2016-11-22
Калькулятор доступен на полной версии сайта, с помощью него вы можете узнать давление жидкости на глубине 1, 5, 10, 20, 50, 100, 500, 1000 метров.
Вычисления осуществляются по избыточной шкале давления, в которой за 0 принято давление атмосферы.
Результат расчета давления на глубине
Вычислить давление на другой глубине
Расчет давления на глубине
Расчетная схема показана на рисунке:
Для расчета используется формула:
P=ρ × g × h
- ρ – плотность жидкость
- h – глубина погружения
- g – ускорение свободного падения
- P – величина давления на глубине h
Пример расчета давления воды на глубине 10 метров
Для расчета давления воды на глубине 10 м, введите в графу глубина (h) – 10, выберите жидкость – вода, нажмите кнопку рассчитать.
Каждые 10 метров воды создают давление в 1 атмосферу
Полученное значение давления воды на 10 метрах равно 98,1 кПа, что примерно равно атмосферному давлению 101 кПа. Поэтому в приблизительных расчетах принимают давление в воде на глубине 10 метров равным 1 атмосфере про избыточной шкале.
Администрация сайта за результаты онлайн вычислений ответственности не несет.
Читайте также:
Все новости
Глубина оказывает прямое воздействие на давление воды. Между ними прямая зависимость. Данное значение рассчитывается по специальной формуле. На различных участках глубоководья указанная величина заметно отличается.
Рассмотрим в статье особенности расчет и составляющие формулы, а также отличается ли давление на участках с разной глубиной.
Содержание
- Влияние глубины
- Зависимость двух физических показателей
- Формула для расчета
- Сколько составляет на различных глубоководных участках?
- Заключение
Влияние глубины
Чем глубже происходит погружение в водную толщу, тем больше становится ее сила. Глубина прямо влияет на увеличение давление. Это значение возрастает пропорционально.
Чем глубже, тем больше плотность водной толщи. С каждым последующим опусканием тела возникает все большая разница между внешним и внутренним водным давлением.
На поверхности действует атмосферное давление. При опускании в воду помимо него тела начинают испытывать еще и гидростатическое сдавливание.
Даже на мелководье на тело оказывается суммарное влияние, состоящее из атмосферного и гидростатического. При нырянии внешнее воздействие на тело возрастает. Возникает разница из-за увеличения плотности среды.
Верхние слои давят на нижние. За счет этого возникает сдавливающая сила на глубоководье. При этом ее показатель на одной глубине один и тот же по всем направлениям.
Зависимость двух физических показателей
С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.
С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.
Прирост давления на глубоководье неодинаков:
- На 10 м прирост составляет 100%.
- На 20 м он уже уменьшается вдвое (50%).
- На 40 он падает до 25%.
- На 60 он уже меньше 20% и составляет 17%.
В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.
Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.
Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.
Формула для расчета
Данный показатель повышается пропорционально погружению. Он рассчитывается по специальной формуле:
P = p * g * h, где
- p — плотность среды. Примерно равна 1000 кг/м2.
- g — это ускорение, которое придается телу силой тяжести. Это значение называется ускорением силы тяжести или свободного падения. На Земле данная величина примерно равняется 9,81 м/с2.
- h — глубина, на которую погружается какой-либо объект. Высчитывается в метрах.
Формула является выражением закона Паскаля. По ней высчитывается значение гидростатического прессинга. Он напрямую зависит от высоты водного столба.
Произведение плотности (p) и ускорения (g) приблизительно равняется 0,1 атм. С каждым метром опускания на дно воздействие в водной среде повышается на 0,1 атм. Данное правило подтверждает тот факт, что чем глубже происходит опускание в толщу, тем выше становится показатель воздействия.
Сколько составляет на различных глубоководных участках?
Если какой-либо объект поместить в воду на один метр, то он будет испытывать на себе силу, равную 0,1 атм.
Предмет, погруженный на 2 м, уже станет испытывать прессинг величиной около 0,2.
С каждым последующим метром показатель будет возрастать на 0,1 атм. При 5 м значение равняется 0,5. При 10 оно будет уже равняться 1. Более точное число равняется 0,97 атмосферы.
На глубоководье водная толща становится сжатой. Ее плотность увеличивается. Уже на 100 м сила будет практически равняться 10. Более точное число составляет 9,7.
