета и изображения характеризуется увеличением.

Определение

Линейное увеличение — отношение линейного размера изображения к линейному размеру предмета. Линейное увеличение обозначают буквой Γ.

Чтобы найти линейное увеличение изображения предмета в линзе, снова обратимся к первому рисунку этого параграфа. Если высота предмета АВ равна h, а высота изображения А1В1 равна Н, то:

Γ=Hh

Мы уже выяснили, что треугольники АОВ и ОА1В1 подобны. Поэтому:

Hh=|f||d|

Где H — высота изображения предмета, h — высота самого предмета.

Отсюда вытекает, что увеличение линзы равно:

Γ=|f||d|

Пример №2. Предмет имеет высоту h = 2 см. Какое фокусное расстояние F должна иметь линза, расположенная от экрана на расстоянии f = 4 м, чтобы изображение указанного предмета имело высоту H = 1 м?

2 см = 0,02 м

Сначала применим формулы тонкой линзы:

1d+1f=1F

Она необходима, чтобы выразить фокусное расстояние линзы:

F=dfd+f

Расстояние от предмета до линзы неизвестно. Но его можно выразить из формулы увеличения линзы:

Γ=fd=Hh

Отсюда это расстояние равно:

d=fhH

Подставим полученное выражение в формулу фокусного расстояния линзы:

F=fhHffhH+f=f2hH·
Hfh+fH=fhH+h

F=fhH+h=4·0,021+0,020,08 (м)=8 (см)

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17685

Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Ответ:

а) 0,50 м

б) 0,75 м

в) 1,25 м

г) 1,50 м


Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы и формулу тонкой линзы.

3.Выразить из обеих формул расстояние от линзы до изображения предмета.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Фокусное расстояние линзы: F = 1 м.

 Увеличение линзы: Γ = 4.

Запишем формулу увеличения линзы и выразим из нее расстояние от линзы до изображения предмета:

Γ=fd

f=Γd

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Γd=dFdF

Поделим на d и выразим расстояние от предмета до линзы:

Γ=FdF

d=FΓ+F=14+1=1,25 (м)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18124

Предмет высотой 6 см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от её оптического центра. Высота  изображения предмета 12 см. Найдите фокусное расстояние линзы.

Ответ:

а) 5 см

б) 10 см

в) 20 см

г) 36 см


Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы в двух вариантах и выразить из нее расстояние от изображения до линзы.

3.Записать формулу тонкой линзы и тоже выразить из нее расстояние от изображения до линзы.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Расстояние от оптического центра линзы до предмета: d = 30 cм.

 Высота предмета: h = 6 см.

 Высота изображения: H = 12 см.

Так как все данные измеряются в сантиметрах, переводить единицы измерения величин в СИ нет необходимости. Просто ответ будет получен тоже в сантиметрах.

Запишем формулу увеличения линзы:

Γ=Hh=fd

Отсюда расстояние от изображения до линзы равно:

f=Hdh

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Hdh=dFdF

Поделим на d, у множим на h(d –F) и выразим фокусное расстояние:

Hh=FdF

H(dF)=hF

HdHF=hF

hF+HF=Hd

F(h+H)=Hd

F=Hdh+H=12·3012+6=20 (см)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19112

В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью v = 5 м/с движется точечный источник света. Расстояние между плоскостями d = 15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F = 10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе. Ответ запишите в м/с.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

3.Записать формулу тонкой линзы и определить из нее расстояние от изображения до линзы.

4.Записать формулу линейного увеличения линзы двумя способами для вычисления радиусов окружностей, по которым движутся точка и ее изображение.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Фокусное расстояние линзы: F = 10 см.

 Расстояние от линзы до плоскости, в которой вращается точка: d = 15 см.

 Скорость вращения точки: v = 5 м/с.

10 см = 0,1 м

15 см = 0,15 м

Выполним рисунок. Для его построения достаточно найти изображение точки А. Затем в противоположную сторону отложим перпендикуляр и на таком же расстоянии от главной оптической оси будет находиться изображение точки B.

Глядя со стороны, мы будем видеть вместо окружности, которую описывает точка, линию AB. Она равн диаметру окружности, по которой движется точка. Обозначим ее радиус OA за r. Изображением окружности будет окружность. Вместо нее мы со стороны также увидим отрезок — A´B´. Обозначим радиус O´A´ за R.

Запишем формулу тонкой линзы и выразим из нее расстояние от изображения до линзы:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Формулу линейного увеличения линзы можно определить как отношение радиуса окружности, по которой движется точка-изображение, к радиусу окружности, по которой движется сама точка:

Γ=Rr

Линейное увеличение также определяется формулой:

Γ=fd

Следовательно:

Rr=fd

Подставим сюда выражение, найденное для расстояния от изображения до линзы из формулы тонкой линзы:

Rr=dFd(dF)=FdF

Так как изображение будет двигаться вслед за точкой, то угловые скорости этой точки и изображения будут равны. Поэтому:

ω=vr=VR

Отсюда линейная скорость движения изображения равна:

V=Rvr=FvdF=0,1·50,150,1=10 (мс)

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 14.5k

Оптика

Оптика – это раздел физики, в котором изучаются закономерности световых явлений, природа света и его взаимодействие с веществом.

Световой луч – это линия, вдоль которой распространяется свет.

Закон независимости световых лучей:
при пересечении световых лучей каждый из них продолжает распространяться в прежнем направлении.

Источник света – это тело, которое излучает свет.

При излучении света источник теряет энергию, при поглощении его внутренняя энергия увеличивается, т. е. распространение света сопровождается переносом энергии.

Виды источников света:

  • тепловые – это источники, в которых излучение света происходит в результате нагревания тела до высокой температуры;
  • люминисцентные – это тела, излучающие свет при облучении их светом, рентгеновскими лучами, радиоактивным излучением и т. д.

Точечный источник света – это источник, представляющий собой светящуюся материальную точку, т. е. источник, размеры которого малы по сравнению с расстоянием до освещаемого предмета.

Если источник света находится в бесконечности, то его лучи падают на поверхность параллельным пучком.

Свет – это электромагнитная волна с частотой от 1,5·1011 Гц до 3·1016 Гц.

Скорость света в вакууме: ​( c )​ = 3·108 м/с.

