Как найти давление в трубке в точке

Рис.2.8.

Пример
1.

Определить абсолютное и избыточное
гидростатическое давление
в точке А
(рис. 2.8), расположенной в воде на глубине
,
и пьезометрическую высоту для точки А,
если абсолютное гидростатическое
давление на поверхности.

Решение:

Согласно
основного уравнения гидростатики
абсолютное гидростатическое давление
в точке А определится:

.

Избыточное
давление в точке А равно:

Пьезометрическая
высота для точки А равна:

Можно
отметить, что пьезометром удобно измерять
только относительно малые давления, в
противном случае требуется большая
высота пьезометра, что неудобно в
эксплуатации.

Определить
эти же величины U – образным манометром,
заполненным ртутью. По поверхности
раздела
ртути
и воды давления со стороны резервуара
и открытого конца манометра будут
одинаковы:

Следовательно,
избыточное давление в точке А
уравновешивается весом столба ртути
высотой
над
поверхностью раздела:

Находим
высоту ртутного столба
:

,

где

плотность ртути.

Рис.2.9.

Пример
2.

Определить давление в резервуаре
(рис.
2.9) и высоту подъема уровняв
трубке 1, если показания ртутного
манометра.

Решение:

Запишем
условия равновесия для ртутного манометра
для плоскости

а)
со стороны резервуара

б)
со стороны манометра
,

тогда

Таким
образом, в резервуаре – вакуум, величина
которого равна:

Условия
равновесия трубки 1

Пример
3.

Рис.2.10.

Определить
манометрическое давление в трубопроводе
А (рис. 2.10),

если
высота столба ртути по пьезометру
25
см. Центр трубопровода расположен на40
см ниже линии раздела между водой и
ртутью.

Решение:
Находим давление в точке В. Точка В
расположена выше точки А на величину
,
следовательно, давление в точке В будет
равно

.

В
точке С давление будет такое же, как в
точке В, то есть

.

Определим
давление в точке C, подходя, справа

.

Приравнивая
оба уравнения, получаем

.

Отсюда
манометрическое давление

.

Пример
4
.

Рис.2.11.

Определить
все виды гидростатического давления в
баке с нефтью на глубине
(рис.
2.11), если давление на свободной поверхности
нефти.
Плотность нефти.

Решение:
1. Абсолютное гидростатическое давление
у дна

2.
Избыточное (манометрическое) давление
у дна

3.
Избыточное давление создаваемое столбом
жидкости

4.
Избыточное давление на свободной
поверхности

Пример
5.

Определить избыточное давление воды в
трубе по показаниям батарейного ртутного
манометра (рис. 2.12).

Рис.2.12.

Отметки
уровней ртути от оси трубы:
Плотность
ртути,
плотность

воды
.

Решение:
Батарейный ртутный манометр состоит
из двух последовательно соединенных
ртутных манометров. Давление воды в
трубе уравновешивается перепадами
уровней ртути, а так же перепадами
уровней воды в трубках манометра.
Суммируя, показания манометра от
открытого конца до присоединения его
к трубе получим:

3. Относительный покой жидкости

3.1. Сведения из теории

Под
относительным покоем понимается такое
состояние, при котором в движущейся
жидкости отдельные частицы не смещаются
одна относительно другой. При этом
жидкость перемещается как твердое тело.
Само движение жидкости в этом случае
можно назвать переносным движением.
Для этого состояния характерно постоянство
формы объема жидкости. Очевидно, что
рассматриваемая масса жидкости будет
неподвижна в координатной системе,
связанной с движущимся резервуаром.

На
жидкость, находящуюся в относительном
покое, действуют массовые силы (силы
тяжести и силы инерции переносного
движения), а из поверхностных – силы
давления.

Рассмотрим
два частных случая относительного
покоя: покой при переносном прямолинейном
движении и покой при переносном
вращательном движении вокруг вертикальной
оси.

3.1.1.
Относительный покой при прямолинейном
движении на наклонной плоскости

Рассмотрим
движение резервуара с жидкостью с
постоянным ускорением a
по наклонной плоскости, образующей угол
a с горизонтальной плоскостью (рис. 3.1).

Жидкость
в движущемся резервуаре находится под
действием силы давления, силы тяжести
и силы инерции переносного движения.
Ускорение силы инерции
и
направлено в сторону, обратную ускорению
резервуараa.
Результирующий вектор массивных сил
определяется диагональю параллелограмма,
построенного на ускорениях сил тяжести
g
и инерции j.

Элемент
поверхности равного давления
перпендикулярен к диагонали параллелограмма
и образует с горизонтом угол b , тангенс,
которого равен

(3.1)

Таким
образом, поверхности равного давления,
образуют семейство параллельных
плоскостей с углом наклона к горизонту
b .

