Как найти действующее значение мощности

Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение переменного тока. Иначе говоря, действующее значение переменного тока можно определить по формуле:

{displaystyle I={sqrt {{frac {1}{T}}int _{0}^{T}i^{2}dt}}.}

Действующее значение в типичных случаях[править | править код]

Приведены формулы для электрического тока. Аналогичным образом определяются действующие значения ЭДС и напряжения.

Синусоида[править | править код]

Для синусоидального тока:

{displaystyle I={frac {1}{sqrt {2}}}cdot I_{m}approx 0{,}707cdot I_{m},}

где

I_{m} — амплитудное значение тока.

Прямоугольная форма[править | править код]

Для тока, имеющего форму однополярного прямоугольного импульса, действующее значение тока зависит от скважности:

{displaystyle I=I_{m}{sqrt {D}},}

где

D — коэффициент заполнения (величина, обратная скважности).

В частности, для тока, имеющего форму однополярного меандра (коэффициент заполнения 0,5):

{displaystyle I=I_{m}{sqrt {0,5}}approx 0,707cdot I_{m}.}

Для тока, имеющего форму двухполярного меандра:

{displaystyle I=I_{m}.}

Треугольная форма[править | править код]

Для тока треугольной и пилообразной формы (независимо от того, меняется ли направление тока):

{displaystyle I={frac {1}{sqrt {3}}}cdot I_{m}approx 0{,}577cdot I_{m}.}

Трапециевидная форма[править | править код]

Трапециевидный сигнал.gif

Для тока трапециевидной формы действующее значение можно определить разбив период на отрезки положительного фронта, действия максимального значения и отрицательного фронта:

{displaystyle I=I_{m}{sqrt {frac {t_{1}+3t_{2}+t_{3}}{3T}}},}

где

t_{1} — длительность положительного фронта;
t_{2} — длительность действия максимального значения;
{displaystyle t_{3}} — длительность отрицательного фронта;
T — длительность полного периода.

Дугообразная форма[править | править код]

Для тока имеющего форму дуги (половины окружности):

{displaystyle I=I_{m}{sqrt {frac {2}{3}}}approx 0{,}816cdot I_{m}.}

Дополнительные сведения[править | править код]

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS или rms — root mean square — среднеквадратичное (значение).

Электроизмерительные приборы (амперметры, вольтметры) для измерения в цепях переменного тока обычно градуируются так, чтобы их показания соответствовали действующему значению синусоидального тока или напряжения. При измерении несинусоидальных токов и напряжений приборы различных систем могут давать разные показания[1].

См. также[править | править код]

  • Список параметров напряжения и силы электрического тока

Примечания[править | править код]

  1. 11.8. Показания приборов различных систем в цепях несинусоидального тока. StudFiles. Дата обращения: 16 февраля 2019.

Литература[править | править код]

  • «Справочник по физике», Яворский Б. М., Детлаф А. А., изд. «Наука», 1979 г.1
  • Курс физики. А. А. Детлаф, Б. М. Яворский М.: Высш. шк., 1989. § 28.3, п.5
  • «Теоретические основы электротехники», Л. А. Бессонов: Высш. шк., 1996. § 7.8 — § 7.10

Ссылки[править | править код]

  • Действующие значения тока и напряжения
  • Среднеквадратичное значение

М

Рис. 3. 1. Графическое
изображение переменного синусоидального
тока

гновенная мощность синусоидального
тока является переменной величиной

p(t)=Ri²(t), (3.
5)

поэтому при оценке
энергии, выделяемой в нагрузке за период,
используют среднюю мощность


. (3.6)

Для расчета средней
мощности вводят понятие действующего
(эффективного) значения переменного
тока I.
Действующим называется такое значение
переменного тока, которое вызывает
выделение в активной нагрузке R
энергии, равной энергии, выделяющейся
от протекания эквивалентного постоянного
тока. То есть средняя мощность переменного
тока Рср
должна равняться мощности постоянного
тока P=RI2.
Отсюда


,


,

. (3.
7)

При вычислении
действующего значения напряжения
получается аналогичный результат:

.