Содержание

  • Прямолинейное распространение света
  • Закон отражения света
  • Построение изображений в плоском зеркале
  • Закон преломления света
  • Полное внутреннее отражение
  • Линзы. Оптическая сила линзы
  • Формула тонкой линзы
  • Построение изображений в линзах
  • Оптические приборы. Глаз как оптическая система
  • Интерференция света
  • Дифракция света
  • Дифракционная решетка
  • Дисперсия света
  • Основные формулы по теме «Оптика»

Прямолинейное распространение света

Закон распространения света:
свет в прозрачной однородной среде распространяется прямолинейно.

Экспериментальным доказательством прямолинейности распространения света является образование тени.

Тень – это область пространства, куда не попадает свет от источника.

Полутень – это область пространства, куда частично попадает свет от источника.

Если источник света точечный, то на экране образуется четкая тень предмета.

Если источник неточечный, то на экране образуется размытая тень (области тени и полутени).

Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как солнечное и лунное затмения.

Закон отражения света

Отражение – это явление, при котором при падении световых лучей на непрозрачную гладкую поверхность они меняют направление распространения, возвращаясь в прежнюю среду.

АО – падающий луч, ОВ – отраженный луч, СО – перпендикуляр

Угол падения – это угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения – это угол между отраженным лучом и перпендикуляром к отражающей поверхности.

Законы отражения света

  • Лучи падающий и отраженный лежат в одной плоскости с перпендикуляром, восстановленным в точку падения луча к отражающей поверхности.
  • Угол отражения равен углу падения. ​( anglebeta=anglealpha )​, где ​( alpha )​ – угол падения, ​( beta )​ – угол отражения.

Виды отражения

  • Зеркальное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения остаются параллельны.

  • Рассеянное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения отклоняются в различных направлениях.

Если луч падает перпендикулярно отражающей поверхности, то угол падения равен нулю, и угол отражения тоже равен нулю. Поэтому луч отражается в обратном направлении.

Важно!
В оптике все углы отсчитываются от перпендикуляра к отражающей поверхности или к границе раздела сред.

Построение изображений в плоском зеркале

Построение изображения в плоском зеркале основано на законах отражения света.

Алгоритм построения изображения в плоском зеркале

  1. Проведите из данной точки на поверхность луч под произвольным углом. В точке падения луча на границу раздела сред проведите перпендикуляр.
  2. Отметьте угол падения ​( alpha )​.
  3. Постройте равный ему угол отражения ​( beta )​.
  4. Проведите из данной точки перпендикуляр к поверхности зеркала ​( (alpha=0) )​.
  5. Постройте равный ему угол отражения ​( (beta=0) )​ (эти лучи совпадают).
  6. Проведите пунктирной линией продолжения отраженных лучей за зеркало.
  7. Найдите точку пересечения продолжений отраженных лучей (эта точка является изображением данной точки в плоском зеркале).
  8. Аналогично постройте изображение второй точки.
  9. Соедините полученные изображения точек пунктирной линией.

Изображение предмета в плоском зеркале мнимое, прямое, по размерам равное предмету, находящееся за зеркалом на таком же расстоянии, на каком предмет находится перед зеркалом.

Важно!
Если на поверхность плоского зеркала падает сходящийся пучок лучей, то изображение получается действительным.

Если поверхность двух плоских зеркал образует угол ​( varphi )​, то количество изображений в такой системе зеркал можно определить по формуле:

где ​( N )​ – количество изображений.

Закон преломления света

Преломление света – это изменение направления распространения светового луча на границе раздела двух сред.

Угол преломления – это угол между преломленным лучом и перпендикуляром к границе раздела двух сред.

( gamma )​ – угол преломления

Законы преломления света

  • Лучи падающий и преломленный лежат в одной плоскости с перпендикуляром, восстановленным в точку падения луча к преломляющей поверхности.
  • Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная относительному показателю преломления двух сред:

где ​( n_{21} )​ – относительный показатель преломления.

Первой является среда, в которой распространяется падающий луч, второй является среда, в которой распространяется преломленный луч.

Относительный показатель преломления равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

где ​( n_1 )​ – абсолютный показатель преломления первой среды; ​( n_2 )​ – абсолютный показатель преломления второй среды.

Абсолютный показатель преломления показывает, во сколько раз скорость света в вакууме больше, чем в данной среде:

где ​( c )​ – скорость света в вакууме, ​( v )​ – скорость распространения света в данной среде.

Относительный показатель преломления показывает, во сколько раз скорость распространения света в первой среде больше, чем во второй:

Среда, у которой абсолютный показатель преломления больше, является оптически более плотной средой.

Среда, у которой абсолютный показатель преломления меньше, является оптически менее плотной средой.

Следствия закона преломления света

  • Если свет падает из оптически менее плотной среды в оптически более плотную, то угол падения больше угла преломления:

  • Если свет падает из оптически более плотной среды в оптически менее плотную, то угол падения меньше угла преломления:

Если луч падает на плоско параллельную пластину, изготовленную из оптически более плотного вещества, чем окружающая среда, то луч не изменяет своего направления, а лишь смещается на некоторое расстояние.

( x )​ – смещение луча от первоначального направления:

где ​( d )​ – толщина пластины.

Важно!
Если в условии задачи говорится, что «кажется, что луч падает под углом ​( varphi_1 )​ к поверхности воды», то имеют в виду не кажущийся угол падения ​( alpha_1 )​, а угол между кажущимся падающим лучом и поверхностью воды ( varphi_1 ).

Полное внутреннее отражение

Если свет падает из оптически более плотной среды в оптически менее плотную среду, то с увеличением угла падения увеличивается угол преломления. При некотором значении угла падения угол преломления становится равным 90°. Преломленный луч будет скользить по поверхности раздела двух сред.

Предельный угол полного отражения – это угол падения, при котором угол преломления становится равным 90°:

Если вторая среда – воздух, ​( n_2 )​ = 1, то ​( sinalpha_{пр.}=frac{1}{n_1}. )​.

При дальнейшем увеличении угла падения угол преломления тоже увеличивается и наблюдается только отражение света. Это явление называется полным отражением света.

Применение явления полного внутреннего отражения

Треугольная призма – прозрачное тело, ограниченное с трех сторон плоскими поверхностями так, что линии их пересечения взаимно параллельны.

Если призма изготовлена из оптически более плотного вещества, чем окружающая среда, то луч, дважды преломляясь, отклоняется к основанию призмы, а мнимое изображение источника света смещается к вершине призмы.

Преломляющий угол призмы – это угол, лежащий против основания.

Угол отклонения луча призмой – это угол между направлениями падающего на призму и вышедшего из призмы лучей.