Необходимо
учесть, что если резервуар движется
равномерно
,
тои
следовательнои.
В этом случае поверхности равного
давления представляют семейство
горизонтальных плоскостей.

Если
резервуар перемещается под действием
силы тяжести (сила трения резервуара о
плоскость равна 0), то
,,,
а поверхности равного давления образуют
семейство плоскостей, параллельных
плоскости скатывания.

Если
резервуар перемещается с ускорением,
но вертикально (),
то,
а поверхности равного давления образуют
семейство горизонтальных плоскостей.

Найдем
закон распределения давления в
вертикальной плоскости
.
Учитывая, что система координат
перемещается вместе с резервуаром,,
а для выбранной плоскости и,
уравнение (2.6) примет вид:

.
                                                                                                                
(3.2)

В
этом случае
.

Тогда

(3.3)

После
интегрирования имеем:

(3.4)

Для
двух точек 0 и 1 с координатамииимеем:

(3.5)

или

.
                                                                                
(3.6)

По
аналогии получаем распределение давления
в горизонтальной плоскости:

,
                                                                                            
(3.7)

если
,
то имеем

,
                                                                    
(3.8)

а
свободная поверхность имеет угол наклона
к горизонту (3.1)

.
                                                                                                                            
(3.9)

При
свободном падении резервуара
и,
то есть во всем объеме давление одинаково.

3.1.2
Относительный покой при вращении вокруг
вертикальной оси

В
этом случае на жидкость действуют силы
давления, силы тяжести и силы инерции
переносного вращательного движения
ускорения массовых сил будут равны:

Дифференциальное
уравнение (2.8) примет вид:

(3.10)

После
интегрирования, с учетом, что
получим:

(3.11)

Уравнение
(3.11) является уравнением параболоида
вращения, а поверхности равного давления
образуют семейство параболоидов
вращения, сдвинутых вдоль вертикальной
оси. Каждый параболоид характеризуется
некоторым значением постоянной С. Для
параболоида свободной поверхности
принимаем, что при
(рис.
3.2),

поэтому.
Тогда уравнение свободной поверхности
примет вид:

(3.12)

или 
(3.13)

Закон
распределения давления по объему
жидкости получим из уравнения (2.6),
подставив в него соответствующие
значения X,
Y
и Z.
После интегрирования получаем:

.
 
                                                                           
(3.14)

                                                                                   
Постоянную
интегрирования
определим
из условия, что прии,
т.е..
После подстановки в (3.14) окончательно
имеем:

.
                                                                    
(3.15)

Для
частиц жидкости расположенных на одной
вертикали можем записать:

(3.16)

где

,

т.е.
существует обычный гидростатический
закон распределения давления.

На чтение 7 мин Просмотров 5.3к.

В гидравлике есть несколько ключевых понятий. Центральное место отводится понятию гидростатического давления жидкости. Оно тесно связано с понятием напора жидкости, о котором будет сказано чуть позже.

Понятие гидростатического давления

Содержание

  1. Что такое
  2. В чем измеряется
  3. Шкала и виды давлений
  4. Формула расчета давления в открытом сосуде
  5. Давление жидкости в трубах и его нормативы
  6. Распределение давления жидкости в тубах

Что такое

Одно из широко распространенных определений гидростатического давления звучит так: «Гидростатическое давление в точке жидкости – это нормальное сжимающее напряжение, возникающее в покоящейся жидкости под действием поверхностных и массовых сил».

Напряжение – это понятие, широко используемое в курсе сопротивления материалов. Идея в следующем. В физике, мы знаем, есть понятие силы. Сила – векторная величина, характеризующая воздействие. Векторная – это значит, что представляется в виде вектора, т.е. стрелки в трехмерном пространстве. Эта сила может быть приложена в отдельной точке (сосредоточенная сила), или к поверхности (поверхностная), или ко всему телу (говорят, массовая / объемная). Поверхностные и массовые силы являются распределенными. Только такие и могут действовать на жидкость, так как она обладает функцией текучести (легко деформируется от любого воздействия).

Сила приложена к поверхности с какой-то конкретной площадью. В каждой точке этой поверхности возникнет напряжение, равное отношению силы к площади, это и есть понятие давления в физике.

В чем измеряется

В системе СИ единица измерения силы – Ньютон [Н], площади – квадратный метр [м2].

физическая формула

Отношение силы к площади: 1 Н / 1 м2 = 1 Па (Паскаль).

