Как найти давление на глубине водоема

Перейти к контенту

Условие задачи:

Найти давление в озере на глубине 4,5 м. Атмосферное давление 100 кПа.

Задача №3.2.8 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(h=4,5) м, (p_{атм}=100) кПа, (p-?)

Решение задачи:

Схема к решению задачиДавление в озере на глубине (h) складывается из атмосферного давления (p_{атм}) и давления воды (p_{в}).

[p = {p_{атм}} + {p_в}]

Давление столба воды (p_{в}) высотой (h) определим по формуле:

[{p_в} = rho gh]

Здесь (rho) – плотность воды, равная 1000 кг/м3. Значит:

[p = {p_{атм}} + rho gh]

Численное значение искомого давления равно:

[p = 100 cdot {10^3} + 1000 cdot 10 cdot 4,5 = 145000;Па = 145;кПа]

Ответ: 145 кПа.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

3.2.7 На сколько отличается давление столбика ртути высотой 10 мм от давления столбика
3.2.9 Чему равно давление воды на глубине 2 м?
3.2.10 С какой силой действует вода на прямоугольную плотину высотой 75 м и шириной 120 м

( 5 оценок, среднее 5 из 5 )

Глубина оказывает прямое воздействие на давление воды. Между ними прямая зависимость. Данное значение рассчитывается по специальной формуле. На различных участках глубоководья указанная величина заметно отличается.

Рассмотрим в статье особенности расчет и составляющие формулы, а также отличается ли давление на участках с разной глубиной.

Содержание

  • Влияние глубины
  • Зависимость двух физических показателей
  • Формула для расчета
  • Сколько составляет на различных глубоководных участках?
  • Заключение

Влияние глубины

Чем глубже происходит погружение в водную толщу, тем больше становится ее сила. Глубина прямо влияет на увеличение давление. Это значение возрастает пропорционально.

Чем глубже, тем больше плотность водной толщи. С каждым последующим опусканием тела возникает все большая разница между внешним и внутренним водным давлением.

На поверхности действует атмосферное давление. При опускании в воду помимо него тела начинают испытывать еще и гидростатическое сдавливание.

Даже на мелководье на тело оказывается суммарное влияние, состоящее из атмосферного и гидростатического. При нырянии внешнее воздействие на тело возрастает. Возникает разница из-за увеличения плотности среды.

Верхние слои давят на нижние. За счет этого возникает сдавливающая сила на глубоководье. При этом ее показатель на одной глубине один и тот же по всем направлениям.

Зависимость двух физических показателей

С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.

С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.

Прирост давления на глубоководье неодинаков:

  • На 10 м прирост составляет 100%.
  • На 20 м он уже уменьшается вдвое (50%).
  • На 40 он падает до 25%.
  • На 60 он уже меньше 20% и составляет 17%.

В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.

Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.

Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе  воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.

Формула для расчета

Данный показатель повышается пропорционально погружению. Он рассчитывается по специальной формуле:

P = p * g * h, где

  • p — плотность среды. Примерно равна 1000 кг/м2.
  • g — это ускорение, которое придается телу силой тяжести. Это значение называется ускорением силы тяжести или свободного падения. На Земле данная величина примерно равняется 9,81 м/с2.
  • h — глубина, на которую погружается какой-либо объект. Высчитывается в метрах.

Формула является выражением закона Паскаля. По ней высчитывается значение гидростатического прессинга. Он напрямую зависит от высоты водного столба.

Произведение плотности (p) и ускорения (g) приблизительно равняется 0,1 атм. С каждым метром опускания на дно воздействие в водной среде повышается на 0,1 атм. Данное правило подтверждает тот факт, что чем глубже происходит опускание в толщу, тем выше становится показатель воздействия.

Сколько составляет на различных глубоководных участках?

Если какой-либо объект поместить в воду на один метр, то он будет испытывать на себе силу, равную 0,1 атм.

Предмет, погруженный на 2 м, уже станет испытывать прессинг величиной около 0,2.