( varphi )​ – преломляющий угол,

( theta )​ – угол отклонения луча призмой.

Важно!
С помощью треугольной равнобедренной призмы с преломляющим углом 90° можно:

  • повернуть луч на 90° (поворотная призма, используется в перископах);

  • изменить направление луча на 180° (оборотная призма, используется в биноклях);

  • изменить относительное расположение лучей.

Линзы. Оптическая сила линзы

Линза – это прозрачное тело, ограниченное двумя сферическими или криволинейными поверхностями, одна из которых может быть плоской.

Тонкая линза – физическая модель линзы, в которой ее толщиной можно пренебречь по сравнению с диаметром линзы.

Классификация линз

1. По форме:

  • выпуклые – это линзы, у которых средняя часть толще, чем края;
  • вогнутые – это линзы, у которых края толще, чем средняя часть.

2. По оптическим свойствам:

  • собирающие – это линзы, после прохождения которых параллельный пучок лучей собирается в одной точке;

  • рассеивающие – это линзы, после прохождения которых параллельный пучок лучей рассеивается.

Условные обозначения:

Величины, характеризующие линзу

Главная оптическая ось – это прямая, проходящая через центры сферических поверхностей линзы.

Оптический центр линзы – это точка пересечения главной оптической оси с линзой, проходя через которую луч не изменяет своего направления.

Побочная оптическая ось – это любая прямая, проходящая через оптический центр линзы под произвольным углом к главной оптической оси.

Фокус линзы – это точка, в которой пересекаются после преломления лучи, падающие на линзу параллельно главной оптической оси.

Обозначение – ​( F )​.

Фокусное расстояние – это расстояние от оптического центра линзы до ее фокуса. Обозначение – ( F ), единица измерения – м.

Фокальная плоскость – это плоскость, проходящая через фокус линзы перпендикулярно ее главной оптической оси.

Побочный фокус – это точка пересечения побочной оптической оси с фокальной плоскостью.

Оптическая сила линзы – это величина, обратная фокусному расстоянию.

Обозначение – ​( D )​, единица измерения – диоптрия (дптр):

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

Важно!
Оптическая сила линзы зависит от показателя преломления линзы и от радиусов кривизны сферических поверхностей, ограничивающих линзу:

где ​( n_л )​ – показатель преломления линзы, ​( n_{ср} )​ – показатель преломления среды, ​( R_1 )​ и ( R_2 ) – радиусы сферических поверхностей.

Если поверхности выпуклые, то ​( R_1 )​ > 0 и ( R_2 ) > 0, если поверхности вогнутые, то ( R_1 ) < 0 и ( R_2 ) < 0.

Если одна из поверхностей линзы плоская, например первая, то ​( R_1toinfty )​, а вторая поверхность выпуклая: ( R_2 ) > 0, то

Формула тонкой линзы

где ​( F )​ – фокусное расстояние линзы, ​( d )​ – расстояние от предмета до линзы, ​( f )​ – расстояние от линзы до изображения.

Правило знаков:

  • ( F )​ > 0, если линза собирающая; ( F ) < 0, если линза рассеивающая;
  • ( d )​ > 0, если предмет действительный; ( d ) < 0, если предмет мнимый (если на линзу падает сходящийся пучок лучей);
  • ( f )​ > 0, если изображение действительное; ​( f )​ < 0, если изображение мнимое.

Линза собирающая, предмет действительный, изображение действительное:

Линза собирающая, предмет действительный, изображение мнимо:

Линза собирающая, предмет мнимый, изображение действительное:

Линза рассеивающая, предмет действительный, изображение мнимое:

Линза рассеивающая, предмет мнимый, изображение мнимое:

Увеличение линзы – это величина, равная отношению линейных размеров изображения к линейным размерам предмета.

Обозначение – ​( mathit{Gamma} )​, единицы измерения – нет.

где ​( H )​ – линейный размер изображения, ​( h )​ – линейный размер предмета.

где ​( f )​ – расстояние от линзы до изображения, ​( d )​ – расстояние от предмета до линзы.

Важно!
При расчете увеличения линзы знаки ​( f )​ и ​( d )​ не учитываются.

Построение изображений в линзах

Для построения изображения в линзах следует помнить:

  1. луч, идущий вдоль главной оптической оси линзы, не преломляется;
  2. луч, проходящий через оптический центр линзы, не преломляется;
  3. луч, падающий на собирающую линзу параллельно главной оптической оси, после преломления пройдет через фокус линзы;
  4. луч, падающий на рассеивающую линзу параллельно главной оптической оси, преломится так, что его мнимое продолжение пройдет через фокус линзы, а сам луч – противоположно мнимому продолжению;
  5. луч, падающий на собирающую линзу через фокус, после преломления пройдет параллельно главной оптической оси линзы;
  6. произвольный луч после преломления в собирающей линзе пойдет через побочный фокус (точку фокальной плоскости, в которой ее пересечет параллельная произвольному лучу побочная оптическая ось);
  7. произвольный луч, падающий на рассеивающую линзу, преломится так, что его мнимое продолжение пройдет через точку, в которой пересечет фокальную плоскость линзы побочная оптическая ось, параллельная произвольному лучу.

Изображение, даваемое тонкой линзой, может быть действительным или мнимым.

Действительное изображение получается в результате пересечения преломленных в линзе лучей, исходящих из данной точки.

Мнимое изображение получается в результате пересечения продолжений преломленных в линзе лучей, исходящих из данной точки.

Построение изображений точки, даваемых собирающей линзой

  • Если точка находится за двойным фокусом линзы, то ее действительное изображение получается между фокусом и двойным фокусом по другую сторону от линзы.

  • Если точка находится в двойном фокусе линзы, то его действительное изображение получается в двойном фокусе по другую сторону от линзы.

  • Если точка находится между фокусом и двойным фокусом линзы, то его действительное изображение получается за двойным фокусом по другую сторону от линзы.

  • Если точка находится в фокусе линзы, то его изображение находится в бесконечности.

  • Если точка находится между линзой и фокусом, то его мнимое изображение получается по ту же сторону от линзы.

Построение изображений предмета, даваемых собирающей линзой

  • Если предмет находится за двойным фокусом линзы, то его изображение получается действительным, перевернутым, уменьшенным, по другую сторону от линзы.

  • Если предмет находится в двойном фокусе линзы, то его изображение получается действительным, перевернутым, равным по размерам предмету, в двойном фокусе по другую сторону от линзы.