Паскаль является основной единицей измерения давления, но далеко не единственной. Ниже представлен пересчет единиц измерения давлений из одной в другую

100 000 Па = 0,1 МПа = 100 кПа ≈ 1 атм = 1 бар = 1 кгс/см2  = 14,5 psi ≈  750 мм.рт.ст ≡ 750 Торр ≈ 10 м.вод.ст (м)

Шкала и виды давлений

Далее, принципиально важным моментом является так называемая шкала давлений или виды давлений. На рисунке ниже представлено, как взаимоувязаны такие понятия как абсолютное давление, абсолютный вакуум, частичный вакуум, избыточное или манометрическое давление.

Шкала давлений (виды давлений)

Абсолютное давление – давление, отсчитываемое от нуля.

Абсолютный вакуум – ситуация, при которой на рассматриваемую точку ничего не действует, т.е. давление, равное 0 Па.

Атмосферное давление – давление, равное 1 атмосфере. Отношение веса (mg) вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление зависит от места, времени суток. Это один из параметров погоды. В прикладных инженерных дисциплинах обычно все отсчитывают именно от атмосферного давления, а не от абсолютного вакуума.

опыт со стаканом

Частичный вакуум (или еще часто говорят – «величина вакуума», « разрежение» или «отрицательное избыточное давление» ). Частичный вакуум – недостаток давления до атмосферного. Максимально возможная на Земле величина вакуума как раз равняется одной атмосфере (~10 м.вод.ст.). Это означает, что у вас не получится попить воду через трубочку с расстояния 11 м при всем желании.

* на самом деле при нормальном для трубочек для напитков диаметре (~5-6 мм) эта величина будет гораздо меньше из-за гидравлических сопротивлений. Но даже через толстый шланг вы не сможете попить воду с глубины 11 м.

Если заменить вас на насос, а трубочку – на его всасывающий трубопровод, то ситуация принципиально не изменится. Поэтому воду из скважин добывают как правило именно скважинными насосами, которые опускаются непосредственно в воду, а не пытаются засасывать воду с поверхности земли.

измерение давления манометром

Избыточное давление (или также еще называемое манометрическим)– превышение давления над атмосферным.

Приведем следующий пример. На данной фотографии показано измерение давления в автомобильной шине при помощи прибора манометра.

Манометр показывает именно избыточное давление. На этой фотографии видно, что избыточное давление в данной шине приблизительно 1,9 бар, т.е. 1,9 атм, т.е. 190 000 Па. Тогда абсолютное давление в этой шине – 290 000 Па. Если мы шину проткнем, то воздух начнет под разницей давлений выходить наружу до тех пор, пока давление внутри и снаружи шины не станет одинаковым, атмосферным. Тогда избыточное давление в шине будет равно 0.

Формула расчета давления в открытом сосуде

открытый сосуд

Теперь посмотрим, как определить гидростатическое давление в жидкости, находящейся в определенном объеме. Допустим, мы рассматриваем открытую бочку с водой.

На поверхности воды в бочке устанавливается атмосферное давление (обозначено маленькой буквой p с индексом «атм»). Соответственно, избыточное давление жидкости на поверхности равняется 0 Па. Теперь рассмотрим гидростатическое давление в точке X. Эта точка заглублена относительно поверхности воды на расстояние h, и за счет столба жидкости, гидростатическое давление в ней будет больше, чем на поверхности.

Давление в точке X (px) будет определяться, как давление на поверхности + давление, создаваемое столбом жидкости. Это называется основным уравнением гидростатики.

Понятие гидростатического давления

Для приблизительных расчетов можно принимать g = 10 м/с2. Плотность воды зависит от температуры, но для приблизительных расчетов может приниматься 1000 кг/м3.

При глубине h 2 м, абсолютное гидростатическое давление составит:

100 000 Па + 1000·10·2 Па = 100 000 Па +20 000 Па = 120 000 Па = 1,2 атм.

Избыточное давление жидкости – это значит за вычетом атмосферного: 120 000 – 100 000 = 20000 Па = 0,2 атм.

различия давления в бассейне и вериткальной трубке

Таким образом, в избыточное давление в точке X определяется высотой столба жидкости. Форма емкости при этом никак не влияет. Если мы рассмотрим гигантский бассейн с глубиной 2 м, и трубку высотой 3 м, то гидростатическое давление на дне трубки будет больше, нежели на дне бассейна.

(Абсолютное гидростатическое давление на дне бассейна: 100000 + 1000*9,81*2 =

Абсолютное

Высота столба жидкости определяет давление, создаваемое этим столбом жидкости.pизб = ρgh.

