Как найти давление воздуха на определенной высоте

Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.

Давление атмосферы на разных высотах

Зависимость давления от высоты

Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?

Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.

Миллиметры ртутного столба и гектопаскали

В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.

Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.

Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?

Связь плотности воздуха и высоты. Особенности

Зависимость высоты и плотности воздуха

Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.

График, показывающий как атмосферное давление изменяется с высотой

Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P0=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?

Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р0/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р0/4 и т. д.

График зависимости давления от высоты

Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.

Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.

Сегодня разбираем еще один запрос пользователя — Атмосферное давление, в котором нас просят вычислить атмосферное давление. В виду отсутствия дополнительной информации в запросе, я предположил, что нужно рассчитывать атмосферное давление в зависимости от высоты над уровнем моря.

Зависимость давления газа от высоты определяется так называемой барометрической формулой
P=P_0e^{frac{-mu gh}{RT}},
где
h — разность высот, м
mu — молярная масса воздуха, 29 г/моль (в расчете используется 0.029 кг/моль)
R — универсальная газовая постоянная, 8.31 Дж/(мольК)
g — ускорение силы тяжести, 9.81 м/(с
с)
T — температура воздуха (К)

Кстати, еще тема атмосферного давления развивается здесь Барометрическое нивелирование и здесь Зависимость температуры кипения воды от высоты над уровнем моря.

Ниже калькулятор — вводим давление на высоте уровня моря (можно оставить по умолчанию; 760 миллиметров ртутного столба — это нормальное атмосферное давление), температуру и высоту, получаем результат.

PLANETCALC, Зависимость давления от высоты над уровнем моря

Зависимость давления от высоты над уровнем моря

Давление на уровне моря (мм.рт.ст.)

Температура воздуха (градусы Цельсия)

Высота над уровнем моря (метры)

Давление на заданной высоте (мм.рт.ст.)

Ртутный барометр состоит из металлической чашки, наполненной ртутью, и полой стеклянной трубки, запаянной с одного конца. Последний заполняется ртутью, а его нижний открытый конец погружается в чашку. Вес столба жидкости в трубке уравновешивает давление воздуха, которому подвергается ртуть в чашке.

Атмосферное давление на уровне моря. Атмосферное давление

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Давление воздуха на уровне моря во всех частях света в среднем близко к атмосферному. Видно, что давление воздуха уменьшается по мере подъема над уровнем моря, соответственно. Его плотность уменьшается. Воздух становится все более разреженным. Если вы откроете хорошо закупоренный контейнер в долине на вершине горы, немного воздуха выйдет наружу. Напротив, если вы откроете его у подножия горы, небольшое количество воздуха попадет в пробку наверху. На высоте около 6 км давление и плотность воздуха снижаются примерно вдвое.

Каждой высоте соответствует определенное давление воздуха. Поэтому можно измерить давление в определенной точке на вершине горы или в корзине воздушного шара, чтобы определить, как меняется атмосферное давление с высотой. Высота над уровнем моря или высота воздушного шара. Чувствительность обычных передних глаз настолько велика, что подъем на 2-3 метра в передней части глаза приведет к значительному смещению индекса. Поднимаясь или опускаясь по лестнице с анатомическими структурами, постепенное изменение давления происходит прямолинейно. Этот опыт удобно проводить на пологой лестнице станции метро. Часто анекдоты калибруются непосредственно по росту. Положение стрелки указывает на высоту, на которой находится прибор. Такие роговицы называются альтиметрами (рис. 295). Ими оснащаются самолеты, позволяя пилоту определять объем полета.

Рисунок 295.Высота полета самолета. Длинные стрелки считаются в сотнях метров, короткие — в километрах. Перед полетом головка может быть обнулена под стрелкой на поверхности земли.

Падение давления воздуха при подъеме объясняется так же, как падает давление в глубокой воде при подъеме со дна на поверхность. Воздух на уровне моря сжимается под действием веса всей атмосферы Земли, тогда как более высокие слои атмосферы сжимаются только под действием веса воздуха, находящегося над этими слоями. В целом, изменение давления от точки к точке в атмосфере или под действием силы тяжести подчиняется тем же законам, что и давление на жидкость. Давление одинаково во всех частях горизонтального уровня — внизу давление уменьшается за счет веса столба воздуха, высота которого равна высоте перехода, а сечение перехода равно единице.