  • Если предмет находится между фокусом и двойным фокусом линзы, то его изображение получается действительным, перевернутым, увеличенным, по другую сторону от линзы.

  • Если предмет находится в фокусе линзы, то его изображение находится в бесконечности.

  • Если предмет находится между линзой и фокусом, то его изображение получается мнимым, прямым, увеличенным, по ту же сторону от линзы.

Построение изображений точки, даваемых рассеивающей линзой

В рассеивающей линзе изображение точки всегда получается мнимым, по ту же сторону от линзы.

Построение изображений предмета, даваемых рассеивающей линзой

Изображение предмета в рассеивающей линзе всегда получается мнимым, прямым, уменьшенным, по ту же сторону от линзы.

Важно!
При решении задач на прохождение световых лучей сквозь линзы и получение изображений в них прежде всего выясните, о какой линзе идет речь: собирающей или рассеивающей. Обязательно сделайте чертеж, на котором соответствующими буквами укажите все основные расстояния: расстояние от предмета до линзы, расстояние от линзы до изображения, фокусное расстояние. Также обязательно укажите оптический центр линзы и оба фокуса по разные стороны от линзы.

При построении изображения следует заранее выучить, каким оно должно быть при соответствующем расположении предмета относительно линзы и где находиться (действительным или мнимым, увеличенным или уменьшенным, прямым или обратным). В противном случае при неверном построении, когда вы чуть-чуть искривите луч или он пойдет неточно через фокус или центр, изображение может оказаться не там, где надо, или вместо увеличенного уменьшенным, и тогда в решении появится ошибка.

Оптические приборы. Глаз как оптическая система

Оптические приборы – это устройства, предназначенные для получения на экране, светочувствительных пленках, фотопленках и в глазу изображений различных предметов.

Лупа – это короткофокусная двояковыпуклая линза, предназначенная для относительно небольшого увеличения изображения.

Увеличение лупы рассчитывается по формуле:

где ​( d_0 )​ – расстояние наилучшего зрения, ​( d_0 )​ = 0,25 м.

Для получения увеличенного изображения предмет помещают перед линзой на расстоянии немного меньше фокусного. Изображение получается мнимым.

Микроскоп – это оптический прибор, предназначенный для рассматривания очень мелких предметов под большим углом зрения.

Микроскоп состоит из двух собирающих линз – короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми может изменяться:

где ​( F_1 )​ – фокусное расстояние объектива; ​( F_2 )​ – фокусное расстояние окуляра.

Фотоаппарат – прибор, предназначенный для получения действительных, уменьшенных, перевернутых изображений предметов на фотопленке.

Предметы могут находиться на разных расстояниях.

Мультимедийный проектор – оптическое устройство, с помощью которого на экране получают действительное, увеличенное изображение, снятое с источника видеосигнала.

Человеческий глаз – оптическая система, подобная фотоаппарату.

Зрачок регулирует доступ света в глаз. Диаметр зрачка уменьшается при ярком освещении и увеличивается при слабом.

Хрусталик имеет форму двояковыпуклой линзы с показателем преломления 1,41. Он может изменять свою форму, в результате чего меняется его фокусное расстояние. При рассмотрении близких предметов хрусталик становится более выпуклым, при рассмотрении удаленных предметов – более плоским.

На сетчатке глаза образуется действительное, уменьшенное, перевернутое изображение предмета. Благодаря большому количеству нервных окончаний, находящихся на сетчатке, их раздражение передается в мозг и вызывает зрительные ощущения.

Зрение двумя глазами позволяет видеть предмет с разных сторон, т. е. осуществлять объемное зрение.

Если смотреть на предмет одним глазом, то, начиная с 10 м, он будет казаться плоским, если смотреть на предмет двумя глазами, то это расстояние увеличивается до 500 м.

Угол зрения – это угол, образованный лучами, идущими от краев предмета в оптический центр глаза.

( varphi )​ – угол зрения.

Аккомодация глаза – это свойство глаза, обеспечивающее четкое восприятие равноудаленных предметов путем изменения фокусного расстояния оптической системы.

Предел аккомодации – от ​( infty )​ до 10 см.

Расстояние наилучшего зрения – это наименьшее расстояние, с которого глаз может без особого напряжения рассматривать предметы:

Дефекты зрения

  • Близорукость – это дефект оптической системы глаза, при котором ее фокус находится перед сетчаткой. Близорукий глаз плохо видит отдаленные предметы.
  • Дальнозоркость – это дефект оптической системы глаза, при котором ее фокус находится за сетчаткой. Дальнозоркий глаз плохо видит близкие предметы.

Очки – это простейший прибор для коррекции оптических недостатков зрения.

Близорукость исправляют с помощью рассеивающих линз.

Дальнозоркость исправляют с помощью собирающих линз.

Интерференция света

Интерференция света – это явление перераспределения энергии в пространстве, происходящее в результате сложения когерентных волн, вследствие чего в одних местах возникают максимумы, а в других минимумы.

Когерентные волны – это волны, имеющие одинаковую частоту и постоянную во времени разность фаз.

Когерентные волны можно получить от одного источника в результате отражения, преломления или дифракции.

Два независимых источника света не могут быть когерентными, поэтому в опытах с интерференцией света световые пучки от одного источника разделяют на два пучка, заставляют их проходить разные расстояния, а потом соединяют.

Когерентными могут быть:

  • волны, одна из которых падает на экран непосредственно от источника света, а другая создается его отражением в зеркале (зеркало Ллойда);

  • волны, образованные отражением одной и той же волны от двух сдвинутых относительно друг друга поверхностей (тонкие пленки);

  • волны, падающие от точечного источника на непрозрачную преграду с двумя узкими щелями, которые разделяют исходный пучок света на два когерентных пучка (опыт Юнга).

Интерференционная картина представляет собой чередование светлых (цветных) и темных полос.

Источником когерентных волн является лазер.

Геометрическая разность хода волн – это разность путей волн от двух когерентных источников ​( S_1 )​ и ( S_2 ) до точки пространства ​( M )​, в которой наблюдается интерференция.

Обозначение – ​( Delta r )​, единица измерения в СИ – м.

Условие максимума интерференции

Если геометрическая разность хода содержит целое число длин волн или четное число длин полуволн, то в месте их наложения друг на друга наблюдается усиление света – максимум:

где ​( k )​ = 0; 1; 2; 3… – порядок интерференционного максимума.

Условие минимума интерференции

Если геометрическая разность хода содержит нечетное число длин полуволн, то в месте их наложения друг на друга наблюдается ослабление света – минимум:

где ( k ) = 0; 1; 2; 3… – порядок интерференционного минимума.

