Как найти действующее напряжение в ветвях

ads

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Вращающийся вектор

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и тогда

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от  значения  0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Комплексное число на комплексной плоскости

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

действующее значение

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

Действующее значение напряжения

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

Показательная форма комплексного числа

2) тригонометрическая форма в виде

Тригонометрическая форма комплексного числа

3) алгебраическая форма

Алгебраическая форма комплексного числа

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

где

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду  по следующим преобразованиям

а угол

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования  символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Схема с последовательным соединением элементов

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Схема с комплексными обозначениями

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

Закон ома в комплексной форме

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза  φ = 0°, так как  общее выражение для мгновенного значения напряжение вида при  φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Ток в цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

Проверяем

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1)  полное сопротивление электрической цепи и его характер;
2)  действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

    1. Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1.  Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

Откуда

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом,  активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

Для нахождения сопротивлений на
индуктивном и емкостном элементах
необходимо вычислить
круговую частоту:

ω = 2πf=2∙3.14∙100
= 628 c-1

Найдем комплексы полных сопротивлений
ветвей схемы:

Z1
= R1
+ j( XL1
– XC1
) = R1
+ j( ωL


) = 31 + j(
628·64·10-3


) =

= 31 + j29,919
= 43,083∙e
= 43,083∙e
Ом

Z2
= R2
+ jXL2
= R2
+ j(ωL2)
= 40 + j(628·64·10)
= 40 + j40,192 =

= 56,704∙e
= 56,704∙e
Ом

Пусть,
ψu
= 0°.

Тогда,
I1
=
=== 4,642·e=
4,642·(cos(-43,983°)
+

+ j∙sin(-43,983°))
= 4,642·(0,72 – j∙0,694) = 3,342 – j∙3,222 А

I2
=
=== 3,527∙e= 3,527∙(cos(-45,137°)
+ j∙sin(-45,137°))
= 3,527∙(0,705 – j∙0,709) = 2,487 – j∙2,501 А

По первому закону Кирхгофа:

I = I1
+ I2
= 3,342 – j∙3,222
+ 2,487 – j∙2,501
= 5,829 – j∙5,723
= 8,169∙e
= 8,169∙eА

2.2. Определение показаний приборов

а) Показания амперметров
(показывают только действующее
значение тока):

pA1
= I1
= 4,642 А

pA2
= I2
= 3,527 А

pA3
= I = 8,169 А

б) Показание фазометра.

Фазометр показывает разность фаз между
током и напряжением:

pφ =φ = ψu
– ψi =
0°
(-44,474°) = 44,474°

в) Показание ваттметра.

Так как ваттметр показывает только
активную мощность, то для приведенной
схемы включения ваттметра:

pW = Re[S] = Re[UI*]
= 200∙5,829 = 1165,8 Вт.

г) Показание вольтметра:

Определяем
по второму закону Кирхгофа

(рис.15.):

UV
+ UR1
UL2
= 0

UV
= I2jωL2
I1R1
= (2,487 – j∙2,501)∙j∙628∙64∙10-3

– (3,342 – j∙3,222)∙31
= j∙99,9575 + 100,52 -103,602 +

+ j∙99,882
=-3,082 + j∙199,8395
= 199,86∙e
В

pV = UV
= 199,86 В.

Рис.15.

2.3. Составление баланса активных, реактивных и полных мощностей

Запишем уравнение баланса
для полноймощности:

,
где– сопряженный комплексный ток.

Sист
= 200∙(5,829 + j∙5,723)
= 1165,8 + j∙1144,6
ВА, где

Pист
= Re[Sист]
= 1165,8 Вт

Qист
= Im[Sист]
= 1144,6 ВАр

Sпр
= ∑Pпр
+ ∑jQпр

Sпр
= I12Z1
+ I22Z2
= (4,642)2∙(31
+ j29,919)
+(3,527)2∙(40
+ j40,192) =
667,993 + + j∙644,7
+ 497,589 + j∙499,978
= 1165,582 + j∙1144,678
ВА

Pпр
= Re[Sпр]
= 1165,582 Вт

Qпр
= Im[Sпр]
= 1144,678 ВАр

Так
какPист
= Pпр
и Qист
= Qпр
Баланс мощностей соблюдается

токи найдены верно.

2.4. Повысить коэффициент мощности до 0,98 включением необходимого реактивного элемента х

Т.к. показание фазометра φ=44,4740>0 ,следовательно,цепь носит активно- индуктивный характер
и для того,что бы повысить
коэффициент мощности до 0,98 включаемпараллельно емкостной
элемент.

Рис.16.

По первому закону Кирхгофа:

I1вх
= I2вх
+ Iс
, где I1 вх
токдокомпенсации,I2 вх– токпослекомпенсации.