С каждым последующим метром показатель будет возрастать на 0,1 атм. При 5 м значение равняется 0,5. При 10 оно будет уже равняться 1. Более точное число равняется 0,97 атмосферы.

На глубоководье водная толща становится сжатой. Ее плотность увеличивается. Уже на 100 м сила будет практически равняться 10. Более точное число составляет 9,7.

На глубинном участке в 1 км водная среда будет сдавливать находящиеся в ней объекты примерно со значением в 97 атм. Поскольку при 100 м величина равна 9,7, то на 1000 м она увеличивается в 10 раз.

Изменение показателя на разных глубоководных участках представлено в таблице.

Глубина, на которую объект погружается в воду, в метрах Давление в атмосферах.
1 0,10
2 0,19
3 0,29
4 0,39
5 0,49
10 0,97
15 1,46
25 2,43
50 4,85
100 9,70
200 19,40
250 24,25
500 48,50
1000 97

При первых 10 метрах прирост невысокий и составляет 0,1 атмосферы. Дальше его показатель увеличивается.

Заключение

Глубина влияет на давление воды. С каждым метром движения объекта вглубь его показатель увеличивается на 0,1 атм. Уже на 10 м сдавливающая сила воды составляет почти 1 атмосферу. Зависимость обеих величин обусловлена плотностью воды, которая возрастает по мере движения тела в ней на дно.

Также на глубоководье происходит увеличение внешнего силового воздействия на объект. Если на поверхности тела испытывают воздействие только атмосферного давления, то в воде помимо него на них еще оказывается и гидростатическое.

При этом прирост воздействия на разных глубинных участках неодинаков. Особенно он высок при первых 10 м погружения. Дальше он начинает довольно быстро снижаться.

Величину давления под водой можно вычислить по формуле:

p=ρgh

  • ρ – плотность жидкости
  • g – ускорение свободного падения
  • h – высота жидкости
  • Р=1000*9,8*10=98 000 Па

Получается, что на глубине 10 метров давление будет приблизительно 100 кПа или 1 атмосфера. Но ведь на поверхность воды будет будет действовать давление нашей атмосферы, получается, что под водой давление должно быть равно 2 атмосферам.

Какой же ответ правильный, под водой на глубине 10 метров давление 1 атмосфера или 2 атмосферы?

Правильны могут быть оба ответа, но необходимо уточнять по какой шкале ведется измерение давления.

Для измерения давления используют избыточную и абсолютную шкалы давления.

В избыточной шкале за 0 принято давление атмосферы, давление ниже атмосферного записывается со знаком минус.

В абсолютной шкале за 0 принят абсолютный 0, это давление также называют истинным.

Абсолютная и избыточная шкалы измерения давления
Абсолютная и избыточная шкалы измерения давления

В гидравлике, для решения инженерных задач, как правило, используют избыточную шкалу давления, в пневматике и компрессорной технике достаточно часто используется абсолютное давление.

Что касается основного вопроса нашей статьи, правильными ответами будут:

На глубине 10 метров под водой давление будет примерно равно 1 атмосфере по избыточной шкале измерения или 2 атмосферы по абсолютной шкале.

2016-11-22

Калькулятор доступен на полной версии сайта, с помощью него вы можете узнать давление жидкости на глубине 1, 5, 10, 20, 50, 100, 500, 1000 метров.

Вычисления осуществляются по избыточной шкале давления, в которой за 0 принято давление атмосферы.

Результат расчета давления на глубине

Вычислить давление на другой глубине

Расчет давления на глубине

Расчетная схема показана на рисунке:

Схема расчета давления на глубине 1, 5, 10, 20, 50, 100, 1000 метров

Для расчета используется формула:

P=ρ × g × h

  • ρ – плотность жидкость
  • h – глубина погружения
  • g – ускорение свободного падения
  • P – величина давления на глубине h

Пример расчета давления воды на глубине 10 метров

Для расчета давления воды на глубине 10 м, введите в графу глубина (h) – 10, выберите жидкость – вода, нажмите кнопку рассчитать.