Если свет распространяется в прозрачной среде с показателем преломления ​( n )​, то применяют понятие оптической разности хода.

Оптическая разность хода – это величина, равная произведению показателя преломления и геометрической разности хода волн.

Обозначение – ​( Delta )​, единица измерения в СИ – м.

Интерференция в тонких пленках

Наблюдаемое в природе радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах) объясняется интерференцией света, возникающей в результате отражения света от передней и задней поверхностей пленки. На тонкую прозрачную пленку толщиной ​( h )​ падает световая волна, ограниченная лучами 1 и 2. В точке О свет частично отразится от верхней поверхности пленки (волна 1′), а частично преломится и отразится от задней ее поверхности в точке С, преломившись в точке В, выйдет в воздух параллельно волне 1′. Волны 1′ и 1″ когерентны. (То же самое справедливо и для луча 2.)

Если на пути этих лучей поставить собирающую линзу, то они будут накладываться в ее фокальной плоскости и давать интерференционную картину. ( То же самое справедливо и для луча 2.)

Максимум освещенности поверхности тонкой пленки в отраженном свете:

где ​( Delta=2kfrac{lambda}{2} )​ – оптическая разность хода световых волн при отражении от верхней и нижней поверхности, ​( k )​ = 1; 2; 3… – целое число длин полуволн, укладывающихся в этой разности хода, ​( beta )​ – угол преломления.

Минимум освещенности поверхности тонкой пленки в отраженном свете:

Максимум освещенности поверхности тонкой пленки в проходящем свете: 

Минимум освещенности поверхности тонкой пленки в проходящем свете: 

Примером интерференции являются кольца Ньютона, которые наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны. Воздушная прослойка постепенно утолщается от точки соприкосновения линзы к краям. Отраженные от верхней и нижней границ воздушной прослойки световые волны интерферируют между собой. При этом получается следующая картина: в точке соприкосновения наблюдается черное пятно, окруженное рядом концентрических светлых и темных колец убывающей ширины.

Радиус светлого кольца Ньютона в отраженном свете:

где ​( R )​ – радиус кривизны линзы, ​( k )​ – номер кольца, считая от центра интерференционной картины.

Радиус темного кольца Ньютона в отраженном свете:

Радиус светлого кольца Ньютона в проходящем свете:

Радиус темного кольца Ньютона в проходящем свете:

Важно!
При решении задач следует учитывать, в каком свете наблюдается интерференция: в отраженном или проходящем.

Использование интерференции света

  • Интерферометры – это приборы, которые контролируют качество обработки поверхностей зеркал, точность изготовления деталей оптических инструментов и измерительных приборов.
  • Просветление оптики – на поверхность линз наносят тонкую пленку с показателем преломления меньше, чем показатель преломления стекла. Подбирая толщину пленки и величину показателя преломления, добиваются «гашения отраженных волн», вследствие чего возрастает интенсивность света, пропускаемого линзой.

Дифракция света

Дифракция света – это явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.

Наилучшее условие для наблюдения дифракции создается, когда размеры отверстий или препятствий – порядка длины волны. Чтобы определить распределение интенсивности световой волны, распространяющейся в среде с неоднородностями, используют принцип Гюйгенса–Френеля.

Принцип Гюйгенса–Френеля

Каждая точка фронта волны является источником вторичных волн, которые интерферируют между собой. Поверхность, касательная ко всем вторичным волнам, представляет новое положение фронта волны в следующий момент времени.

Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой, поэтому амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.

Дифракционная решетка

Дифракционная решетка – это оптический прибор, предназначенный для наблюдения дифракции света.

Дифракционная решетка представляет собой систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Дифракционную решетку применяют для разложения света в спектр и измерения длин световых волн.

Период решетки – это величина, равная сумме ширины прозрачной и непрозрачной полос решетки.

Обозначение – ​( d )​, единица измерения в СИ – м.

где ​( a )​ – ширина прозрачной полосы; ​( b )​ – ширина непрозрачной полосы.

Если решетка регулярна, т. е. ее прозрачные и непрозрачные полосы имеют одинаковую ширину, то период решетки можно рассчитать, разделив ее длину на число штрихов:

где ​( l )​ – длина решетки, ​( N )​ – число штрихов.

Формула дифракционной решетки

где ​( d )​ – период решетки; ​( varphi )​ – угол дифракции; ​( k )​ = 0; 1; 2… – порядок максимума, считая от центрального ​( k )​ = 0 и расположенного напротив центра решетки; ​( lambda )​ – длина волны, падающей на решетку нормально к ней.

Если дифракционная решетка освещается белым светом, то при ​( k )​ ≠ 0 разным длинам волн будут соответствовать разные дифракционные углы. Поэтому положение главных максимумов ненулевого порядка будет различным. Центральный максимум (​( k )​ = 0) остается белым, т. к. при ​( k )​ = 0 для всех длин волн ​( varphi )​ = 0, т. е. положение главного максимума для всех длин волн одинаково. Все остальные максимумы имеют вид радужных полос, называемых дифракционными спектрами первого порядка (​( k )​ = 1), второго порядка (​( k )​ = 2) и т. д. Ближе к центральному максимуму находится фиолетовый край спектра, дальше всего – красный, т. к. ​( lambda_{фиол}<lambda_{кр} )​, то и ​( varphi_{фиол}<varphi_{кр} )​.

Важно!
Поскольку углы, под которыми наблюдаются максимумы первого и второго порядка, не превышают 5°, можно вместо синусов углов использовать их тангенсы.

Дисперсия света

Дисперсия света – это зависимость показателя преломления среды от длины волны (частоты) падающего на вещество света.

Опыт Ньютона (1672)

Из-за дисперсии световые волны с различной длиной волны поразному преломляются веществом, что приводит к разложению белого света на цветные монохроматические лучи – спектр.

Для лучей света различной цветности показатели преломления данного вещества различны, т. к. различны скорости распространения электромагнитных волн, у которых разная длина волны. Луч красного света преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового цвета наименьшая. Это объясняется особенностями взаимодействия этих волн с электронами, входящими в состав атомов и молекул вещества среды, где они движутся.

Дисперсией света объясняется такое природное явление, как радуга.

Основные формулы по теме «Оптика»

Оптика

3.1 (61.05%) 114 votes

Линза — деталь из прозрачного однородного материала, ограниченная криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями.