Iр
= Iа∙tgφ

φ1=44,474°

φ2 =
arccos(0,98) = 11,478°

Iс
= I1вх
I2вх
= Iа∙(tgφ1
– tgφ2)
=
, Iа
=

C =
==
36,141мкФ

Рис.17.

2.5.
Постро
ение
векторны
х диаграмм
токов и напряжений в одной системе
координат

Определим напряжения на катушках,
резисторахи конденсаторе:

UL1
= I1∙j∙XL1
= (3,342 – j∙3,222)∙j∙40,192
=129.499 + j∙134,322
= 186,58∙eВ

UL2
= I2∙j∙XL2
= (2,487 – j∙2,501)
∙j∙40,192 =
100,52 + j∙99,958
= 141,76∙eВ

UR1
= I1∙R1
= 4,642·e∙31
= 143,902·eВ

UR2
= I2∙R2
= 3,527∙e∙40
= 141,08∙eВ

UC1
= – I1∙j∙XC1
= -(3,342 – j∙3,222)∙j∙10,273 = -33,0996 -j∙34,332 =
47,689∙eВ.

Масштаб:

MI:
0,05 A : 1мм

MU:
2В : 1мм

Рис.18.

ЧАСТЬ 3

РАСЧЕТ ТРЕХФАЗНОЙ ЦЕПИ

Задание:

1.Составить схему включения
приемников.

2.Определить комплексы
действующих значений фазных и линейных
токов.

3.Составить схему включения
ваттметров для измерения активной
мощности каждого трехфазного приемника.

4.Рассчитать активную,
реактивную и полную мощность каждого
приемника.

5.Построить векторные
диаграммы токов и напряжений для каждого
приемника.

Рис.19.

Схема
соединения приёмников: звезда с нулевым
проводом

Дано:

Нагрузка:
несимметричная

U=380
В

Ra=101
Ом

Rb=65
Ом

Rс=73
Ом

La=0

Lb=0

Lc=97
мГн

Ca=87
мкФ

Cb=93
мкФ

Cc=0

Схема
соединения приёмников: треугольник

Дано:

Нагрузка:
симметричная

U=380
В

R=108
Ом

L
= 76 мГн

f=50
Гц

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #

    05.12.2018828.93 Кб2TM.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти напряжение в ветви с источником тока

Возьмем два участка цепи a b и c d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.

Объединяя оба случая, получим

(1)
. (2)

Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.

Основы символического метода расчета цепей
синусоидального тока

Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.

Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.

Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.

1. Первый закон Кирхгофа в комплексной форме:

. (3)

2. Второй закон Кирхгофа в комплексной форме:

(4)

или применительно к схемам замещения с источниками ЭДС

. (5)

3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:

. ; (6)
. (7)

1. .

2. .

3.

.

4. Принимая начальную фазу напряжения за нуль, запишем:

.

.

5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то

6. .

7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме

или после подстановки численных значений параметров схемы

Специальные методы расчета

Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета, к которым относятся методы контурных токов и узловых потенциалов.

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. Их выбор облегчает использование топологических понятий дерева и ветвей связи.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

Пусть имеем схему по рис. 3.

Выразим токи ветвей через контурные токи:

;

; ;

; .

Обойдя контур aeda , по второму закону Кирхгофа имеем

.

Поскольку ,

.

Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:

совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.

Однако данная система уравнений может быть составлена формальным путем:

При составлении уравнений необходимо помнить следующее:

— сумма сопротивлений, входящих в i —й контур;

— сумма сопротивлений, общих для i —го и k —го контуров, причем ;

члены на главной диагонали всегда пишутся со знаком “+”;

знак “+” перед остальными членами ставится в случае, если через общее сопротивление i —й и k — й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

если i —й и k — й контуры не имеют общих сопротивлений, то ;

в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.

В нашем случае, для первого уравнения системы, имеем:

Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.

Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k — й контурный ток, проходящий через ветвь с k — м источником тока равен этому току .

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Пусть имеем схему по рис. 4, в которой примем .

Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС

Запишем уравнение по первому закону Кирхгофа для узла а :

и подставим значения входящих в него токов, определенных выше:

.

Сгруппировав соответствующие члены, получим:

.

Аналогично можно записать для узла b :

.

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i —го уравнения записывается со знаком “+”потенциал i —го узла, для которого составляется данное i —е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i —му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i —му и k —му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2. В правой части i —го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i —му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i —му узлу, в противном случае ставится знак “-”. Если в подходящих к i —му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.

1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с

Контрольные вопросы и задачи

1. В ветви на рис. 1 . Определить ток .

Ответ: .

2. В чем заключается сущность символического метода расчета цепей синусоидального тока?

3. В чем состоит сущность метода контурных токов?

4. В чем состоит сущность метода узловых потенциалов?

5. В цепи на рис. 5 ; ;

; . Методом контурных токов определить комплексы действующих значений токов ветвей.

Ответ: ; ; .

6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.

Ответ: ; ; ; ; ; ; .

Источник

Добавить комментарий