Каждые 10 метров воды создают давление в 1 атмосферу

Полученное значение давления воды на 10 метрах равно 98,1 кПа, что примерно равно атмосферному давлению 101 кПа. Поэтому в приблизительных расчетах принимают давление в воде на глубине 10 метров равным 1 атмосфере про избыточной шкале.


Администрация сайта за результаты онлайн вычислений ответственности не несет.

    Читайте также:

    Калькулятор для расчета усилия пневмоцилиндра

    Калькулятор для перевода уксуса. Как развести уксусную эссенцию

    Калькулятор для расчета расхода и скорости потока

    Все новости

В каждой жидкости существует давление, обусловленное ее собственным весом. Так, например, давление на основание столба воды высотой 10 м составляет около 10 5 Па.

h высота столба жидкости, Метр
p давление в жидкости на глубине h, Паскаль
g ускорение свободного падения, 9.81 м/c 2
ρ плотность жидкости, кг/м 3

давление в жидкости равно ее весу, деленному на площадь,

Так как объем есть произведение высоты на площадь V = Sh, то

Плотность жидкости ρ зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Соотношение между единицами давления. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением.

Калькулятор находит неизвестные величины по заданным, используя формулу давления столба жидкости.

Калькулятор ниже предназначен для расчета неизвестной величины по заданным, используя формулу давления столба жидкости. Сама формула:

Калькулятор позволяет найти

  • давление столба жидкости по известным плотности жидкости, высоте столба жидкости и ускорению свободного падения
  • высоту столба жидкости по известным давлению жидкости, плотности жидкости и ускорению свободного падения
  • плотность жидкости по известным давлению жидкости, высоте столба жидкости и ускорению свободного падения
  • ускорение свободного падения по известным давлению жидкости, плотности жидкости и высоте столба жидкости

Вывод формул для всех случаев тривиален. Для плотности по умолчанию используется значение плотности воды, для ускорения свободного падения – земное ускорение, и для давления – величина равная давлению в одну атмосферу. Немного теории, как водится, под калькулятором.

Гидростатическое давление

Гидростатическое давление — давление столба воды над условным уровнем.

Формула гидростатического давления выводится достаточно просто

Из этой формулы видно, что давление не зависит от площади сосуда или его формы. Оно зависит только от плотности и высоты столба конкретной жидкости. Из чего следует, что, увеличив высоту сосуда, мы можем при небольшом объеме создать довольно высокое давление. В 1648 г. это продемонстрировал Блез Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Также это приводит к такому явлению как гидростатический парадокс.

Гидростатический парадокс — явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равно весу жидкости лишь для сосуда цилиндрической формы.

На картинке вверху давление на дно сосуда по всех случаях одинакова и не зависит от веса налитой жидкости, а только от ее уровня. Причина гидростатического парадокса состоит в том, что жидкость давит не только на дно, но и на стенки сосуда. Давление жидкости на наклонные стенки имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде будет равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда

Давление в наклонном сосуде

Представим, что у нас есть трубка длиной около 1 м. Мы налили в нее жидкость так, что она заполнена целиком. Возьмем точно такую же трубку, наполненную до краев, и разместим ее под наклоном. Сосуды одинаковы и заполнены одной и той же жидкостью. Следовательно, масса и вес жидкости и в первой, и во второй трубке равны. Будет ли одинаковым давление в точках, расположенных на дне этих емкостей? На первый взгляд кажется, что давление P1 равно P2, поскольку масса жидкостей одинакова. Предположим, что это так, и проведем эксперимент, чтобы проверить.

Соединим нижние части этих трубок маленькой трубочкой. Если наше предположение о том, что P1 = P2, верное, то перетечет ли куда-то жидкость? Нет, потому что на ее частицы будут действовать силы противоположного направления, которые будут компенсировать друг друга.