В зависимости от формы различают два типа линз:

  1. собирающие — линзы, у которых середина толще их краёв;
  2. рассеивающие — линзы, края которых толще середины.

рис1.gif

Собирающие: (1) — двояковыпуклая; (2) — плоско-выпуклая; (3) — вогнуто-выпуклая. 

Рассеивающие: (4) — двояковогнутая; (5) — плоско-вогнутая; (6) — выпукло-вогнутая.

Если через центры кривизны поверхностей линзы провести прямую (AB), то эта прямая будет называться главной оптической осью линзы

Главная оптическая ось линзы — это прямая, проведённая через центры сферических поверхностей.

Главная оптическая ось.png

Если на собирающую линзу пустить пучок света параллельно главной оптической оси, то после прохождения лучей через линзу они пересекутся в одной точке (F), которая называется фокусом линзы.

im21.png

Расстояние от оптического центра линзы до фокуса называется фокусным расстоянием.

Если пустить пучок света параллельно главной оптической оси на рассеивающую линзу, то после прохождения через линзу получится расходящийся пучок, как бы выходящий из фокуса линзы. Это мнимый фокус (лучи не проходят через него в действительности, нам это только кажется).

im22.png

В рассеивающей линзе фокусное расстояние принято считать отрицательным.

(F<0).

Оптическая сила (D) линзы зависит как от радиусов кривизны (R_1) и (R_2) ее сферических поверхностей, так и от показателя преломления (n) материала, из которого изготовлена линза: (D=frac{1}{F}=(n-1)(frac{1}{R_1}+frac{1}{R_2})).

Обрати внимание!

Если поместить рассеивающую линзу в среду с показателем преломления большим, чем у вещества, из которого она сделана, то линза будет действовать как собирающая.

Аналогично, если поместить собирающую линзу в среду с большим показателем преломления, чем у вещества, из которого она сделана, то линза будет действовать как рассеивающая.

Содержание:

Линзы:

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов Линзы в физике - виды, формулы и определения с примерами

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).

Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).

Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.

Оптическая сила линзы обозначается символом D и вычисляется по формулеЛинзы в физике - виды, формулы и определения с примерами
где F — фокусное расстояние линзы.

Единицей оптической силы является диоптрия

Линзы в физике - виды, формулы и определения с примерами

1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.

Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
 

Пример №1

Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Анализ физической проблемы

Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.

Поиск математической модели, решение:

Линзы в физике - виды, формулы и определения с примерами

Определим числовое значение искомой величины:

Линзы в физике - виды, формулы и определения с примерами

Ответ: F = -62,5 см, линза рассеивающая.

Итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.

Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.

Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.

Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
 

Формула тонкой линзы

Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Линзы в физике - виды, формулы и определения с примерами

Изображение предмета, полученное с помощью линзы

Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
 

Строим изображение предмета, которое дает тонкая линза

Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
Линзы в физике - виды, формулы и определения с примерами

  1. — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
  2. — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
  3. — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
  4. отраженным светом, испускает лучи во всех направлениях.

Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения Линзы в физике - виды, формулы и определения с примерами, любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка Линзы в физике - виды, формулы и определения с примерами и будет действительным изображением точки S). Кстати, в точке Линзы в физике - виды, формулы и определения с примерамипересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).

Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение Линзы в физике - виды, формулы и определения с примерами точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке Линзы в физике - виды, формулы и определения с примерами. Значит, точка Линзы в физике - виды, формулы и определения с примерами является изображением точки В. Для построения изображения Линзы в физике - виды, формулы и определения с примерами точки А из точки Линзы в физике - виды, формулы и определения с примерамиопустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой Линзы в физике - виды, формулы и определения с примерами

Значит, Линзы в физике - виды, формулы и определения с примерамии является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.

На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — Линзы в физике - виды, формулы и определения с примерами то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке Линзы в физике - виды, формулы и определения с примерами

Как выглядит формула тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.

Пример №2

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет

Дано:

d = 2 см = 0,02 м

D = + 5 дптр

f- ?

Анализ физической проблемы, поиск математической модели

Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзыЛинзы в физике - виды, формулы и определения с примерами Фокусное расстояние F неизвестно, но мы знаем, что Линзы в физике - виды, формулы и определения с примерами (2), где

D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов

Подставив формулу (2) в формулу (1), получаем
Линзы в физике - виды, формулы и определения с примерами
Проверим единицу: Линзы в физике - виды, формулы и определения с примерами

Найдем числовое Линзы в физике - виды, формулы и определения с примерами

Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.

Ответ: f = -21 см, изображение мнимое.

Итоги:

В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):

Линзы в физике - виды, формулы и определения с примерами

Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

Что такое линза

Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?

Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.

Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).

Линзы в физике - виды, формулы и определения с примерами

Прямая, проходящая через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами есть радиусы кривизны поверхностей линзы (см. рис. 264).

Если толщина линзы мала но сравнению с радиусами Линзы в физике - виды, формулы и определения с примерами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Линзы в физике - виды, формулы и определения с примерами Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.

Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.

Линзы в физике - виды, формулы и определения с примерами

Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).

Линзы в физике - виды, формулы и определения с примерами

Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке Линзы в физике - виды, формулы и определения с примерами которая находится в плоскости Линзы в физике - виды, формулы и определения с примерами(см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка Линзы в физике - виды, формулы и определения с примерами в отличие от главного фокуса, называется фокусом.

Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.

Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.

Линзы в физике - виды, формулы и определения с примерами

Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние Линзы в физике - виды, формулы и определения с примерами у линзы 1 меньше, чем Линзы в физике - виды, формулы и определения с примерами у линзы 2.

Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):

Линзы в физике - виды, формулы и определения с примерами
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.

А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.

Например, если F = -0,5 м, то оптическая сила

Линзы в физике - виды, формулы и определения с примерами

Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
 

Для любознательных:

Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).

В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.

Главные выводы:

  1. Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
  2. Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
  3. Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
  4. Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.

Построение изображений в тонких линзах

Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.

Какие изображения предмета создает линза?

Линзы в физике - виды, формулы и определения с примерами

Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей Линзы в физике - виды, формулы и определения с примерамии 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Линзы в физике - виды, формулы и определения с примерами

Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).

Линзы в физике - виды, формулы и определения с примерами

Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d

Линзы в физике - виды, формулы и определения с примерами

А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч Линзы в физике - виды, формулы и определения с примерами идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи Линзы в физике - виды, формулы и определения с примерами и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.