На глубинном участке в 1 км водная среда будет сдавливать находящиеся в ней объекты примерно со значением в 97 атм. Поскольку при 100 м величина равна 9,7, то на 1000 м она увеличивается в 10 раз.
Изменение показателя на разных глубоководных участках представлено в таблице.
Глубина, на которую объект погружается в воду, в метрах | Давление в атмосферах. |
1 | 0,10 |
2 | 0,19 |
3 | 0,29 |
4 | 0,39 |
5 | 0,49 |
10 | 0,97 |
15 | 1,46 |
25 | 2,43 |
50 | 4,85 |
100 | 9,70 |
200 | 19,40 |
250 | 24,25 |
500 | 48,50 |
1000 | 97 |
При первых 10 метрах прирост невысокий и составляет 0,1 атмосферы. Дальше его показатель увеличивается.
Заключение
Глубина влияет на давление воды. С каждым метром движения объекта вглубь его показатель увеличивается на 0,1 атм. Уже на 10 м сдавливающая сила воды составляет почти 1 атмосферу. Зависимость обеих величин обусловлена плотностью воды, которая возрастает по мере движения тела в ней на дно.
Также на глубоководье происходит увеличение внешнего силового воздействия на объект. Если на поверхности тела испытывают воздействие только атмосферного давления, то в воде помимо него на них еще оказывается и гидростатическое.
При этом прирост воздействия на разных глубинных участках неодинаков. Особенно он высок при первых 10 м погружения. Дальше он начинает довольно быстро снижаться.
Величину давления под водой можно вычислить по формуле:
p=ρgh
- ρ – плотность жидкости
- g – ускорение свободного падения
- h – высота жидкости
- Р=1000*9,8*10=98 000 Па
Получается, что на глубине 10 метров давление будет приблизительно 100 кПа или 1 атмосфера. Но ведь на поверхность воды будет будет действовать давление нашей атмосферы, получается, что под водой давление должно быть равно 2 атмосферам.
Какой же ответ правильный, под водой на глубине 10 метров давление 1 атмосфера или 2 атмосферы?
Правильны могут быть оба ответа, но необходимо уточнять по какой шкале ведется измерение давления.
Для измерения давления используют избыточную и абсолютную шкалы давления.
В избыточной шкале за 0 принято давление атмосферы, давление ниже атмосферного записывается со знаком минус.
В абсолютной шкале за 0 принят абсолютный 0, это давление также называют истинным.
В гидравлике, для решения инженерных задач, как правило, используют избыточную шкалу давления, в пневматике и компрессорной технике достаточно часто используется абсолютное давление.
Что касается основного вопроса нашей статьи, правильными ответами будут:
На глубине 10 метров под водой давление будет примерно равно 1 атмосфере по избыточной шкале измерения или 2 атмосферы по абсолютной шкале.
Пожалуйста, поставьте оценку
( 17 оценок, среднее 4.29 из 5 )
Комментарии: 17
-
Аноним 14.01.2022 в 17:41
кг/м3 умнож.на м/с2 умнож.на м равно кг/с2м
трудно это.Ответить
-
Easyfizika (автор) 16.01.2022 в 11:34
В такой простой задаче, в которой используется формула из учебника, размерность можете не проверять. Но специально для Вас покажу:[frac{{кг}}{{{м^3}}} cdot frac{м}{{{с^2}}} cdot м = frac{{ кг cdot м}}{{{с^2} cdot {м^2}}} = frac{Н}{{{м^2}}} = Па]
Ответить
-
-
Аноним 18.02.2021 в 20:04
-
Easyfizika (автор) 19.02.2021 в 19:32
Думаю, Вы и сами сможете записать СИ. Тем более, что данные задачи уже в условии приведены в системе СИ
Ответить
-
-
Аноним 14.05.2019 в 20:59
-
Easyfizika (автор) 14.05.2019 в 22:00
Глубина итак дана в единицах системы СИ (в метрах), больше тут нечего переводить.
Ответить
-
-
Аноним 05.05.2019 в 18:16
А почему атмосферное не учитываем?
Ответить
-
Аноним 05.05.2019 в 18:16
И когда вообще его нужно учитывать?
Ответить
-
Easyfizika (автор) 05.05.2019 в 21:11
В задаче спрашивают про давление воды, поэтому и не учитываем.
