Как найти декартовы координаты заданной точки ( числовая окружность на плоскости) ? Внутри!
Мыслитель
(6338),
закрыт
10 лет назад
Там сказано, что можно делать двумя способами.
Через систему уравнений x^2+y^2=1 или через Пифагора.
Только сказано, но не описан не один из них и когда какой применять.
Кто подскажет, какие действия нужно производить и в каком порядке, чтобы найти координаты точки!
Пример:
Найти M(ПИ/3)” />
Дополнен 10 лет назад
Привет.
Познаю тригонометрию и застопоролся.
Прекрасно понял числовую окружность, но следующий параграф “Числовая окружность на координатной плоскости” уже перечитал раз пять, но так и не понял, как находить координаты точки.
Там сказано, что можно делать двумя способами.
Через систему уравнений x^2+y^2=1 или через Пифагора.
Только сказано, но не описан не один из них и когда какой применять.
Кто подскажет, какие действия нужно производить и в каком порядке, чтобы найти координаты точки!
Пример:
Найти M(ПИ/3)
Дополнен 10 лет назад
Пожалуйста, объясните если кто знает понятным языком, ни в одном учебнике ни слова про это.
Дополнен 10 лет назад
Может пожалуйста объяснить подробней?
Я так уже понял, мне надо искать синус и косинус они же координаты заданной точки?
Но как найти синус и косинус?
Помогите, умоляю!
Дополнен 10 лет назад
Одним словом не понимаю никак, как находить декартовы координаты точек.
Таких как: M(2P), M(P/2), M(31P/4) M(129P/6) и т. д
Божья коровка
Мудрец
(18985)
10 лет назад
Если окружность перед глазами, то нужно просто посмотреть координаты точки М (1/2; sqrt3/2).
1/2 это косинус П3, а (корень из 3)/2 – это синус П3.
Vyacheslav …Мыслитель (6338)
10 лет назад
а как запись вести на моем примере или другом?
показать что я нашел, а то подумают что просто таблицу выучил, хочется понять.
Naumenko
Высший разум
(856096)
10 лет назад
установлено. что на привычной оси х обозначают косинусы и на оси у синусы.
окружность считается единичной и координаты для определенной точки. символизирующей пересечение стороны угла с окружностью, запишутся ( косинус, синус) .
смотрите прилагаемый рисунок.
Vyacheslav …Мыслитель (6338)
10 лет назад
а как запись вести на моем примере или другом?
показать что я нашел, а то подумают что просто таблицу выучил, хочется понять.
Анна
Мудрец
(11303)
10 лет назад
Знакомые все лица)) )
Каждая точка на единичной окружности имеет две координаты (x,y)
x=cosα;y=sinα
Vyacheslav …Мыслитель (6338)
10 лет назад
Может пожалуйста объяснить подробней?
Я так уже понял, мне надо искать синус и косинус они же координаты заданной точки?
Но как найти синус и косинус?
Помогите, умоляю!
Сергей M.r
Высший разум
(516357)
10 лет назад
Окружность единичная. По Х-cos,по У-sin.
Измерять надо в масштабе.
Координаты пи/3 я показал.
Это косинус и синус 60 гр.
Посмотритеhttp://ucheba-legko.ru/view/matematika/10_klass/chislovaya_okrujnost_na_koordinatnoy_ploskosti
Есть вопросы -пишите в личку.
Удачи.
Сергей M.rВысший разум (516357)
10 лет назад
К вопросу
2P—->1;0
P/2—->0;1
31P/4=(8-(1/4)*P)=-(1/4)*P—>0.707;-0.707
129P/6=20*P+P+(1/2)*P=(3/2)*P—–>0;-1
2Р-период отбрасываем.
Содержание:
Декартовы координаты на плоскости:
Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.
Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.
Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.
Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.
Расстояние между двумя точками с заданными координатами. Координаты середины отрезка
В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.
Договорились координатную плоскость с осью
Координаты точки на плоскости называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).
Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек (рис. 8.2) имеем:
Научимся находить расстояние между точками заданными на плоскости
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.3).
Через точки проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник в котором Отсюда
Тогда формулу расстояния между точками можно записать так:
Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок перпендикулярен одной из осей координат.
Пусть — точки плоскости Найдем координаты точки — середины отрезка
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что (случай, когда рассматривается аналогично). Через точки проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках По теореме Фалеса тогда Поскольку то можем записать: Отсюда Аналогично можно показать что
Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок перпендикулярен одной из осей координат. Докажите это самостоятельно.
Пример №1
Докажите, что треугольник с вершинами в точках является равнобедренным прямоугольным.
Решение:
Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:
Следовательно, то есть треугольник равнобедренный.
Поскольку то треугольник прямоугольный.
Пример №2
Точка — середина отрезка Найдите координаты точки
Решение:
Обозначим — координаты точки — координаты точки — координаты точки
Поскольку то получаем:
Аналогично
Ответ:
Пример №3
Докажите, что четырехугольник с вершинами в точках является прямоугольником.