3.3. Комплексное представление синусоидального тока

Д

Рис. 3. 2. Связь
между синусоидальным током и его
комплексным

представлением

ля расчета электрических цепей
синусоидального тока используется
символический метод, основанный на
комплексном представлении тока. Известно,
что синусоидальная величина может быть
представлена вектором на комплексной
плоскости (рис. 3. 2, а, б). При этом значение
синусоидальной величины в любой момент
времени может быть определено как
проекция вектора


(3.
8)

на ось мнимых
чисел. То есть действительные значения
тока получают как мнимую часть от
комплексного числа (рис. 3. 2, а):


(3.
9)

Значение

называют комплексом мгновенного значения
тока. Так как синусоидальная функция в
любой момент времени t
может быть определена по известным
параметрам Im,
ω, φ, то
все расчеты производят для момента
времени t=0.
Тогда ωt=0
и комплекс
мгновенных значений преобразуется в
комплекс амплитуды тока


,

. (3.
10)

При расчетах часто
используют комплекс действующего
значения тока. Он, как и действующее
значение (3. 7), отличается от комплекса
амплитудного значения тока в

раз (
).
Комплекс амплитуды можно представить
в алгебраической и тригонометрической
формах:


,


,


. (3.
11)

Модуль Im
и аргумент
φ комплексного числа могут быть найдены
по формулам


Рис. 3. 3. Пример
графического сложения комплексных
токов

. (3. 12)

Сложение и вычитание
комплексных чисел необходимо проводить
в алгебраической (
,

)
форме, а умножение и деление – в
показательной (
,

).

При сложении
комплексных токов одной частоты отдельно
складываются действительные и мнимые
части:


.

Сложение комплексных
значений токов может быть проведено на
комплексной плоскости (рис. 3. 3).

При умножении
(делении) комплексных токов одной частоты
амплитуды отдельных токов умножаются
(делятся), а фазы складываются (вычитаются):


.

Необходимо
отметить, что умножение комплексной
величины на мнимую единицу приводит к
повороту исходного вектора на угол 90°
против часовой стрелки на комплексной
плоскости (рис. 3. 4, а):


. (3.
13)

Д

Рис. 3. 4. Умножение
(а) и деление (б) комплексного тока

на
мнимую единицу

еление комплексной величины на
мнимую единицу приводит к повороту
исходного вектора на угол 90° по часовой
стрелке на комплексной плоскости (рис.
3. 4, б)


. (3.
14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое действующее значение напряжения

Содержание

  • 1 Как измеряется
    • 1.1 Практический пример
  • 2 Импульсный электрический заряд
    • 2.1 Расчёт кривой
    • 2.2 Вычисления
  • 3 Сила переменного тока
  • 4 Вывод
  • 5 Видео по теме

Всем нам известно о 220 вольт в бытовой розетке. Но если подключить к ней вольтметр, напряжение каждый раз будет разным. При этом зачастую напряжение может быть даже больше данной величины. Постараемся в данном материале разобраться — почему это происходит, что такое действующее значение переменного тока, и как его можно рассчитать с помощью различных вариантов.

Как измеряется

Электродинамические параметры в сети постоянно изменяются. Это связано с тем, что они представлены синусоидальным однополярным импульсом разной амплитуды. При измерении напряжения в цепи переменного тока, каждый раз будет получен разный результат. А при вычислении усреднённого параметра, он всегда будет составлять 0.

Измерение напряжения в розетке мультиметром

Получается, что математически вычислить данный параметр невозможно. Есть возможность получить только усреднённый параметр, который зависит от полупериода синусоидальной волны. Однако использовать его на практике или для каких-то вычислений нельзя.

Для решения этой проблемы и стали применять такое понятие, как действующее значение для расчёта силы тока и напряжения. Параметр определяется по характеристикам постоянного тока в цепи, генерирующей тепловую энергию такого же объёма, как и при подаче в цепь переменного тока.

Практический пример

Определение выше будет непонятным для человека, который не имеет особых познаний в области электротехники и электродинамики. Чтобы понять его смысл, предлагается рассмотреть следующий пример:

  1. Доступны две идентичные электроцепи (длина, элементы цепи и сечение проводников у них совпадают).
  2. В каждую включён одинаковый резистор — электронный компонент, который изменяет свое сопротивление в зависимости от подаваемого тока.
  3. Обе цепи подключаются к источникам электроэнергии, имеющим одинаковое напряжение.Измерение выделяемого тепла в двух идентичных цепях

Но между цепями есть одна разница. На первую электроцепь подаётся постоянный, а на вторую — переменный ток. По одной из них пойдёт стабильный электроток, а по другой потечет импульсный электрозаряд, который постоянно изменяется и имеет синусоидальной график.