Если бы спрашивали про полное давление (часто пишут просто давление), то нужно было бы учесть и давление атмосферы.Ответить
-
-
-
Аноним 05.02.2019 в 22:34
Хех,это и вправду изи физика
Спасибо !!!)))Ответить
-
Аноним 06.05.2018 в 12:41
Все очень понятно и спасибо огромное
Ответить
-
Аноним 06.05.2018 в 12:40
-
Анон 15.03.2018 в 19:56
Откуда взяли величину 10?
Ответить
-
Easyfizika (автор) 25.03.2018 в 10:14
Это ускорение свободного падения, я принимаю его равным 10 м/с2, но если быть точнее, оно равно 9,81 м/с2
Ответить
-
-
Аноним 04.02.2018 в 12:15
-
Easyfizika (автор) 04.02.2018 в 14:15
Конечно, обязательно пишите “Дано:”
Ответить
-
-
Аноним 27.05.2017 в 14:00
Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково.
Такая особенность передача давления жидкостями и газами связана с подвижностью молекул в жидком и газообразном состояниях.
Давление столба жидкости определяется формулой:
p = ρжgh
p — давление столба жидкости (Па), ρж — плотность жидкости (кг/м3), g — ускорение свободного падения (≈10 м/с2), h — высота столба жидкости, или ее глубина (м).
Важно! Высоту h нужно определять от поверхности жидкости.
Сила давления жидкости
Сила давления жидкости на дно сосуда — это произведение давления, оказываемого жидкостью на дно сосуда, на площадь этого дна:
F = pS = ρжghab
Сила давления жидкости на боковую грань сосуда — это произведение половины давления, оказываемого жидкостью на дно сосуда, на площадь грани:
F=ρжgh2hb
Подсказки к задачам:
- Плотность пресной воды равна 1000 кг/м3.
- Плотность соленой воды равна 1030 кг/м3.
Пример №1. Чему равно давление, созданное водой, на глубине 2 м?
Давление в жидкостях определяется формулой:
p = ρжgh.
Давление, созданное пресной водой, равно:
p = 1000∙10∙2 = 20000 (Па) = 20 (кПа)
Давление, созданное соленой водой, равно:
p = 1030∙10∙2 = 20600 (Па) = 20,6 (кПа)
Гидростатический парадокс
Из закона Паскаля следует, что давление на дно сосуда определяется только плотностью жидкости и высотой ее столба. Поэтому, если в разные сосуды налить одинаковую жидкость одинаковой высоты, давление, оказываемое ею на дно каждого из сосудов, будет одинаковым.
p1 = p2 = p3
Сила давления при этом будет разная, так как она прямо пропорционально зависит от площади дна. Так как площадь дна первого сосуда минимальна, а третьего максимальна, силы давления, оказываемые жидкостью на дно сосудов, будут такими:
F1 < F2 < F3
Пример №2. На рисунке изображены три сосуда с разными жидкостями. Площади дна сосудов равны. В первом сосуде находится вода (ρ1 = 1 г/см3), во втором — керосин (ρ2 = 0,8 г/см3), в третьем — спирт (ρ3 = 0,8 г/см3). В каком сосуде оказывается максимальное давление на дно?
Давление зависит только от плотности жидкости и от ее столба: площадь сосудов никакой роли не играет. Так как столбы жидкостей во всех сосудах одинаково, остается сравнивать плотности. Плотность воды больше плотности керосина и плотности спирта. Поэтому в сосуде 1 давление на дно сосуда будет максимальным.
Задание EF18645
В сосуд высотой 20 см налита вода, уровень которой ниже края сосуда на 2 см. Чему равна сила давления воды на дно сосуда, если площадь дна 0,01м2? Атмосферное давление не учитывать.
Алгоритм решения
- Записать исходные данные и перевести единицы измерения величин в СИ.
- Записать формулу для вычисления силы давления.
- Выполнить решение задачи в общем виде.
- Вычислить искомую величину, подставив известные данные.
Решение
Запишем исходные данные:
- Высота сосуда H = 20 см.
- Разница между высотой сосуда и уровнем налитой в него воды: b = 2 см.
- Площадь дна сосуда: S = 0,01 м2.