Рис. 296.Изображение уменьшения давления с высотой. Справа — колонны одинаковой толщины, взятые на разных высотах. Самая толстая заштрихованная колонка наиболее сжатого воздуха.

Однако из-за высокой компрессии газа общая картина распределения давления на высоте в атмосфере существенно отличается от распределения давления жидкостей. На самом деле, планируйте снижение давления воздуха с высотой. Оси оператора изображают высоту и так далее. На определенном уровне (например, над уровнем моря), а ось пиков показывает давление (рис. 296). Поднимитесь по лестнице на высоту. Чтобы найти давление на следующем этапе, необходимо равномерно удалить вес столба воздуха на высоте. Однако с увеличением высоты плотность воздуха уменьшается. Поэтому потеря давления при подъеме на следующую ступень тем меньше, чем выше лестница. Поэтому давление снижается неравномерно по мере роста. Высота, на которой плотность воздуха увеличивается, мала, а давление быстро падает. Плотность воздуха уменьшается, и давление снижается.

Барическая ступень

1 Высота, на которой давление должно повыситься или понизиться, чтобы его изменил HPA (экстракт), называется барометрическим шагом. Барометрический шаг удобно использовать для решения задач, не требующих высокой точности, чтобы оценить давление по известным различиям в высоте над уровнем моря. Из фундаментального закона статики, барометрический шаг (h) равен: h = -dz/Δp= 1/g m/gpa. При температуре воздуха 0°C и давлении 1000 гПа барометрический шаг равен 8 /hPa. Таким образом, для повышения давления на 1 HPA требуется увеличение на 8 метров.

При повышении температуры и высоты над уровнем моря (в частности, на 0,4% на градус тепла). Другими словами, он прямо пропорционален температуре и обратно пропорционален давлению. Обратной стороной парикмахера является вертикальный парикмахер. То есть, изменение давления при подъеме или опускании на 100 метров. При температуре 0°C и давлении 1000 гПа это составляет 12,5 гПа.

Приведение к уровню моря

Давление адаптируется к уровню моря, чтобы все метеостанции посылали короткие телеграммы. Для того чтобы сравнить давление на станциях, расположенных на разных высотах, давления наносятся на обзорную карту и приводятся к уровню моря, который является единой точкой отсчета. При давлении на уровне моря используется короткий тип Лапласа вида Z 2 -Z 1 = 18400 (1+λT)LG (P 1 /P 2). Это означает, что, зная давление и температуру на уровне Z 2, мы можем найти давление (P 1) на уровне моря (Z 1 = 0).

Расчет давления на высоте H от давления P o до уровня моря и температуры:.

Где P o — давление PA на уровне моря pa-m — молекулярный вес сухого воздуха 0,029 кг/моль- g — ускорение силы тяжести 9,81 м/с²-р. Предельная температура воздуха k, t = t + 273, где t — температура °C-h — высота m.

На более низких высотах атмосферное давление снижается на 1 мм рт. ст. на каждые 12 метров подъема. На больших высотах эта закономерность прерывается.

Атмосферное давление — это давление столба воздуха на единицу поверхности. Она выражается в килограммах на см2, но в прошлом эта величина измерялась только с помощью ртутных наличников, поэтому принято выражать эту величину в миллиметрах ртути (ММГ). Нормальное атмосферное давление составляет 760 мм рт. ст. или 1,033 кг/см2 и интерпретируется как воздух (1 АТА).

Некоторые операции могут потребовать работы при повышенном или пониженном атмосферном давлении. Это может иметь большое значение (от 0,15-0,2 ата до 5-6 ата и более).

Влияние пониженного атмосферного давления на организм

На больших высотах атмосферное давление снижается. Чем больше высота над уровнем моря, тем ниже атмосферное давление. Так, на высоте 1000 м он составляет 734 мм рт. ст., 2000 м — 569 мм, 3000 м — 526 мм рт. ст. и на высоте 15000 м — 90 мм рт. ст.

Снижение атмосферного давления вызывает изменения в крови в виде более частого и глубокого дыхания, более частых (менее сильных) ударов сердца, небольшого снижения артериального давления и увеличения количества красных кровяных телец. Клетки.