Давайте приделаем к наклонный трубке сверху воронку. А на вертикальной трубке проделаем отверстие, в него вставим трубочку, которая загибается вниз. Давление на уровне отверстия больше, чем на самом верху. Значит, жидкость будет перетекать по тоненькой трубочке и наполнять воронку. Масса жидкости в наклонной трубке будет увеличиваться, жидкость потечет из левой трубки в правую, затем будет подниматься и циркулировать по кругу.

А теперь установим над воронкой турбину, которую соединим с электрическим генератором. Тогда эта система самостоятельно, без какого-либо вмешательства будет вырабатывать электроэнергию. Она будет работать без остановки. Казалось бы, это и есть «вечный двигатель». Однако еще в XIX веке Французская академия наук отказалась принимать любые подобные проекты. Закон сохранения энергии говорит о том, что создать «вечный двигатель» невозможно. Значит, наше предположение о том, что P1 = P2, неверное. На самом деле P1 28 марта, 2019

Источник

Применение на практике

Примеры использования знаний свойств воды:

  1. Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
  2. Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
  3. Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.

Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:

  • выжимка масла из семян растений;
  • спуск на воду со стапелей построенного судна;
  • ковка и штамповка деталей;
  • домкраты для подъема грузов.

Зависимость двух физических показателей

С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.

С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.

  • На 10 м прирост составляет 100%.
  • На 20 м он уже уменьшается вдвое (50%).
  • На 40 он падает до 25%.
  • На 60 он уже меньше 20% и составляет 17%.

В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.

Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.

Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.

Как измерить давление воды в системе

Вопрос отпадает, если у вас уже установлен манометр

на входе в систему. Если нет, то потребуется
5
минут времени и следующие полезные вещи:

    Манометр для воды.

    Штуцер с резьбой 1/2 дюйма.

    Шланг подходящего диаметра.

    Червячные хомуты.

    Сантехнический скотч.

Шлан

г одним концом надеваем на манометр, вторым на штуцер.
Фиксируем
хомутами. Идем в ванную. Откручиваем душевую лейку и на ее место определяем
штуцер
. Несколько раз
переключаем воду
между режимами душ-кран, чтобы выгнать воздушную пробку. Если стыки подтекают, то заматываем соединение
сантехническим скотчем
. Готово.
Взгляните на шкалу манометра
и узнайте давление в водопроводе.

Вариант со шлангом универсален

. Однако, вместо шланга с хомутами можно использовать переходники с выходом на
1/2
дюйма. Необходимая резьба переходника на входе зависит от резьбы конкретного манометра (
метрическая
,
3/8
,
1/4
).

1.1. Водная среда и ее влияние на организм

Главная / Издания / Литература / Книжная полка / Справочник пловца-подводника

Пребывание человека под водой в непривычной для него среде имеет существенные особенности. Погружаясь в воду, человек кроме атмосферного давления воздуха, которое действует на поверхность воды, дополнительно испытывает гидростатическое (избыточное) давление. Общее (абсолютное) давление, измеряемое от нуля — полного вакуума, которое фактически испытывает человек под водой: или приближенно для пресной воды Pa — где абсолютное давление воды, кгс/см²(1);

Pв — атмосферное давление воздуха, кгс/см²;

Ри — избыточное давление воды, кгс/см²;

Б — барометрическое давление воздуха, мм рт. ст.;

Y — удельный вес воды, кгс/м³;

H — глубина погружения, м.

Пример 1.1.

Определить абсолютное давление воды, действующее на пловца-подводника на глубине 40 м:

1) в море, если атмосферное (барометрическое) давление 760 мм рт. ст. и удельный вес морской воды 1025 кгс/м³;

2) в горном озере, если атмосферное давление 600 мм рт. ст. и удельный вес пресной воды 1000 кгс/м³;

3) в равнинном водоеме с пресной водой, если атмосферное давление 750 мм рт. ст.

Решение.

Абсолютное давление воды: 1) в море по (1.1)

2) в горном озере по (1.1) 3) в равнинном водоеме по (1.1) или по (1.2)
Результаты примера показывают, что с достаточной для практики точностью в большинстве случаев для расчетов можно использовать приближенную формулу (1.2).
Абсолютное давление воды на человека значительно увеличивается с глубиной погружения. Так, на глубине 10 м по сравнению с атмосферным давлением оно удваивается и равно 2 кгс/см² (200 кПа), на глубине 20 м — утраивается и т. д. Однако относительный прирост давления с увеличением глубины уменьшается.