Решение:
Пусть точка — середина диагонали Тогда
Следовательно,
Пусть точка — середина диагонали Тогда
Следовательно,
Таким образом, точки совпадают, то есть диагонали четырехугольника имеют общую середину. Отсюда следует, что четырехугольник — параллелограмм.
Найдем диагонали параллелограмма:
Следовательно, диагонали параллелограмма равны. Отсюда следует, что этот параллелограмм является прямоугольником.
Уравнение фигуры. Уравнение окружности
Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.
Координаты каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения И наоборот, каждое решение уравнения с двумя переменными является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид
Определение. Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
- если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
- любое решение данного уравнения является координатами точки, принадлежащей фигуре
Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Принято говорить, что, например, уравнения задают прямую и гиперболу соответственно.
Если данное уравнение является уравнением фигуры то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.
Пользуясь этими соображениями, выведем уравнение окружности радиуса с центром в точке
Пусть — произвольная точка данной окружности (рис. 9.4). Тогда Используя формулу расстояния между точками, получим:
Отсюда
Мы показали, что координаты произвольной точки данной окружности являются решением уравнения Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной окружности.
Пусть пара чисел — произвольное решение уравнения
Тогда Отсюда
Это равенство показывает, что точка удалена от центра окружности на расстояние, равное радиусу окружности, а следовательно, точка принадлежит данной окружности.
Итак, мы доказали следующую теорему.
Теорема 9.1. Уравнение окружности радиуса с центром в точке имеет вид
Верно и такое утверждение: любое уравнение вида где некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Если центром окружности является начало координат (рис. 9.5), то В этом случае уравнение окружности имеет вид
Пример №4
Составьте уравнение окружности, диаметром которой является отрезок если
Решение:
Поскольку центр окружности является серединой диаметра, то можем найти координаты центра окружности:
Следовательно,
Радиус окружности равен отрезку Тогда
Следовательно, искомое уравнение имеет вид
Ответ:
Пример №5
Докажите, что уравнение задает окружность. Найдите координаты центра и радиус этой окружности.
Решение:
Представим данное уравнение в виде
Следовательно, данное уравнение является уравнением окружности с центром в точке и радиусом
Ответ:
Пример №6
Докажите, что треугольник с вершинами в точках является прямоугольным, и составьте уравнение окружности, описанной около треугольника
Решение:
Найдем квадраты сторон данного треугольника:
Поскольку то данный треугольник является прямоугольным с прямым углом при вершине Центром описанной окружности является середина гипотенузы — точка радиус окружности Следовательно, искомое уравнение имеет вид
Ответ:
Уравнение прямой
В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.
Пусть — данная прямая. Выберем две точки и так, чтобы прямая была серединным перпендикуляром отрезка (рис. 10.1).
Пусть — произвольная точка прямой Тогда по свойству серединного перпендикуляра отрезка выполняется равенство то есть
Мы показали, что координаты произвольной точки прямой являются решением уравнения
Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной прямой
Пусть — произвольное решение уравнения Тогда Это равенство означает, что точка равноудалена от точек следовательно, точка принадлежит серединному перпендикуляру отрезка то есть прямой
Итак, мы доказали, что уравнение является уравнением данной прямой
Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: где и — некоторые числа, причем не равны нулю одновременно. Покажем, что уравнение можно преобразовать к такому виду. Возведем обе части уравнения в квадрат. Имеем:
Раскроем скобки и приведем подобные слагаемые. Получим:
Обозначив получим уравнение
Поскольку точки различны, то хотя бы одна из разностей не равна нулю. Следовательно, числа и не равны нулю одновременно.
Итак, мы доказали следующую теорему.
Теорема 10.1. Уравнение прямой имеет вид?
где — некоторые числа, причем не равны нулю одновременно.
Верно и такое утверждение: любое уравнение вида где — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то графиком уравнения является вся плоскость Если то уравнение не имеет решений.
Из курса алгебры 7 класса вы знаете, что уравнение вида называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.
на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции является прямая. Сейчас мы можем это доказать.
Перепишем уравнение Мы получили уравнение вида для случая, когда Поскольку в этом уравнении то мы получили уравнение прямой.
А любую ли прямую на плоскости можно задать уравнением вида Ответ на этот вопрос отрицательный.
Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида
Вместе с тем, если в уравнении прямой принять то его можно переписать так: Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.
Если то уравнение прямой можно записать так:
Обозначив получим уравнение
Следовательно, если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Уравнение невертикальной прямой удобно записывать в виде
Данная таблица подытоживает материал, рассмотренный в этом пункте.
Пример №7
Составьте уравнение прямой, проходящей через точки:
Решение:
1) Поскольку данные точки имеют равные абсциссы, то прямая является вертикальной. Ее уравнение имеет вид
2) Поскольку данные точки имеют разные абсциссы, то прямая не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде
Подставив координаты точек в уравнение получаем систему уравнений:
Решив эту систему уравнений, находим, что
Ответ:
Пример №8
Найдите периметр и площадь треугольника, ограниченного прямой и осями координат.