Негативное воздействие низкого атмосферного давления на организм основано на недостатке кислорода. Это связано с тем, что при нормальном функционировании дыхательной и кровеносной систем в организм поступает меньше кислорода из-за снижения парциального давления кислорода при уменьшении атмосферного давления. В результате кровь не полностью насыщается кислородом и органы и ткани не полностью снабжаются им, что приводит к недостатку кислорода (анаэробии). Эти изменения более серьезны при работе с высокоскоростными подъемными механизмами (например, канатами), где происходит быстрое падение атмосферного давления, которое возникает при быстром подъеме на большую высоту. Быстро развивающийся недостаток кислорода влияет на клетки мозга, что вызывает головокружение, тошноту и иногда рвоту, нарушение двигательной координации, потерю памяти, сонливость и снижение окислительных процессов в мышечных клетках из-за недостатка кислорода.

Согласно практике, подъем на высоту более 4500 метров, где атмосферное давление не превышает 430 мм рт. ст., трудно переносится без кислорода для дыхания, а на высоте 8000 метров (давление 277 мм рт. ст.) люди теряют чувствительность.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Какие последствия действия атмосферного давления

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Возьмите трубку с плунжером, опустите один конец в емкость с водой, поднимите плунжер вверх, и вода поднимется за плунжером (рис. 102). Это возможно только в том случае, если давление воды в резервуаре выше, чем давление под поршнем. Из-за давления веса уровень воды под поршнем выше, чем давление в емкости, и вода не может подняться из-за более высокого давления. Вода должна вернуться в емкость. В результате к жидкости в контейнере прикладывается дополнительное давление, которое превышает давление жидкости в толще воды под поршнем. Это давление создается молекулами в атмосфере. Действуя на свободную поверхность воды, атмосферное давление в соответствии с законом Паскаля передается одинаково во всех направлениях.

Поскольку под поршнем нет воздуха, вода поступает в трубу под неравномерным давлением.

Каково значение атмосферного давления

Значение атмосферного давления довольно высокое. Это может быть подтверждено многими экспериментами.

Возьмите два полых полушария с хорошо отполированными поперечными сечениями. Один из них имеет специальное приспособление с краном, в который можно закачивать воздух.

Закрепите одну из полусфер на штативе, подсоедините снизу другую полусферу и начните откачивать воздух из полости с помощью насоса на кране. Нижнее полушарие плотно прижимается к верхнему полушарию. Это возможно только в том случае, если давление в полости баллона меньше внешнего давления.

В результате того, что воздушный насос вытягивает воздух, давление в полусферической полости уменьшается, но внешнее давление остается неизменным. Поэтому нижнее полушарие сильно давит на верхнее. SW.

Величина силы, действующей на уменьшение давления воздушного шара, может быть определена по весу груза, который может быть удержан при размещении его нижним полушарием. Когда кран открывается и входит в полость, взвешенная нижняя полусфера падает.

Как начали исследовать атмосферное давление

Подобный эксперимент был проведен и описан немецким естествоиспытателем Отто Герике, мэром Магдебурга в 1654 году.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Отто Герике (1602-1686) был немецким физиком, изучавшим атмосферное давление. С помощью «Магдебургской полусферы» он показал влияние атмосферного давления. Он также изучал электрические явления и объяснял природу трения. Он создал первый электрический двигатель.

Он остался в истории науки благодаря своей сезонной производительности (рис. 103).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

В новейшем процессе используется ряд устройств, основанных на действии атмосферного давления. Для расчета результатов необходимо знать значение атмосферного давления.

Метод измерения атмосферного давления был впервые предложен итальянским ученым Эванджелистой Тричелли.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Эванджелиста Тричелли (1608-1647) был итальянским ученым. Он первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Он доказал, что высота ртутного столба барометра приблизительно равна высоте барометра.

Он обнаружил, что если закрытую с одной стороны трубку полностью заполнить ртутью, а затем перевернуть и опустить в сосуд с ртутью, то исчезнет только часть этой ртути (рис. 104). Высота ртутного столба в этом эксперименте составляла приблизительно 760 мм. Результаты эксперимента позволили сделать вывод, что давление столба ртути уравновешивается атмосферным давлением, действующим на свободную поверхность ртути в контейнере. Атмосферное давление при таких условиях называется нормальным. С тех пор в науку была введена единица измерения атмосферного давления. Это миллиметр ртути (MMHG).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Как рассчитать атмосферное давление

Выразим значение 760 мм (нормальное) для столба ртути в единице измерения давления Паскаль. Из предыдущего параграфа мы знаем, что давление жидкости рассчитывается по ее типу.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Учитывая плотность ртути, получаем

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

При копировании материалов с сайта Evkova.org, пожалуйста, посетите www.evkova.orgへのアクティブなリンクを作成する必要があります.