Как видно из табл. 1.1, наибольший относительный прирост давления приходится на зону первых десяти метров погружения. В этой критической зоне наблюдаются значительные физиологические перегрузки, о которых не следует забывать, особенно начинающим пловцам-подводникам (см. 10.2).

Кровообращение

под водой в силу неравномерного гидростатического давления на различные участки тела имеет свои особенности. Например, при вертикальном положении человека среднего роста (170 см) в воде независимо от глубины погружения его стопы будут испытывать гидростатическое давление на 0,17 кгс/см² (17 кПа) больше, чем голова.

Таблица 1.1. Изменение давления воды в зависимости от глубины погружения

К верхним областям тела, где давление меньше, кровь приливает (полнокровие), от нижних областей тела, где давление больше, отливает (частичное обескровливание). Такое перераспределение тока крови несколько увеличивает нагрузку на сердце, которому приходится преодолевать большее сопротивление движению крови по сосудам.
При горизонтальном положении тела в воде разность гидростатического давления на грудь и спину невелика — всего 0,02…0,03 кгс/см² (2…3 кПа) и нагрузка на сердце возрастает незначительно.

Дыхание

под водой возможно, если внешнее давление воды равно внутреннему давлению воздуха в системе «легкие — дыхательный аппарат» (рис. 1.1). Несоблюдение этого равенства затрудняет дыхание или делает его вообще невозможным. Так, дыхание через трубку на глубине 1 м при разности между внешним и внутренним давлением 0,1 кгс/см² (10 кПа) требует большого напряжения дыхательных мышц и долго продолжаться не может, а на глубине 2 м дыхательные мышцы уже не в состоянии преодолеть давление воды на грудную клетку(2).

Человек в покое на поверхности делает 12…24 дыхания в минуту, и его легочная вентиляция (минутный объем дыхания) составляет 6… 12 л/мин.

Рис. 1.1. График необходимого давления воздуха в системе «легкие — дыхательный аппарат» в зависимости от глубины погружения: 1 — избыточное (по манометру) давление воздуха; 2 — абсолютное давление воздуха

В нормальных условиях при каждом вдохе-выдохе в легких обменивается не более 1/6 всего находящегося в них воздуха. Остальной воздух остается в альвеолах легких и является той средой, где происходит газообмен с кровью. Альвеолярный воздух имеет постоянный состав и в отличие от атмосферного содержит 14% кислорода, 5,6% углекислого газа и 6,2% водяных паров (см. 1.2).

Даже незначительные изменения в его составе приводят к физиологическим сдвигам, которые являются компенсаторной защитой организма. При значительных изменениях компенсаторная защита не будет справляться, в результате возникнут болезненные (патологические) состояния (см. 10.5…10.8).

Не весь воздух, попадающий в организм, достигает легочных альвеол, где происходит газообмен между кровью и легкими. Часть воздуха заполняет дыхательные пути организма (трахеи, бронхи) и не участвует в процессе газообмена. При выдохе этот воздух удаляется, не достигнув альвеол. При вдохе в альвеолы вначале поступает воздух, который остался в дыхательных путях после выдоха (обедненный кислородом, с повышенным содержанием углекислого газа и водяных паров), а затем свежий воздух.

Объем дыхательных путей организма, в которых воздух увлажняется и согревается, но не участвует в газообмене, составляет примерно 175 см³. При плавании с дыхательным аппаратом(3) (дыхательной трубкой) общий объем дыхательных путей (организма и аппарата) увеличивается почти в два раза. При этом вентиляция альвеол ухудшается и снижается работоспособность.