Чтобы найти количества тепла в цепи с сопротивлением, используется такая формула:

Формула для вычисления количества тепла

После произведения ряда замеров и вычислений можно увидеть, что выделяемое тепло в этих двух электроцепях имеет одинаковую величину. Например, в цепи с постоянным током при подаче напряжения 30 вольт выделяется тепло 200 Джоуль (или Дж). Если вторая цепь имеет идентичные характеристики, то выделение тепла в ней также составит 200 Дж. Получается, что напряжение 30В в этих электроцепях — это и есть эффективное напряжение.

Импульсный электрический заряд

Вышеприведенный пример позволяет только определить действующее и среднее значение напряжения переменного тока. Но на практике такой метод также не применяется, из–за того, что получить доступ к источнику переменного напряжения не всегда представляется возможным. Поэтому параметры цепи рассчитываются с помощью формул, которые основаны на синусоидальных кривых.

Стоит отметить, что действующее напряжение не всегда формируется путём плавного изменения определённого импульсного электрозаряда. Кривая зачастую имеет форму, отличную от привычной нам синусоиды:

  1. Прямоугольную (меандр);
  2. треугольную;
  3. трапециевидную
  4. и другие.

Различные формы кривой переменного тока

То есть график электротока может иметь отличную, но при этом стабильную форму. Наглядным примером такого варианта является кривая осциллографа, регистрирующая ритмы сердцебиения человека.

Действующее значение переменного тока

Но независимо от действующего в сети импульсного заряда, во время расчётов используется именно синусоида. Это объясняется тем, что погрешности в расчетах будут крайне малыми. Поэтому ими можно пренебречь, ведь они не скажутся на конечном результате:

  1. Частота импульса в жилых домах составляет 50 Гц. За 1 сек электрический импульс проходит через фазу 100 раз. Это означает, что работающая от сети лампочка за секунду 100 раз загорается и тухнет, а электрический заряд при этом изменяется довольно плавно. Но человек этого не замечает из-за невосприимчивости человеческого зрения к сверхбыстрым колебаниям.Электролампочка
  2. Одинаковая площадь фигур. Независимо от формы кривой периода, описывающей переменный электроток идентичных параметров, площадь их фигур всегда будет одинаковой. Следовательно, при любых расчетах получится одно и то же эффективное значение переменного синусоидального тока. Поэтому эффективные значения не зависят от формы кривой. На них оказывает влияние именно величина амплитуды.Одинаковая площадь фигур

Форма кривой импульса важна только для сверхточных расчётов в лабораторных условиях. Также она учитывается для работы суперкомпьютеров. В остальных случаях синусоида позволит вычислить действующее значение переменного синусоидального тока.

Расчёт кривой

Синусоида — это периодическая функция, которую можно всегда описать с помощью уравнения. Если взять её за основу, то на входе имеются следующие исходные данные:

  • Т — амплитуда;
  • φ — начальная фаза;
  • ωt — угловая скорость.

Синусоидальный переменный ток

По этим входным характеристикам находим другие переменные параметры:

  • Uт — амплитудное напряжение;
  • Uм — действующие в момент измерения значения напряжения;
  • ωt + φ — фактическая фаза в точке измерения.

Т.к. начальная фаза равняется нулю, на выходе формула кривой будет иметь следующий вид:

Uм = Uт·sin(ωt + φ) = Uт·sin(ωt)

Теперь необходимо обратиться к закону выделения тепла, который еще называется законом Джоуля-Ленца. Согласно него квадрат напряжения — это произведение выделяемого тепла на сопротивление проводника.

Формулы для расчета тепловой энергии в электроцепях:
с постоянным током с переменным током
Q = U2/R Q = Uм2/R
  • Uм — величина постоянного напряжения;
  • Uм — величина действующего напряжения;
  • R — сопротивление проводника.

Мы видим, что при расчетах количества тепла в цепи переменного тока, пользуется именно действующим значением переменного тока.