Сайт создан группой преподавателей на некоммерческой основе для дополнительных молодых людей.

Сайт написан, поддерживается и управляется группой учителей

Telegram и логотип Telegram являются торговыми марками Telegram Corporation FZ-LLC.

Сайт предназначен для информационных целей и ни в коем случае не является публичным тендером, как это определено в статье 437 Гражданского кодекса Российской Федерации. Анна Евкова не оказывает услуг.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Норма атмосферного давления

Воздействие атмосферы считается нормальным, если атмосферное давление находится на уровне моря на широте 45°. Отображение температуры — 0 градусов Цельсия. В 1644 году, благодаря Эванджелисте Торренчели и Винченцо Вивиани, это значение составило 760 мм. Стоит отметить, что эти первооткрыватели были учениками самого Галилео Галилея. Люди чувствуют себя более комфортно при стандартных значениях 750-760 мм рт. ст. Однако эти измерения не всегда абсолютно точны во всех областях в течение года.

Рисунок 2.Атмосферное давление в России в июле

Повышение и понижение давления

Когда барометрическое давление превышает стандартное значение 760 мм рт. ст., воздействие атмосферы увеличивается. В противоположном случае она уменьшается. В течение 24-часового периода между утром и вечером показатели давления значительно возрастают. Низкое давление наблюдается во второй половине дня и после полуночи. Эти изменения связаны с тем, что происходят изменения температуры и движения воздуха. На Земле существует три зоны преимущественно низкого давления и четыре зоны преимущественно высокого давления. Зоны атмосферного давления образуются на планете потому, что тепло от солнца и вращение Земли неравномерны. Солнце не так сильно нагревает земное полушарие в течение года. Отопление зависит от времени года.

Важно: Эксперты зафиксировали падение атмосферного давления в Москве на 727 мм рт. ст. В 2015 году аномальное артериальное давление в Москве составляло 778 мм рт. ст. Кроме того, Москва расположена на границе протяженного циклона, центральная часть которого находится над Латвией.

Влияние на человека. Антициклон

Антициклон определяется как повышение атмосферного давления. В эти периоды мало ветра, погода солнечная и нет резких перепадов температуры. Уровень влажности остается нормальным. Высокое атмосферное давление оказывает негативное влияние на здоровье человека. В частности, на людей с аллергией, астмой и высоким кровяным давлением негативно влияют изменения артериального давления. В периоды высокого давления люди испытывают головные боли и дискомфорт. Считается, что такие периоды приводят к снижению производительности и страданиям. В зависимости от высоты высокого давления, оно может эффективно или неэффективно защищать организм от болезней.

Важно: Чтобы легче переносить высокое давление, эксперты рекомендуют есть больше фруктов, включая калий, заниматься легкими физическими упражнениями и чередовать горячий и холодный душ. Чтобы улучшить работу иммунной и нервной систем, необходимо на время забыть о серьезных проблемах, которые могут поставить под угрозу ваше здоровье. Людям, страдающим от негативных симптомов, в последнее время требуется больше времени на отдых, чтобы восстановиться.

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Как атмосферное давление влияет на осадки?

Распределение осадков на планете совсем не равномерно. В одних местах влаги слишком много, в других — слишком мало. Эта неравномерность обусловлена зонированием атмосферного давления, описанным ранее. В зонах низкого давления воздух постоянно нагревается и содержит много влаги. Когда влага поднимается вверх, она образует облака и выпадает в виде дождя. Именно поэтому экваториальные зоны и другие регионы низкого давления не лишены влаги.

В зонах высокого давления холодный воздух, содержащий мало или совсем не содержащий влаги, опускается на поверхность почвы. Нагревание и уплотнение образовавшихся газовых масс выводит их из точки насыщения. Именно поэтому в тропиках и полярных регионах выпадает очень мало осадков.