20 см = 0,2 м
2 см = 0,02 м
Сила давления равна произведению давления на площадь, на которую это давление оказывается:
F = pS
Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. А высота столба воды в данном случае равна разности высоту стакана и разнице между высотой сосуда и уровнем воды. Поэтому:
F = pS = ρжghS = ρжg(H – b)S = 1000∙10∙(0,2 – 0,02)∙0,01 = 18 (Н)
Ответ: 18
pазбирался: Алиса Никитина | обсудить разбор
Задание EF22709
Какова сила давления керосина, заполняющего цистерну, на заплату в её стене, находящуюся на глубине 2 м? Площадь заплаты 10 см2. Атмосферное давление не учитывать.
Алгоритм решения
- Записать исходные данные и перевести единицы измерения величин в СИ.
- Записать формулу для вычисления силы давления.
- Выполнить решение задачи в общем виде.
- Вычислить искомую величину, подставив известные данные.
Решение
Запишем исходные данные:
- Глубина заплаты в цистерне h = 2 м.
- Площадь заплаты: S = 10 см2.
10 см2 = 0,001 м2
Сила давления равна произведению давления на площадь, на которую это давление оказывается:
F = pS
Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. Поэтому:
F = pS = ρкghS = 800∙10∙2∙0,001 = 16 (Н)
Ответ: 16
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18804
На рисунке представлены графики зависимости давления p от глубины погружения h для двух покоящихся жидкостей: воды и тяжёлой жидкости дийодметана, при постоянной температуре.
Выберите два верных утверждения, согласующихся с приведёнными графиками.
Ответ:
а) В воде на глубине 25 м давление p в 2,5 раза больше атмосферного.
б) С ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде.
в) Плотность керосина 0,82 г/см3, аналогичный график зависимости давления от глубины для керосина окажется между графиками для воды и дийодметана.
г) Если внутри пустотелого шарика давление равно атмосферному, то в воде на глубине 10 м давления на его поверхность извне и изнутри будут равны друг другу.
д) Плотность оливкового масла 0,92 г/см3, аналогичный график зависимости давления от глубины для масла окажется между графиком для воды и осью абсцисс (горизонтальной осью).
Алгоритм решения
1.Проверить все утверждения на истинность.
2.Записать буквы, соответствующие верным утверждениям, последовательно без пробелов.
Решение
Проверим истинность первого утверждения (а). Для этого определим по графику давление воды на глубине 25 м. Если пустить перпендикуляр к графику зависимости давления воды от глубины погружения через h = 25 м, то он пересечет график в точке, которой соответствует давление p = 350 кН. Атмосферное давление равно 100 кН. Следовательно, давление воды на этой глубине в 3,5 раза превышает атмосферное давление. Утверждение неверно.
Проверим второе утверждение (б). Согласно ему, с ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде. Это действительно так, потому что угол наклона графика зависимости давления дийодметана от глубины погружения к оси абсцисс больше того же графика для воды. Это можно подтвердить и математически: давление в более плотной жидкости с глубиной растет быстрее, так как давление имеет прямо пропорциональную зависимость с глубиной. Утверждение верно.
Проверим третье утверждение (в). Согласно ему, если на этом же рисунке построить график зависимости давления керосина от глубины погружения, то он окажется между двумя уже существующими графиками. Но этого не может быть, потому что давление в воде растет медленнее, чем давление в дийодметане, так как вода менее плотная. По этой же причине давление в керосине будет расти медленнее, чем в воде, так как керосин менее плотный по сравнению с водой. Третий график в этом случае займет положение между графиком зависимости давления воды от глубины погружения и осью абсцисс. Утверждение неверно.
Проверим четвертое утверждение (г). Согласно графику, давление воды на глубине 10 м равно 200 кПа. Поэтому давление на поверхность шарика снаружи, погруженного на такую глубину, будет вдвое больше, чем давление, оказываемое на его стенки изнутри (при условии, что давление внутри равно 1 атм.). Утверждение неверно.
Проверим последнее утверждение (д). Согласно ему, если на этом же рисунке построить график зависимости давления оливкового масла от глубины погружения, то он окажется между графиком для воды и осью абсцисс. Это действительно так, потому что плотность оливкового масла меньше плотности воды. Утверждение верно.
Верный ответ: бд.
Ответ: бд
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 8.5k