Действующие средние значения напряжения силы тока

Из данных формул вытекают два важных нюанса, на которые стоит обратить внимание:

  1. В расчетах используется среднеквадратичное значение напряжения (СКЗ). Это связано с тем, что величина напряжения постоянно изменяется и можно получить только какую-то усредненную величину.
  2. Амплитуда постоянного тока довольно условная величина. Ее используют в расчетах, чтобы только описать период синусоиды переменного электрозаряда.

Вычисления

Волны синусоид будут одинаковыми. Однако в пределах периода в каждой точке измерения напряжения будут отличаться. Поэтому, чтобы уравнять между собой среднеквадратичное напряжение постоянного и переменного электротока по тепловыделению, требуется рассчитать объём выделенного тепла в течение времени, равного 1 периоду:

Формула

В уравнение теперь можно подставить выражение расчёта мгновенного напряжения

Uм = Uт·sin(ωt + ф) = Uт·sin(ωt)

Амплитудное и мгновенное напряжение синусоидального переменного тока

После математического преобразования можно рассчитать действующее значение электрического напряжения:

U = Uт / √2 = 0,707·Uм

Теперь найдем амплитудное напряжение по формуле:

Uт = U·√2

Амплитудное напряжение так же имеет и другое название – максимально возможное эффективное мгновенное значение напряжения.

Сила переменного тока

С помощью амперметра находим амплитудную силу тока в цепи. Используя её вместе с периодом, который равен 1/50 секунд, можно применить описанную выше формулу, чтобы рассчитать среднеквадратичное значение напряжения. В результате этого будет получена действующие значения силы тока.

Действующее значение тока можно рассчитать, когда других исходных параметров нет, но нам известно эффективное значение величины напряжения в цепи. Следовательно, можно воспользоваться всем нам известным законом Ома вычисления значения силы тока:

U = I·R и I = U/R

где:

  • U — будет действующим напряжением переменного синусоидального тока;
  • R — сопротивление проводника, которое всегда можно узнать в любом справочнике, зная состав материала проводника.

Ранее электропроводку делали из алюминия и меди, которые отличались довольно высоким сопротивлением. Эффективное значение реальной силы тока этих металлов было меньше 6.5А. По этой причине в старых домах зачастую срабатывает автоматический выключатель, если одновременно подключить в сеть несколько приборов. Сегодня открыты сложные сплавы с низким сопротивлением. Они позволяют достичь с действующее значение силы переменного тока около 16А даже в обычных современных многоквартирных домах.

Пробка автоматическая 16А

С уменьшением сопротивления проводника, прямопропорционально возрастает мощность и тепловыделение. При том надо помнить о том, что у каждого сплава есть свой определенный температурный предел. Поэтому в жилых сетях сила тока часто не превышает 20 ампер, а при резком ее скачке, например, при неполадках на подстанции, электронная часть устройств просто сгорает. Для предотвращения таких случаев и подключаются автоматы, которые при регистрации высоких действующих значений размыкают цепь на данном участке. Более мощные источники электроэнергии встречаются только в промышленных трехфазных сетях с напряжением 380В.

Вывод

Мы рассмотрели в данной статье — что называют действующим значением силы тока и напряжения, а так же как определяют эти значения переменного тока в электроцепи. Это эффективные значения переменного тока, под действием которого выделяется точно такое же количества тепла, как и в цепи постоянного тока, имеющей аналогичные характеристики.

Видео по теме

Среднеквадратичное значение

В зарубежной терминологии применяется аббревиатура RMS (rms) – root mean square.
В математике для набора чисел x1, x2, …, xn количеством n среднеквадратичное значение (rms) определяется выражением:

Например, для чисел 2,3 и 6 среднеквадратичным значением будет квадратный корень из (2²+3²+6²)/3. √(49/3) = 4.04

Среднеквадратичным значением двух или нескольких чисел
является квадратный корень из среднеарифметического значения квадратов этих чисел.

Для любой непрерывной функции в интервале T1T2 среднеквадратичное значение можно рассчитать по формуле:

Среднеквадратичное значение применяется в расчётах, где существует пропорциональная зависимость не самих переменных значений, а их квадратов.


Действующее значение напряжения и тока

В качестве примера можно рассмотреть квадратичную зависимость мощности или работы электрического тока от значений тока или напряжения.