Таким образом, гидростатическое давление можно выражать единицами длины (высоты): h = p / ρg

Например, рассмотрим, какое давление создает столб ртути высотой 750 мм:

p = ρgh = 13600 · 10 · 0,75 = 102 000 Па ≈ 100 000 Па, что отсылает нас к единицам измерения давления, рассмотренным ранее.

Т.е. 750 мм.рт.ст. = 100 000 Па.

По тому же принципу получается, что давление в 10 метров водяного столба равняется 100 000 Па:

1000 · 10 · 10 = 100 000 Па.

Выражение гидростатического давления в метрах водяного столба принципиально важно для водоснабжения, водоотведения, а также гидравлических расчетов отопления, гидротехнических расчетов и т. д.

Давление жидкости в трубах и его нормативы

Теперь посмотрим гидростатическое давление жидкости в трубопроводах. Что физически означает замеренное мастером давление в определенной точке (X) трубопровода? Манометр в данном случае показывает 2 кгс/см² (2 атм). Это избыточное давление в трубопроводе, оно эквивалентно 20 метрам водяного столба. Иными словами, если подсоединить к трубе вертикальную трубку, то вода в ней поднимется на величину избыточного давления, т.е. на высоту 20 м. Вертикальная трубка, которая сообщается  с атмосферой (т.е. открытая) называются пьезометром.

схема давления в трубах

Основная задача системы водоснабжения заключается в том, чтобы в требуемой точке вода имела необходимое избыточное давление. Например, согласно нормативному документу:

давление в системе холодного водоснабжения

[ Постановление Правительства РФ от 06.05.2011 N 354 (ред. от 13.07.2019) «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» (вместе с «Правилами предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов») ] >>> давление в точке водоразбора должно быть не менее 3 м.вод.ст (0,03 МПа)

Точка водоразбора

Типовая схема водоразбора

Под точкой водоразбора можно понимать место подключения смесителя (1). Эта точка находится приблизительно на расстоянии 1 м от пола, там же, где и подключение к стояку самой квартиры (2) . То есть давление примерно одинаково при закрытых кранах (вода не движется!). Давление регламентируется именно в этих точках, и, как указано выше, должно быть не меньше 3 — 6 м.вод.ст.

Однако необходимо отметить, что нормативно допустимая величина в 3 м.вод.ст – это совсем не много, так как современное сантехническое оборудование может требовать гидростатическое давление жидкости до 13 м.вод.ст в месте подключения для нормальной работы (подачи достаточного количества воды). Например, даже в старом СНиП по внутреннему водопроводу (СНиП 2.04.01-85*), указано, что при использовании аэратора на смесителе (сеточка, перекрывающая выходное отверстие), в точке подключения смесителя необходимо давление 5 м.вод.ст.

Распределение давления жидкости в тубах

Комфорт в доме трудно представить без водопровода. А появление новой техники в виде стиральной, посудомоечной машин, бойлера и прочих агрегатов ещё больше повысило его роль в жилье образца 21 века. Но эти агрегаты требуют, чтобы вода поступала из водопровода с определённым напором. Поэтому человек, решивший обустроить свой дом системой водоснабжения, должен знать, как произвести расчёт требуемого давления воды в трубопроводе, чтобы все устройства работали нормально.

Расчет давления воды в трубопроводе

Для нормального функционирования водопровода давление в нем должно соответствовать нормам

Содержание

  • 1 Определение показателя
  • 2 Простой пример расчета давления в трубе
  • 3 Как рассчитывается толщина трубы от действия давления
  • 4 Как рассчитать стенки трубы по давлению
  • 5 Давление и диаметр трубы
  • 6 Расчёт домашнего водопровода
  • 7 Современные средства

Определение показателя

Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.

  1. Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
  2. Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
  3. Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
  4. Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы.  От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.

Расчет давления воды в трубопроводе

Напор воды в кране зависит от давления в водопроводной системе

Простой пример расчета давления в трубе

Как известно, не так давно водопровод подключался к водонапорной башне. Благодаря именно этому сооружению в сети водопровода создаётся давление. Единица измерения данной характеристики – атмосфера. Причём, размер расположенной вверху башни ёмкости не влияет на значение этого параметра, он зависит только лишь от высоты башни.

Полезно знать! На практике давление измеряется в метрах водяного столба. При заливании воды в трубу высотой 10 метров, в нижней точке будет фиксироваться давление, равное одной атмосфере.  