Главные выводы:

  1. Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
  2. Все мнимые изображения — прямые, все действительные — перевернутые.
  3. Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.

Пример №3

С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.

Дано:

Н = Зh

f = 36 см

d — ?

D — ?

Решение

Построим изображение предмета в линзе (рис. 276).

Линзы в физике - виды, формулы и определения с примерами

Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.

По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Линзы в физике - виды, формулы и определения с примерами Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f – F, то их связь можно записать так: 3F = f – F, или 4F = f = 36 см. Вычислив значение фокусного расстояния Линзы в физике - виды, формулы и определения с примерами найдем и искомое значение оптической силы D линзы: Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Оптическая сила и фокусное расстояние линзы

Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse – «чечевица»).

Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего – из специальных сортов стекла.

Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Линзы в физике - виды, формулы и определения с примерами

Любая линза имеет характерные точки и линии. Выясним, какие именно.

1.    Прямую, проходящую через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).

2.    Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).

Линзы в физике - виды, формулы и определения с примерами

Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).

Линзы в физике - виды, формулы и определения с примерами

Эту точку называют главным фокусом линзы F.

3.    Главный фокус линзы F – точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.

4.    Фокусное расстояние f – расстояние от оптического центра линзы О до главного фокуса F.

Каждая линза имеет два главных фокуса.

Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:

Линзы в физике - виды, формулы и определения с примерами
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = Линзы в физике - виды, формулы и определения с примерами.

Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.

Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.

Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).

Линзы в физике - виды, формулы и определения с примерами

Такую линзу называют рассеивающей.

Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.

Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).

Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.

Линзы в физике - виды, формулы и определения с примерами

С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.

Каким же образом строятся изображения предметов с помощью линз?

Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.

Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением – мнимым.

Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:

  • 1.    Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
  • 2.    Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
  • 3.    Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).

Линзы в физике - виды, формулы и определения с примерами

Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.

1.    Предмет АВ размещен между линзой и ее фокусом F.

Линзы в физике - виды, формулы и определения с примерами

Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Линзы в физике - виды, формулы и определения с примерами Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать междуЛинзы в физике - виды, формулы и определения с примерами. Таким образом, Линзы в физике - виды, формулы и определения с примерами – изображение предмета АВ.

Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.

Такое изображение получают, когда пользуются лупой – прибором для рассматривания мелких предметов (например, чтения мелкого текста).

2.    Предмет размещен в главном фокусе линзы F.

Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.

Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.

3.    Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.

Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке Линзы в физике - виды, формулы и определения с примерами. В этой точке образуется действительное изображение точки А. Изображение Линзы в физике - виды, формулы и определения с примерамипредмета АВ также будет действительным.

Линзы в физике - виды, формулы и определения с примерами

Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.

Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.

4.    Предмет находится в двойном фокусе линзы. 2F.

В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

5.    Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

Такое изображение используют в фотоаппарате.

Пример №4

Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?

Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.

Пример №5

На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Линзы в физике - виды, формулы и определения с примерами
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.

Простые оптические приборы

Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.

Самый простой оптический прибор – лупа.

Лупа (франц. loupe – «нарост») – оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.

Общий вид луп разного вида представлен на рисунке 181, а.

Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).

Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Линзы в физике - виды, формулы и определения с примерами

Каким же образом все это видит наш глаз?

Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.

Лупа дает увеличение в 10-40 раз.

Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.

Микроскоп (греч. mikro – «маленький», skopeo – «смотрю») – оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).

Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus – «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus – «предметный»).

Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Линзы в физике - виды, формулы и определения с примерами

Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.

Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.

Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).

Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа – линза – имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?

В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo – «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.

Телескоп (греч. tele – «далеко», skopeo – «смотреть») – оптический прибор для астрономических исследований космических объектов (рис. 184).

Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.

Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.

Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.

Другой тип – это телескопы-рефлекторы (лат. reflecto – «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство – способность отражаться от зеркальных поверхностей.

Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.

Линзы в физике - виды, формулы и определения с примерами

Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 Линзы в физике - виды, формулы и определения с примерами. Устройство предназначено для изучения происхождения космических лучей.

Линзы в физике - виды, формулы и определения с примерами

Фотоаппарат – это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device – «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.

Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.

  • Заказать решение задач по физике

Подробное объяснение формулы тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).

Линзы в физике - виды, формулы и определения с примерами

Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 Линзы в физике - виды, формулы и определения с примерами.

Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).

Линзы в физике - виды, формулы и определения с примерами

Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.

Из рисунка 61 видно, что Линзы в физике - виды, формулы и определения с примерами следовательно

Линзы в физике - виды, формулы и определения с примерами

Из формул (1) и (2) следует формула Ньютона:

Линзы в физике - виды, формулы и определения с примерами

С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы тонкой линзы следует запомнить правило знаков:

  • для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
  • для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.

Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды.

В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами:

Линзы в физике - виды, формулы и определения с примерами

Пример №6

Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Отрицательное значение f соответствует мнимому изображению предмета.

Ответ: f =-0,10 м, изображение мнимое.

Пример №7

На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = Линзы в физике - виды, формулы и определения с примерами) самого предмета?

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для увеличения

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Из формулы линзы

Линзы в физике - виды, формулы и определения с примерами

с учетом выражения для f получаем

Линзы в физике - виды, формулы и определения с примерами

Ответ: d= 1 м.

Пример №8

Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м. 

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Ответ: F= 0,6 м.

Разбираем формулу тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).

Линзы в физике - виды, формулы и определения с примерами

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — 1 диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием

Линзы в физике - виды, формулы и определения с примерами

Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).

Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке Линзы в физике - виды, формулы и определения с примерами

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев,
  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр Линзы в физике - виды, формулы и определения с примерами линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.

Построим изображение предмета Линзы в физике - виды, формулы и определения с примерами в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы Линзы в физике - виды, формулы и определения с примерами расстояние от линзы до изображения Линзы в физике - виды, формулы и определения с примерами фокусное расстояние линзы Линзы в физике - виды, формулы и определения с примерами расстояние от предмета до переднего главного фокуса Линзы в физике - виды, формулы и определения с примерами расстояние от заднего главного фокуса до изображения Линзы в физике - виды, формулы и определения с примерами высота предмета Линзы в физике - виды, формулы и определения с примерами высота его изображения Линзы в физике - виды, формулы и определения с примерами

Из рисунка 82 видно, что Линзы в физике - виды, формулы и определения с примерами Из подобия треугольников следует:

Линзы в физике - виды, формулы и определения с примерами

Используя соотношения (1) и (2), получим:

Линзы в физике - виды, формулы и определения с примерами

Соотношение Линзы в физике - виды, формулы и определения с примерами называется формулой Ньютона.