P = I²R;    A = I²Rt;    P = U²/R;    A = U²t/R

Величина постоянного напряжения или тока является его среднеквадратичным значением.
Среднеквадратичное значение переменного тока равно величине постоянного тока,
действие которого произведёт такую же работу в активной (резистивной) нагрузке за время периода.
Определяющим фактором здесь является среднее (среднеарифметическое) значение мощности Pavg
или работы Aavg,
пропорциональное квадрату значения тока.
Так же среднеквадратичное значение переменного напряжения за период равносильно
по своему воздействию на активную нагрузку такому же значению постоянного напряжения.

P = UI = Pavg = UrmsIrms

Среднеквадратичное значение переменного напряжения или тока часто называют действующим или эффективным.

Величину переменного напряжения или тока, в большинстве случаев,
выражают его среднеквадратичным значением и измеряют приборами электромагнитного типа или специальными среднеквадратичными измерителями – True RMS.

Примечание:
Электромагнитные приборы используют для измерения переменного тока и напряжения в промышленных установках.
Усилие, создаваемое измерительной катушкой в электромагнитном приборе, пропорционально квадрату тока, поэтому не меняется по направлению.
Угол отклонения стрелки определится некоторым средним усилием F, которое будет пропорционально среднеквадратичному значению тока.


Расчёт действующего значения

В качестве примера рассчитаем среднеквадратичное значение синусоидального напряжения.

Запишем выражение Urms с применением интеграла функции
U = Uampsin(t) для одного периода 2π :


Показать расчёт

Скрыть расчёт

Вынесем Uamp из под знака радикала.
Воспользуемся табличным интегралом ,
перепишем и решим последнее выражение с применением формулы Ньютона-Лейбница:

Так как sin(2π), sin(4π) и sin(0) равны нулю, вычисляем RMS синусоиды следующим образом:

В результате решения в итоге получим:


Расчёт RMS для напряжения или тока треугольной и пилообразной формы можно рассмотреть на примере одного периода T
для функции , представленной на рисунке:

Выразим Urms искомой функции с помощью определённого интеграла:


Показать расчёт

Скрыть расчёт

Используя табличный интеграл
и формулу Ньютона-Лейбница, получаем:

В итоге преобразований получим:


Ток или напряжение любой сложной формы можно рассмотреть, как набор функций в пределах периода.
Тогда значением RMS будет квадратный корень из среднеарифметического значения интегралов для квадрата каждой функции, ограниченной её интервалом времени в периоде.
Например, для множества функций F1(t) , F2(t) , … , Fn(t)
в соответствующих им интервалах времени (0 – T1), (T1T2), …, (TnT),
составляющих период T, действующее напряжение (RMS) определится выражением:

Для вариантов однополярного или двуполярного напряжения пилообразной и треугольной формы в периоде 2T или 4T, представленных на рисунке ниже,
T и U amp имеют те же расчётные величины,
что и в рассмотренном случае c функцией ,
а интегралы, определённые в интервалах, равных T, для квадратов используемых функций ,
будут иметь одно и то же значение

Следовательно, вышеуказанные варианты однополярного или двуполярного напряжения пилообразной и треугольной формы будут иметь
среднеквадратичное значение .


В заключении рассмотрим пример вычисления действующего значения положительных прямоугольных импульсов длительностью Ti .

Выразим Urms одного периода T, как квадратный корень из среднеарифметического значения интегралов,
определённых в интервалах 0 – Ti и TiT для квадратов всех значений периода.

В результате получаем значение RMS, равное произведению амплитуды импульсов Uamp на квадратный корень из
коэффициента заполнения (Ti / T).

В качестве дополнительного материала предлагаем рассмотреть расчёт средеквадратичного значения напряжения накала кинескопа цветного телевизора, исходя из амплитуды и формы напряжения.


Замечания и предложения принимаются и приветствуются!

Мощность переменного тока

  • Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

  • Мощность тока через резистор

  • Мощность тока через конденсатор

  • Мощность тока через катушку

  • Мощность тока на произвольном участке

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть U и I — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени dt — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины U и I можно считать постоянными в течение интервала dt.

Пусть за время dt через наш участок прошёл заряд dq = Idt (в соответствии с правилом выбора знака для силы тока заряд dq считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

dA = Udq = UIdt.