Рассмотрим пример с домом в 5 этажей. Его высота – 15 метров. То есть на один этаж приходится 3 метра. Башня высотой 15 метров создаст на первом этаже давление 1,5 атмосферы. Значение этого показателя в трубе на втором этаже будет уже 1,2 атмосферы. Получается это вычитанием из числа 15 высоты одного этажа – 3 метра, и делением результата на 10. Проделав дальнейший расчёт, нам станет понятно, что на 5-м этаже давление будет отсутствовать. Логика подсказывает, что для обеспечения водой людей, проживающих на последнем этаже потребуется соорудить более высокую башню. А если речь идёт, например, о 25-этажном доме? Возводить такие большие сооружения никто не будет. С этой целью современные системы водоснабжения оборудуются глубинными насосами.

Давление на выходе подобного агрегата высчитывается очень просто. Например, если глубинный насос, мощности которого хватает поднять воду до отметки 50 метров водяного столба, погрузить в скважину на 15 метров, на уровне поверхности земли он создаст давление 3,5 атмосферы (50-15/10 = 3,5).

Расчет давления воды в трубопроводе

Обеспечить необходимый показатель давления в системе можно при помощи насоса

Как рассчитывается толщина трубы от действия давления

Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины.  Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так:

            Двн = КГСопр×Дл. тр./ПД×(Уд.вес×Ск/2g),

где: Двн. – внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск. – скорость потока м/сек.; g – 9,81 м/сек2. Всем известная константа — ускорение силы тяжести.

Потеря давления в арматуре и фасонных частях трубопровода с достаточной точностью определяется по потерям в прямой трубе эквивалентной длины и с таким же условным проходом.

Как рассчитать стенки трубы по давлению

Точный расчёт данного показателя стальных труб, которые работают под воздействием избыточного внутреннего давления, включает два этапа. Сначала вычисляется так называемая расчётная толщина стенки. Затем к полученному числу прибавляется толщина износа от коррозии.

Расчет давления воды в трубопроводе

Расчет давления необходим для подбора толщины стенок трубы

Совет! Изготавливая и монтируя трубопровод, не устанавливайте отдельные случайные вставки. Чтобы не спровоцировать аварию, работайте только с теми, размеры которых совпадают с расчётными.

Таким образом, обобщённая формула для расчёта толщины стенок выглядит следующим образом:

Т= РТС+ПК,

где: Т – искомый параметр – толщина стенок; РТС – расчётная толщина стенок; ПК — прибавка на коррозионный износ.

Расчётную толщину стенки в зависимости от давления вычисляем по следующей формуле:

             РТС = ВИД×Днар/230×ДР×КПШ+Р ,

где: ВИД – внутреннее избыточное давление; Днар. – наружный диаметр трубы; ДР — допустимое напряжение на разрыв; КПШ – коэффициент прочности шва. Его значение зависит от технологии изготовления труб. На завершающем этапе расчета стенки трубы по давлению прибавляем к РТС значение параметра ПК. Берётся оно из справочника.

Давление и диаметр трубы

Правильное определение сечения труб не менее важно, чем их выбор по материалу изготовления. При некорректном расчёте диаметра и давления, в трубе возникнет турбулентность воздуха, в ней присутствующем, и в потоке воды. Из-за этого движение жидкости по трубе будет сопровождаться повышенным шумом, а на внутренней поверхности ветки водоснабжения сформируется большое количество известковых отложений. Кроме того, следует помнить, что существование зависимости давления от диаметра трубы может негативно отразиться на пропускной способности водопровода. На практике, многие обитатели квартир и домов сталкивались с ситуацией, когда при одновременном включении нескольких кранов напор воды резко падал. Возникает эта неприятность по двум причинам: когда давление упало во всей системе и при заниженном диаметре подключённых труб.

Расчет давления воды в трубопроводе

От диаметра трубы зависит пропускная способность водопроводной сети

Ниже приведена таблица для максимального расчётного расхода воды через трубопроводы наиболее распространённых диаметров при различном значении давления.

Таблица 1

Расход Пропускная способность. Единица измерения – кг/час
Ду трубы 100 80 65 50 40 32 25 20 15
мбар/м Па/м 0,3 м/сек 0,15 м/сек <0,15 м/сек
3,00 300 56160 27900 18000 8892 4680 3078 1415 767 331
2,80 280 54360 26928 17338 8568 4356 2970 1364 742 317
2,60 260 52200 25920 16740 8244 4356 2855 1310 713 306
2,40 240 50400 24876 16056 7920 4176 2740 1256 680 288
2,20 220 47880 23760 15336 7560 3996 2617 1202 652 281
2,00 200 45720 22644 14580 7200 3780 2488 1151 619 266
1,80 180 43200 21420 13824 6804 3589 2354 1080 583 252
1,60 160 40680 20160 12996 6408 3373 2210 1015 547 234
1,40 140 38160 18792 12132 5976 3143 2059 943 511 220
1,20 120 35100 17352 11196 5508 2898 1897 871 472 102
1,00 100 31932 15768 10152 5004 2632 1724 788 425 184
0,975 97,5 31500 15552 10044 4932 2596 1699 778 421 180
0,950 95,0 31104 15372 9900 4860 2560 1678 767 414 176
0,925 92,5 30672 15156 9756 4788 2524 1652 756 407 176
0,900 90,0 30240 14940 9612 4716 2488 1627 745 403 173

В большинстве стояках среднее значение давления находится в диапазоне  атмосфер.