Интенсивные мышечные движения под водой требуют большого расхода кислорода, что приводит к усилению легочной вентиляции, в результате увеличивается скорость потока воздуха в дыхательных путях организма и аппарата (дыхательной трубки). При этом пропорционально квадрату скорости потока воздуха возрастает сопротивление дыханию. С увеличением плотности сжатого воздуха соответственно глубине погружения сопротивление дыханию также возрастает.

Сопротивление дыханию оказывает существенное влияние на длительность и скорость плавания под водой.

Если сопротивление дыханию достигает 60…65 мм рт. ст. (8…9 кПа), дышать становится трудно и дыхательные мышцы быстро утомляются. Растягивая по времени фазу вдоха и выдоха, можно уменьшить скорость потока воздуха в дыхательных путях. Это приводит к некоторому снижению легочной вентиляции, но в то же время заметно уменьшает сопротивление дыханию.

Плавучесть.

Вследствие большой плотности воды человек, погружаясь в нее, находится в условиях, близких к состоянию невесомости. При выдохе средний удельный вес человека находится в пределах 1020… 1060 кгс/м³ (10,2… 10,6 кН/м³) и наблюдается отрицательная плавучесть 1…2 кгс (10…20 Н) — разность между весом вытесненной телом воды и его весом. При вдохе средний удельный вес человека понижается до 970 кгс/м³ (9,7 кН/м³) и появляется незначительная положительная плавучесть.

При плавании в гидрозащитной одежде за счет воздуха в ее складках положительная плавучесть увеличивается, что затрудняет погружение в воду. Плавучесть можно отрегулировать с помощью грузов. Для плавания под водой обычно создают незначительную отрицательную плавучесть — 0,5… 1 кгс (5… 10 Н). Большая отрицательная плавучесть требует постоянных активных движений для удержания на нужной глубине и обычно создается только при работах с опорой на грунт (объект).

Ориентирование

под водой представляет определенные трудности. На поверхности человек ориентируется в окружающей среде с помощью зрения, а равновесие тела его поддерживается с помощью вестибулярного аппарата, мышечно-суставного чувства и ощущений, возникающих во внутренних органах и коже при изменении положения тела. Он все время испытывает действие силы тяжести (чувство опоры) и воспринимает малейшее изменение положения тела в пространстве.

При плавании под водой человек лишен привычной опоры. В этих условиях из органов чувств, ориентирующих человека в пространстве, остается вестибулярный аппарат, на отолиты которого продолжают действовать силы земного тяготения. Особенно затруднено ориентирование под водой человека с нулевой плавучестью. Под водой пловец с закрытыми глазами допускает ошибки в определении положения тела в пространстве на угол 10…25°.

Большое значение для ориентирования под водой имеет положение человека. Наиболее неблагоприятным считается положение на спине с запрокинутой назад головой.

При попадании в слуховой проход холодной воды вследствие раздражения вестибулярного аппарата у пловца появляется головокружение, затрудняется определение направления и ошибка часто достигает 180°.

Для ориентирования под водой пловец вынужден использовать внешние факторы, сигнализирующие о положении тела в пространстве: движение пузырьков выдыхаемого воздуха из аппарата, буйки и т. п. Большое значение для ориентирования под водой имеет тренировка пловца.

Сопротивление воды

оказывает заметное влияние на скорость плавания. При плавании на поверхности со скоростью 0,8… 1,7 м/с сопротивление движению тела возрастает соответственно с 2,5 до 11,5 кгс (с 25 до 115 Н ). При плавании под водой сопротивление движению меньше, так как пловец-подводник занимает более горизонтальное положение и ему не надо периодически поднимать голову из воды, чтобы сделать вдох. Кроме того, под водой меньше тормозящая сила волн и завихрений, возникающих в результате движений пловца. Опыт в бассейне показывает, что один и тот же человек, проплывающий дистанцию 50 м брассом за 37,1 с, под водой проплывает то же расстояние за 32,2 с.

Средняя скорость плавания под водой в гидроодежде с аппаратом 0,3…0,5 м/с. На коротких дистанциях хорошо подготовленные пловцы могут развивать скорость 0,7.., 1 м/с, отлично подготовленные — до 1,5 м/с.