Мощность тока P — это отношение работы электрического поля ко времени, за которое эта работа совершена:

P= I_0 frac{displaystyle dA}{displaystyle dt vphantom{1^a}} = UI. (1)

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: P > 0. Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: P < 0. Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

к оглавлению ▴

Мощность тока через резистор

Пусть переменный ток I = I_0 sin omega t протекает через резистор сопротивлением R. Напряжение на резисторе, как нам известно, колеблется в фазе с током:

U = IR = I_0 R sin omega t = U_0 sin omega t.

Поэтому для мгновенной мощности получаем:

P = UI= U_0 I_0 sin^2 omega t = P_0 sin^2 omega t. (2)

График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Рис. 1. Мощность переменного тока через резистор

Максимальное значение P_0 нашей мощности связано с амплитудами тока и напряжения привычными формулами:

P_0=U_0 I_0 = I_0^2 R = frac{displaystyle U_0^2}{displaystyle R vphantom{1^a}}.

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой 50 Гц, т. е. за секунду совершается 50 колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между 0 и P_0. Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение P_0/2?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно 1/2.

Этот факт иллюстрируется рисунком 2.

Рис. 2. Среднее значение квадрата синуса равно 1/2

Итак, для среднего значения bar{P} мощности тока на резисторе имеем:

bar{P}= frac{displaystyle P_0}{displaystyle 2 vphantom{1^a}} = frac{displaystyle U_0 I_0}{displaystyle 2 vphantom{1^a}} = frac{displaystyle I_0^2 R}{displaystyle 2 vphantom{1^a}} = frac{displaystyle U_0^2}{displaystyle 2R vphantom{1^a}}. (3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

bar{U}= frac{displaystyle U_0}{displaystyle sqrt(2) vphantom{1^a}},   bar{I}= frac{displaystyle I_0}{displaystyle sqrt(2) vphantom{1^a}}. (4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

bar{P}=bar{U} bar{I} = bar{I}^2 R = frac{displaystyle bar{U}^2}{displaystyle R vphantom{1^a}}.

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения U, а затем к источнику переменного напряжения с таким же действующим значением U, то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые 220 вольт из розетки — это действующее значение напряжения бытовой электросети.

к оглавлению ▴

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение U = U_0 sin omega t. Как мы знаем, ток через конденсатор опережает по фазе напряжение на pi:

I = I_0 sin left ( omega t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = I_0 cos omega t.

Для мгновенной мощности получаем:

P = UI = U_0 I_0 sin omega t cos omega t = frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}U_0 I_0 sin2 omega t = P_0 sin2 omega t.

График зависимости мгновенной мощности от времени представлен на рис. 3.

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, 0 < t < T/4. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, T/4 < t < T/2. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, T/2 < t < 3T/4. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, 3T/4 < t < T. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

к оглавлению ▴

Мощность тока через катушку

Пусть на катушку подано переменное напряжение U = U_0 sin omega t. Ток через катушку отстаёт по фазе от напряжения на pi/2:

I = I_0 sin left ( omega t - frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = -I_0 cos omega t.

Для мгновенной мощности получаем:

P = UI = -U_0 I_0 sin omega t cos omega t = -frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}U_0 I_0 sin2 omega t = -P_0 sin2 omega t.

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

к оглавлению ▴

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение U = U_0 sin omega t.

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз alpha. Мы записывали это так:

I = I_0 sin(omega t - alpha).

Тогда для мгновенной мощности имеем:

P = U_0 I_0 sin omega t sin(omega t - alpha). (5)

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

sin x sin y = frac{displaystyle 1}{displaystyle 2 vphantom{1^a}} (cos (x-y) - cos (x+y)).

В результате получим:

P = U_0 I_0 frac{displaystyle 1}{displaystyle 2 vphantom{1^a}} ( cos alpha - cos (2 omega t - alpha)). (6)

Но среднее значение величины cos (2 omega t - alpha) равно нулю! Поэтому средняя мощность оказывается равной:

bar{P} = U_0 I_0 frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}  cos alpha. (7)

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

bar{P} = bar{U} bar{I} cos alpha.

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем alpha = 0, и мы приходим к формуле (3). Для конденсатора и катушки alpha = pi/2, и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы cos alpha у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Мощность переменного тока» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Добавить комментарий