Расчёт домашнего водопровода

С практической точки зрения давление в водопроводе чаще всего ассоциируется с объёмом поставляемой воды за единицу времени, то есть с пропускной способностью ветки водоснабжения. В этом контексте и будет рассмотрен вопрос расчёта бытового водопровода. После изучения паспортных данных приборов и агрегатов, потребляющих воду, суммируется общий расход. Затем к полученной цифре добавляется расход всех установленных и используемых водоразборных кранов.

Расчет давления воды в трубопроводе

Для домашнего водопровода, работающего от скважины, выбор труб зависит от мощности насоса

Полезная информация! Одно такое сантехническое устройство пропускает через себя за одну минуту порядка 5-6 литров воды.

После этого все числа суммируются, и на выходе получается общий расход в доме воды. С учётом этих данных, покупается труба с диаметром, который обеспечит нужным давлением и, соответственно, количеством воды все водоразборные приборы, работающие одновременно.

Если домашний водопровод планируется подключить к городской сети, у хозяина выбора нет, он будет вынужден пользоваться тем, что имеется. Иное дело, если речь идёт о частном доме, питающимся от скважины. Тогда следует покупать насос, способный обеспечить водопровод давлением, которое соответствует расходам. Выбор производится по паспортным данным подобного агрегата. В определении диаметра вам поможет ниже размещённая таблица.

Таблица 2

Пропускная способность трубы Диаметр и длина трубопровода
Пропускная способность, л/мин Диаметр трубы Диаметр трубы Длина водопровода, метры
75 38 32 Больше 30
50 32 25
30 25 20 Меньше 10

Здесь приведены параметры лишь наиболее часто используемой трубной продукции.

Современные средства

Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:

  • падения напора на погонный метр трубопровода;
  • длины участка;
  • внутреннего диаметра трубы;
  • вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
  • способа расчёта сопротивления.

Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:

  • цементно-песчаное, нанесённое различными методами;
  • внешнее полимерцементное или пластиковое;
  • новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.

Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.

Уравнение Бернулли для реальной и идеальной жидкости

Ниже задача с решением уравнения Бернулли. Примеры уравнения Бернулли по формулам.

Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.

График Бернулли и уравнение Бернулли для идеальной жидкости:

График Бернулли и уравнение Бернулли для реальной жидкости:

где,

Смысл уравнения Бернулли

Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.

Назначение уравнения Бернули

Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.

Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации

Следующий урок

Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет – написано тут: Конструктор водяного отопления

Задача. Пример решения уравнения Бернулли

По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.

Как понять уравнение Бернулли?

Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве

Например,

Точка 1 – это место где известно давление

Точка 2 – это место где нужно узнать давление

Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)

То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.

Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)

Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.

Решение задачи

Сборка формулы уравнения Бернулли

Как избавится от минуса?

Как избавится от множителя (-1)?

Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.

Ответ:

Что такое идеальная жидкость?

Идеальная жидкость – это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.

Реальная жидкость – это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.

Формула Бернулли для реальной жидкости

Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.

Потому что реальная жидкость движется не равномерно

У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.

Формула коэффициента Кориолиса

Что такое коэффициент Кориолиса?

Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.

Чему равен коэффициент Кориолиса?

Нд.п. – Это динамические потери. Это потери вызванные движением воды.

Подробнее о формулах: Конструктор водяного отопления

Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:

Задача1

Задача2

Задача3

Дополнительные задачи тут: Расчет водоснабжения и отопления своими руками

Посмотрите видеоурок по составлению уравнения Бернулли:

Посмотреть другие уроки: Расчет водоснабжения и отопления своими руками

Как сделать гидравлический расчет погружного насоса?