Охлаждение организма

в воде протекает интенсивнее, чем на воздухе. Теплопроводность воды в 25 раз, а теплоемкость в 4 раза больше, чем воздуха. Если на воздухе при 4° С человек может без опасности для своего здоровья находиться в течение 6 ч и при этом температуря тела у него не понижается, то в воде при такой же температуре незакаленный человек без защитной одежды в большинстве случаев погибает от переохлаждения уже спустя 30…60 мин. Охлаждение организма усиливается с понижением температуры воды и при наличии течения.

В воздушной среде интенсивные теплопотери при температуре воздуха 15…20° С происходят в результате излучения (40…45%) и испарения (20…25%), а на долю теплоотдачи с помощью проведения приходится лишь 30…35%.

В воде у человека без защитной одежды тепло в основном теряется в результате проведения. На воздухе теплопотери происходят с площади, составляющей около 75% поверхности тела, так как между соприкасающимися поверхностями ног, рук и соответствующими областями туловища существует теплообмен. В воде же теплопотери происходят со всей поверхности тела.

Воздух, непосредственно соприкасающийся с кожей, быстро нагревается и фактически имеет более высокую температуру, чем окружающий. Даже ветер не может полностью удалить с кожи этот слой теплого воздуха. В воде с ее большой удельной теплоемкостью и большой теплопроводностью слой, прилегающий к телу, не успевает нагреваться и легко вытесняется холодной водой. Поэтому температура поверхности тела в воде понижается интенсивнее, чем на воздухе. Кроме того, вследствие неравномерного гидростатического давления воды нижние области тела, которые испытывают большее давление, охлаждаются больше и имеют температуру кожи ниже, чем верхние, менее обжатые водой.

Тепловые ощущения организма на воздухе и в воде при одной и той же температуре различны. В табл. 1.2 дана сравнительная характеристика ощущений человека при одинаковой температуре воды и воздуха.

Таблица 1.2. Тепловые ощущения организма на воздухе и в воде

Вследствие интенсивного охлаждения и обжатия гидростатическим давлением кожная чувствительность в воде понижается, болевые ощущения притупляются, поэтому могут остаться незамеченными небольшие порезы и даже раны.
При спусках под воду в гидрозащитной одежде температура кожи понижается неравномерно. Наибольшее падение температуры кожи отмечается в конечностях (табл. 1.3).

Слышимость в воде

ухудшается, так как звуки под водой воспринимаются преимущественно путем костной проводимости, которая на 40% ниже воздушной.

Дальность слышимости при костной проводимости зависит от тональности звука: чем выше тон, тем лучше слышен звук. Это имеет практическое значение для связи пловцов между собой и с поверхностью.

При погружении в снаряжении с объемным шлемом воздушная проводимость сохраняется почти полностью.

Таблица 1.3. Средняя температура кожных покровов пловца-подводника после пребывания в холодной воде (1…9°С) в гидрозащитной одежде в течение 2 ч

Звук в воде распространяется в 4,5 раза быстрее, чем в атмосфере, поэтому под водой сигнал от источника звука, расположенного сбоку, поступает в оба уха почти одновременно, разница составляет менее 0,00-001 с. Столь незначительная разница во времени поступления сигнала недостаточно хорошо дифференцируется, и четкого пространственного восприятия звука не происходит. Следовательно, установить направление на источник звука под водой человеку трудно.
Видимость в воде

зависит от количества и состава растворенных в ней веществ, взвешенных частиц, которые рассеивают световые лучи. В мутной воде даже при ясной солнечной погоде видимость почти отсутствует.

Глубина проникновения света в толщу воды зависит от угла падения лучей и состояния водной поверхности. Косые солнечные лучи, падающие на поверхность воды, проникают на малую глубину, и большая часть их отражается от поверхности воды. Слабая рябь или волна резко ухудшают видимость в воде.