Что значит НОРМАЛЬНОЕ АТМОСФЕРНОЕ ДАВЛЕНИЕ ДЛЯ ЗАДАННОЙ ВЫСОТЫ?
Нормальное атмосферное давление – давление всего столба атмосферы на уровне моря и географической широте 45 град. За нормальное давление принимают 760 мм рт. столба (1013 мбар, 101.3 кН/кПа) . При расчетах в динамической метеорологии за нормальное давление обычно принимается 1000 мбар.. .

Это значит, что на уровне моря у широты 45° при температуре 0°С атмосферное давление равно весу столбика ртути в 760 мм или 1013 мбар, что принято за нормальное атмосферное давление земного шара.

ВСЁ!

Ну, если Вы другое хотели узнать.. .
Атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой. Или вот – табличка…

Атмосферное давление
 p
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2
Примечания
скаляр

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].

История[править | править код]

Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).

В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

Изменчивость и влияние на погоду[править | править код]

На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[6] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[7].

На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[8].

Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па

Стандартное давление[править | править код]

В химии стандартным атмосферным давлением с 1983 года по рекомендации IUPAC считается давление, равное 100 кПа[9].
Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.

В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).

Барическая ступень[править | править код]

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень h равна:

{displaystyle h=-Delta z/Delta p=1/grho .}

При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.

С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.

Изменения давления с высотой[править | править код]

Изменение давления с высотой.

С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.

В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[10].

Уравнение статики выражает закон изменения давления с высотой:

{displaystyle -Delta p=grho Delta z,}

где: p — давление, g — ускорение свободного падения, rho — плотность воздуха, Delta z — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты ({displaystyle Delta z>0}) изменение давления отрицательное, то есть давление уменьшается. Так как плотность газа зависит от его давления, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха Delta z, в котором плотность воздуха почти не изменяется. На практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.

Приведение к уровню моря[править | править код]

Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, METAR). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.

При приведении давления к уровню моря используют сокращенную формулу Лапласа:

{displaystyle z_{2}-z_{1}=18400(1+lambda t)lg(p_{1}/p_{2}).}

То есть, зная давление и температуру на уровне z_{2}, можно найти давление p_{1} на уровне моря z_{1}=0.

Вычисление давления на высоте h по давлению на уровне моря P_0 и температуре воздуха T:

{displaystyle P=P_{0}e^{-Mgh/RT},}

где P_0 — давление Па на уровне моря [Па];
M — молярная масса сухого воздуха, M = 0,029 кг/моль;
g — ускорение свободного падения, g = 9,81 м/с²;
R — универсальная газовая постоянная, R = 8,31 Дж/моль·К;
T — абсолютная температура воздуха, К, {displaystyle T=t+273,15}, где t — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);
h — высота, м.

На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].

Более простые расчёты (без учёта температуры) дают:

{displaystyle P=P_{0}(0,87)^{h}=P_{0}cdot 10^{-0,06h},}

где h — высота в километрах.

Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.

Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.

В ещё более грубом приближении, двукратному изменению давления соответствует изменение высоты на каждые пять километров.

В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.

См. также[править | править код]

Видеоурок: атмосферное давление

  • Фактическая погода
  • Атмосфера
  • Разгерметизация

Примечания[править | править код]

Источники[править | править код]

  1. Давление Архивная копия от 20 декабря 2016 на Wayback Machine // Метеорологический словарь
  2. 1 2 Атмосферное давление // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
  4. Перышкин А. В. Измерение атмосферного давления. Опыт Отто Герике // Физика. 7 класс / Е. Н Тихонова. — 16-е изд. — М.: Дрофа, 2013. — С. 190. — 189 с.
  5. 1 2 Атмосферное давление. Класс!ная физика. Дата обращения: 9 июня 2015. Архивировано 16 марта 2015 года.
  6. Метеочувствительность: что это такое и как с ней бороться. РИА Новости. Дата обращения: 9 июня 2015. Архивировано 18 августа 2013 года.
  7. Смерч. pogoda.by. Дата обращения: 7 июня 2015. Архивировано 25 апреля 2015 года.
  8. Изобары (в физике) // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  9. Standard pressure (англ.). IUPAC. Дата обращения: 18 августа 2013. Архивировано 18 августа 2013 года.
  10. Барометрическая формула // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Сноски[править | править код]

  1. Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.

Литература[править | править код]

  • Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
  • Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.

Ссылки[править | править код]

  • Логотип Викисклада Медиафайлы по теме Атмосферное давление на Викискладе
  • Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • График изменения атмосферного давления при изменении высоты

Добавить комментарий