Посмотрите видео:

Подробнее о программе


    Серия видеоуроков по частному дому
            Часть 1. Где бурить скважину?
            Часть 2. Обустройство скважины на воду
            Часть 3. Прокладка трубопровода от скважины до дома
            Часть 4. Автоматическое водоснабжение
    Водоснабжение
            Водоснабжение частного дома. Принцип работы. Схема подключения
            Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
            Расчет самовсасывающего насоса
            Расчет диаметров от центрального водоснабжения
            Насосная станция водоснабжения
            Как выбрать насос для скважины?
            Настройка реле давления
            Реле давления электрическая схема
            Принцип работы гидроаккумулятора
            Уклон канализации на 1 метр СНИП
            Подключение полотенцесушителя
            Рециркуляция ГВС схема – лучшее решение!
    Схемы отопления
            Гидравлический расчет двухтрубной системы отопления
            Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
            Гидравлический расчет однотрубной системы отопления
            Гидравлический расчет лучевой разводки системы отопления
            Схема с тепловым насосом и твердотопливным котлом – логика работы
            Трехходовой клапан от valtec + термоголовка с выносным датчиком
            Почему плохо греет радиатор отопления в многоквартирном доме
            Как подключить бойлер к котлу? Варианты и схемы подключения
            Рециркуляция ГВС. Принцип работы и расчет
            Вы не правильно делаете расчет гидрострелки и коллекторов
            Ручной гидравлический расчет отопления
            Расчет теплого водяного пола и смесительных узлов
            Трехходовой клапан с сервоприводом для ГВС
            Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
            Температурный режим отопления 90-70, 80-63, 70-55, 60-50
            Байпас попутного смешивания – Шестеренка в отоплении
    Конструктор водоснабжения и отопления
            Уравнение Бернулли
            Расчет водоснабжения многоквартирных домов
    Автоматика
            Как работают сервоприводы и трехходовые клапаны
            Трехходовой клапан для перенаправления движения теплоносителя
    Отопление
            Расчет тепловой мощности радиаторов отопления
            Секция радиатора
            Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
            Новые насосы работают по-другому…
            Расчет инфильтрации
            Расчет температуры в неотапливаемом помещении
            Расчет пола по грунту
            Расчет теплоаккумулятора
                    Расчет теплоаккумулятора для твердотопливного котла
                    Расчет теплоаккумулятора для накопления тепловой энергии
            Куда подключить расширительный бак в системе отопления?
            Сопротивление котла
            Петля Тихельмана диаметр труб
            Как подобрать диаметр трубы для отопления
            Теплоотдача трубы
            Гравитационное отопление из полипропиленовой трубы
            Почему не любят однотрубное отопление? Как её полюбить?
            Умный подбор диаметров в системе отопления
            Балансировка радиаторов отопления – пошаговое руководство
            Топ 5 проблем в проектировании систем отопления
            Как правильно подобрать и настроить перепускной клапан?
    Регуляторы тепла
            Комнатный термостат – принцип работы
    Смесительный узел
            Что такое смесительный узел?
            Виды смесительных узлов для отопления
    Характеристики и параметры систем
            Местные гидравлические сопротивления. Что такое КМС?
            Пропускная способность Kvs. Что это такое?
            Кипение воды под давлением – что будет?
            Что такое гистерезис в температурах и давлениях?
            Что такое инфильтрация?
            Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
            Гидравлические смыслы, понятия и расчет цепей систем отопления
            Коэффициент затекания в однотрубной системе отопления
            Гидравлический парадокс в системе отопления. Загадка № 4
    Видео
            Отопление
                    Автоматическое управление температурой
                    Простая подпитка системы отопления
                    Теплотехника. Ограждающие конструкции.
            Теплый водяной пол
                    Насосно смесительный узел Combimix
                    Почему нужно выбрать напольное отопление?
                    Водяной теплый пол VALTEC. Видеосеминар
                    Труба для теплого пола – что выбрать?
                    Теплый водяной пол – теория, достоинства и недостатки
                    Укладка теплого водяного пола – теория и правила
                    Теплые полы в деревянном доме. Сухой теплый пол.
                    Пирог теплого водяного пола – теория и расчет
            Новость сантехникам и инженерам
            Сантехники Вы все еще занимаетесь халтурой?
            Первые итоги разработки новой программы с реалистичной трехмерной графикой
            Программа теплового расчета. Второй итог разработки
            Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
            Итоги разработки новой программы по гидравлическому расчету
            Первично вторичные кольца системы отопления
            Один насос на радиаторы и теплый пол
            Расчет теплопотерь дома – ориентация стены?
    Нормативные документы
            Нормативные требования при проектировании котельных
            Сокращенные обозначения
    Термины и определения
            Цоколь, подвал, этаж
            Котельные
    Документальное водоснабжение
            Источники водоснабжения
            Физические свойства природной воды
            Химический состав природной воды
            Бактериальное загрязнение воды
            Требования, предъявляемые к качеству воды
    Сборник вопросов
            Можно ли разместить газовую котельную в подвале жилого дома?
            Можно ли пристроить котельную к жилому дому?
            Можно ли разместить газовую котельную на крыше жилого дома?
            Как подразделяются котельные по месту их размещения?
    Личные опыты гидравлики и теплотехники
            Вступление и знакомство. Часть 1
            Гидравлическое сопротивление термостатического клапана
            Гидравлическое сопротивление колбы – фильтра
    Видеокурс
            Скачать курс Инженерно-Технические расчеты бесплатно!
    Программы для расчетов
            Technotronic8 – Программа по гидравлическим и тепловым расчетам
            Auto-Snab 3D – Гидравлический расчет в трехмерном пространстве
    Полезные материалы
    Полезная литература
            Гидростатика и гидродинамика
    Задачи по гидравлическому расчету
            Потеря напора по прямому участку трубы
            Как потери напора влияют на расход?
    Разное
            Водоснабжение частного дома своими руками
            Автономное водоснабжение
            Схема автономного водоснабжения
            Схема автоматического водоснабжения
            Схема водоснабжения частного дома
    Политика конфиденциальности
    Ответы на вопросы
            Клиент 1
            Клиент 1. КПД котла