На глубине 10 м освещенность в 4 раза меньше, чем на поверхности. На глубине 20 м освещенность уменьшается в 8 раз, а на глубине 50 м — в несколько десятков раз. Лучи с различной длиной волны поглощаются неравномерно. Длинноволновая часть видимого спектра (красные лучи) почти полностью поглощается поверхностными слоями воды. Коротковолновая часть (фиолетовые лучи) в наиболее прозрачной океанской воде может проникать на глубину не более 1000… 1500 м. Зеленые лучи не проникают глубже 100 м.

Зрение под водой

имеет свои особенности. Вода обладает примерно такой же преломляющей способностью, как и оптическая система глаза. Если пловец погружается без маски, лучи света проходят через воду и попадают в глаз, почти не преломляясь. При этом лучи сходятся не у сетчатой оболочки, а значительно дальше, за ней. В результате острота зрения ухудшается в 100…200 раз, а поле зрения уменьшается, изображение предметов получается неясным, расплывчатым, и человек становится как бы дальнозорким.

При погружении пловца-подводника в маске световой луч из воды преходит слой воздуха в маске, попадает в глаз и преломляется в его оптической системе как обычно. Но пловец-подводник при этом видит изображение предмета несколько ближе и выше его действительного местоположения. Сами же предметы кажутся под водой значительно больше, чем в действительности. Опытные пловцы приспосабливаются к этим особенностям зрения и не испытывают затруднений.

Резко ухудшается в воде и цветоощущение. Особенно плохо воспринимаются синий и зеленый цвета, которые близки к естественной окраске воды, лучше всего — белый и оранжевый.

(1) В системе СИ единицей силы является ньютон (Н), а единицей давления — Н/м², которой присвоено наименование паскаль (Па). В водолазной практике пока еще применяются единицы силы — кгс и единицы давления — кгс/см², м вод. ст. и мм рт. ст. Для пересчета используются соотношения: 1 кгс=9,80665 ЮН; 1 кгс/см²=9,80665 — 10 Па=100 кПа (килопаскаль) =0,1 МПа (мегапаскаль); 1 м вод. ст.=9806,65 Па=10 кПа; J мм рт. ст.= 133,322 Па = 0,13 кПа. — Прим. ред.

(2) Если считать площадь грудной клетки 6000 см², то на глубине 2 м (гидростатическое давление 0,2 кгс/см²) усилие со стороны воды на грудную клетку составит 0,2 — 6000=1200 кгс (12 кН).

(3) Здесь и далее под дыхательными аппаратами подразумеваются воздушно-дыхательные аппараты (прежнее название — воздушнобаллонные аппараты), автономные (акваланги), шланговые и универсальные. — Прим. ред.

Вперед Оглавление Назад

Давление воды

Ныряя, аквалангист или пловец сталкивается с гидростатическим давлением по всей поверхности тела, при этом оно превышает нормальные показатели его организма. Хотя тело водолаза может не соприкасаться с водой напрямую за счет резинового костюма, он сталкивается с тем же давлением, что оказывает влияние на тело пловца, поскольку воздух в скафандре требуется сжать с учетом показателей окружающей среды. Из-за этого даже подаваемый через шланг воздух для дыхания должен закачиваться с учетом давления воды на предполагаемой глубине. Тот же показатель обязан быть у воздуха, доставляемого из баллонов в маску аквалангиста. Таким образом, ныряльщикам приходится дышать воздухом с непривычными показателями.

давление под водой на глубине

Не поможет от давления и водолазный колокол или кессон, поскольку в нем следует сжать воздух, чтобы он не попал под колокол, то есть увеличить до показателей окружающей среды. По этой причине при постепенном погружении происходит постоянная подкачка воздуха с расчетом на давление воды на достигнутой глубине.

Высокие показатели плохо влияют на самочувствие и здоровье человека, из-за чего есть определенный предел, до которого могут работать люди без вреда для здоровья. Обычно при нырянии в водолазном костюме он достигает 40 метров, что соответствует 4 атмосферам. Опуститься на большую глубину водолаз может только в жестком скафандре, который примет на себя давление воды. В нем можно спокойно погрузиться до 200 метров.

Добавить комментарий