С учетом того, что Линзы в физике - виды, формулы и определения с примерами (см. рис. 82), находим: Линзы в физике - виды, формулы и определения с примерами и подставляем в формулу (4):

Линзы в физике - виды, формулы и определения с примерами

Разделив обе части последнего выражения на Линзы в физике - виды, формулы и определения с примерами получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Линейным (поперечным) увеличением Г называется отношение линейного размера изображения Линзы в физике - виды, формулы и определения с примерами к линейному размеру предмета Линзы в физике - виды, формулы и определения с примерами Из соотношения (3) находим линейное увеличение тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с Линзы в физике - виды, формулы и определения с примерами является собирающей (положительной), а с Линзы в физике - виды, формулы и определения с примерами — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).

В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила Линзы в физике - виды, формулы и определения с примерами системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пример №9

На каком расстоянии Линзы в физике - виды, формулы и определения с примерами от рассеивающей линзы с оптической силой Линзы в физике - виды, формулы и определения с примерами дптр надо поместить предмет, чтобы его мнимое изображение получилось в Линзы в физике - виды, формулы и определения с примерами раз меньше Линзы в физике - виды, формулы и определения с примерами самого предмета? Постройте изображение предмета.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для линейного увеличения

Линзы в физике - виды, формулы и определения с примерами

находим:

Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы ( рис. 83) с учетом правила знаков:

Линзы в физике - виды, формулы и определения с примерами

и с учетом выражения для Линзы в физике - виды, формулы и определения с примерами получаем:

Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изучаем линзы

Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.

Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.

Линзы в физике - виды, формулы и определения с примерамиОдна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе

Если толщина Линзы в физике - виды, формулы и определения с примерами линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.3. Тонкая сферическая линза: Линзы в физике - виды, формулы и определения с примерами — главная оптическая ось линзы; Линзы в физике - виды, формулы и определения с примерами — толщина линзы; Линзы в физике - виды, формулы и определения с примерами— радиусы сферических поверхностей, ограничивающих линзу; Линзы в физике - виды, формулы и определения с примерами — оптический центр линзы

Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).

Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы

Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы

Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе

Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).

Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде

Определение оптической силы линзы

Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).

Линзы в физике - виды, формулы и определения с примерамиДалее главный фокус линзы, как правило, будем называть фокусом линзы.

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F

Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.

Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИметр:

Линзы в физике - виды, формулы и определения с примерами

Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).

Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.

Оптическую силу линзы обозначают символом D и вычисляют по формуле:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силыдиоптрия: Линзы в физике - виды, формулы и определения с примерами

1 диоптрияэто оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.

Подводим итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).

Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Линзы в физике - виды, формулы и определения с примерами Единица оптической силы линзы — диоптрия Линзы в физике - виды, формулы и определения с примерами

Построение изображений в линзах

Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы

Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).

Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.2. Три самых простых в построении луча («удобные лучи»):

  1. луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
  2. луч, параллельный главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы, после преломления в линзе идет через фокус Линзы в физике - виды, формулы и определения с примерами или через фокус Линзы в физике - виды, формулы и определения с примерами идет его продолжение (б);
  3. луч, проходящий через фокус Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идет параллельно главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы (а, б)

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.3. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате

Строим изображение предмета, которое даёт линза:

Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.

1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Линзы в физике - виды, формулы и определения с примерами Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Линзы в физике - виды, формулы и определения с примерами Значит, точка Линзы в физике - виды, формулы и определения с примерами является действительным изображением точки Линзы в физике - виды, формулы и определения с примерами Для построения изображения точки Линзы в физике - виды, формулы и определения с примерами опустим из точки Линзы в физике - виды, формулы и определения с примерами перпендикуляр на главную оптическую ось Линзы в физике - виды, формулы и определения с примерами Точка Линзы в физике - виды, формулы и определения с примерами пересечения перпендикуляра и оси I является изображением точки Линзы в физике - виды, формулы и определения с примерами

Итак, Линзы в физике - виды, формулы и определения с примерами — изображение предмета Линзы в физике - виды, формулы и определения с примерами Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).

2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.4. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате

3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке Линзы в физике - виды, формулы и определения с примерами

В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.5. а – построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между линзой и ее фокусом; б – с помощью

4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения

Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение

Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).

Формула тонкой линзы:

Построим изображение предмета в собирающей линзе (рис. 15.9).

Рассмотрим прямоугольные треугольники Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами Эти треугольники подобны Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Приравняв правые части равенств (1) и (2), имеем Линзы в физике - виды, формулы и определения с примерами то есть Линзы в физике - виды, формулы и определения с примерамиили Линзы в физике - виды, формулы и определения с примерами Разделив обе части последнего равенства на Линзы в физике - виды, формулы и определения с примерами получим формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

где Линзы в физике - виды, формулы и определения с примерами – оптическая сила линзы.

При решении задач следует иметь в виду:

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние

Пример №10

Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.

Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Найти:

Линзы в физике - виды, формулы и определения с примерами

Поиск математической модели, решение

По определению Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы: Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами Следовательно, Линзы в физике - виды, формулы и определения с примерами

Зная расстояние Линзы в физике - виды, формулы и определения с примерами определим увеличение Линзы в физике - виды, формулы и определения с примерами

Найдем значения искомых величин:

Линзы в физике - виды, формулы и определения с примерами

Знак «-» перед значением Линзы в физике - виды, формулы и определения с примерами говорит о том, что изображение мнимое.

Ответ: Линзы в физике - виды, формулы и определения с примерами изображение мнимое; Линзы в физике - виды, формулы и определения с примерами

Подводим итоги:

В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:

Расположение предмета Характеристика изображения в линзе
собирающей рассеивающей
За двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, уменьшенное, перевернутое мнимое, уменьшенное, прямое
В двойном фокусе линзы Линзы в физике - виды, формулы и определения с примерами действительное, равное, перевернутое
Между фокусом и двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, увеличенное, перевернутое
В фокусе линзы Линзы в физике - виды, формулы и определения с примерами изображения нет
Между линзой и фокусом Линзы в физике - виды, формулы и определения с примерами мнимое, увеличенное, прямое

Расстояние Линзы в физике - виды, формулы и определения с примерами от предмета до линзы, расстояние Линзы в физике - виды, формулы и определения с примерами от линзы до изображения и фокусное расстояние Линзы в физике - виды, формулы и определения с примерами связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света

Добавить комментарий