Трубки с жидкостями -3: определяем давление при вращении

В предыдущих двух статьях мы разгоняли изогнутые трубки с жидкостями, в результате чего из них выливалась часть содержимого. Теперь мы будем такие трубки вращать. Все найденные мною задачи на эту тему я разделила на две статьи, так что продолжение следует!

Задача  1. (‹Физтех», 2016, 9) Тонкая трубка  запаяна с одного конца, заполнена жидкостью плотностью Трубки с жидкостями -3: определяем давление при вращении и закреплена на горизонтальной платформе (см. рисунок). Открытое колено трубки вертикально и заполнено жидкостью до высоты Трубки с жидкостями -3: определяем давление при вращении. Платформа вращается с угловой скоростью  Трубки с жидкостями -3: определяем давление при вращении вокруг вертикальной оси. Вертикальное колено находится на расстоянии Трубки с жидкостями -3: определяем давление при вращении, а конец горизонтального – на расстоянии Трубки с жидкостями -3: определяем давление при вращении  от оси вращения. Атмосферное давление равно Трубки с жидкостями -3: определяем давление при вращении.

Трубки34_1

Рисунок 1

1) Найти давление жидкости в месте изгиба трубки.

2) Найти давление жидкости в горизонтальном колене на расстоянии Трубки с жидкостями -3: определяем давление при вращении от оси вращения.

Решение.

Показать

Задача  2. (МФТИ, 1996 ) Тонкая запаянная с одного конца трубка заполнена ртутью и закреплена на горизонтальной платформе, вращающейся с угловой скоростью Трубки с жидкостями -3: определяем давление при вращении вокруг вертикальной оси так, что ртуть не выливается и заполняет полностью горизонтальное колено трубки (см. рисунок). Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке. Атмосферное давление Трубки с жидкостями -3: определяем давление при вращении‚ плотность ртути Трубки с жидкостями -3: определяем давление при вращении.

Трубки34_2

Рисунок 2

1) Найти давление ртути в месте изгиба трубки.

2) Найти давление ртути у запаянного конца трубки.
Решение.

Показать

Задача  3. (МФТИ, 1996) Тонкая трубка, запаянная с одного конца, заполнена водой и закреплена на горизонтальной платформе, вращающейся с угловой скоростью Трубки с жидкостями -3: определяем давление при вращении  вокруг вертикальной оси (см. рисунок). Открытое и запаянное колена трубки вертикальны. Геометрические размеры установки даны на рисунке. Атмосферное давление Трубки с жидкостями -3: определяем давление при вращении‚  плотность воды Трубки с жидкостями -3: определяем давление при вращении.

Трубки34_3

Рисунок 3

1) Найти давление воды в месте изгиба трубки, расположенном на оси вращения.

2) Найти давление ртути у запаянного конца трубки.

Решение.

Показать

Задача  4.  (МФТИ, 1996) Тонкая трубка, запаянная сходного конца, заполнена маслом и закреплена на горизонтальной платформе, вращающейся с угловой скоростью Трубки с жидкостями -3: определяем давление при вращении  вокруг вертикальной оси так, что масло не выливается и заполняет полностью горизонтальное колено трубки (см. рисунок). Открытое колено трубки вертикально. Геометрические размеры установки даны на рисунке. Атмосферное давление Трубки с жидкостями -3: определяем давление при вращении‚ плотность масла Трубки с жидкостями -3: определяем давление при вращении.

Трубки34_4

Рисунок 4

1) Найти давление масла в месте изгиба трубки.

2) Найти давление масла у запаянного конца трубки.
Решение.

Показать

Добавить комментарий