Решение:
Найдем точки пересечения данной прямой с осями координат.
С осью абсцисс: при получаем
С осью ординат: при получаем
Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник (рис. 10.3) с вершинами Найдем стороны треугольника:
Тогда искомые периметр и площадь соответственно равны
Ответ:
Угловой коэффициент прямой
Рассмотрим уравнение Оно задает невертикальную прямую, проходящую через начало координат.
Покажем, что прямые где параллельны.
Точки принадлежат прямой а точки и принадлежат прямой (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей четырехугольника совпадают. Следовательно, четырехугольник — параллелограмм. Отсюда
Теперь мы можем сделать такой вывод: если то прямые параллельны (1).
Пусть прямая пересекает единичную полуокружность в точке (рис. 11.2). Угол называют углом между данной прямой и положительным направлением оси абсцисс.
Если прямая совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным
Если прямая образует с положительным направлением оси абсцисс угол то считают, что и прямая параллельная прямой также образует угол с положительным направлением оси абсцисс (рис. 11.3).
Рассмотрим прямую уравнение которой имеет вид (рис. 11.2). Если Поскольку точка принадлежит прямой Отсюда Таким образом, для прямой получаем, что
где — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент называют угловым коэффициентом этой прямой.
Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,
если прямые параллельны, то (2).
Выводы (1) и (2) объединим в одну теорему.
Теорема 11.1. Прямые параллельны тогда и только тогда, когда
Пример №9
Составьте уравнение прямой, которая проходит через точку и параллельна прямой
Решение:
Пусть уравнение искомой прямой Поскольку эта прямая и прямая параллельны, то их угловые коэффициенты равны, то есть
Следовательно, искомое уравнение имеет вид Учитывая, что данная прямая проходит через точку получаем: Отсюда
Искомое уравнение имеет вид
Ответ:
Метод координат
Мы часто говорим: прямая парабола окружность тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.
Проиллюстрируем сказанное на таком примере.
Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.
Эта задача сводится к исследованию количества решений системы уравнений
где числа одновременно не равны нулю и
Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:
- система имеет два решения — прямая и окружность пересекаются в двух точках;
- система имеет одно решение — прямая касается окружности;
- система не имеет решений — прямая и окружность не имеют общих точек.
С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.
Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.
Отметим на плоскости две точки Вы хорошо знаете, какой фигурой является геометрическое место точек таких, что
Это серединный перпендикуляр отрезка Интересно выяснить, какую фигуру образуют все точки для которых Решим эту задачу для
Плоскость, на которой отмечены точки «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку в качестве единичного отрезка — отрезок ось абсцисс проведем так, чтобы точка имела координаты (рис. 11.6).
Пусть — произвольная точка искомой фигуры Тогда Отсюда
Следовательно, если точка принадлежит фигуре то ее координаты являются решением уравнения
Пусть — некоторое решение уравнения Тогда легко показать, что А это означает, что точка такова, что Тогда Следовательно, точка принадлежит фигуре
Таким образом, уравнением фигуры является уравнение то есть фигура — это окружность с центром в точке и радиусом
Мы решили задачу для частного случая, когда Можно показать, что искомой фигурой для любого положительного будет окружность. Эту окружность называют окружностью Аполлония
Как строили мост между геометрией и алгеброй
Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.
Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.
Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.
Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.
Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита а коэффициенты — первыми: Привычные нам обозначения степеней и т. д. также ввел Р. Декарт.
Справочный материал
Расстояние между двумя точками
Расстояние между точками можно найти по формуле
Координаты середины отрезка
Координаты середины отрезка с концами можно найти по формулам:
Уравнение фигуры
Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
1) если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
2) любое решение данного уравнения является координатами точки, принадлежащей фигуре
Уравнение окружности
Уравнение окружности радиуса с центром в точке имеет вид
Любое уравнение вида где — некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Уравнение прямой
Уравнение прямой имеет вид — некоторые числа, причем не равны нулю одновременно. Любое уравнение вида — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Угловой коэффициент прямой
Коэффициент в уравнении прямой называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.
Необходимое и достаточное условие параллельности невертикальных прямых
Прямые параллельны тогда и только тогда, когда
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Планиметрия – формулы, определение и вычисление
- Стереометрия – формулы, определение и вычисление
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Ортогональное проецирование
Декартовы координаты точек плоскости. Уравнение окружности
Числовая ось
Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление
указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.
Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .
Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .
Прямоугольная декартова система координат на плоскости
Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).
Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.
Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты – абсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).
Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .
Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).
Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .
Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).
Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.
Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .
Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.
Формула для расстояния между двумя точками координатной плоскости
Утверждение 1 . Расстояние между двумя точками координатной плоскости
вычисляется по формуле
Доказательство . Рассмотрим рисунок 6.
| A1A2| 2 = = ( x2 – x1) 2 + ( y2 – y1) 2 . |
(1) |
что и требовалось доказать.
Уравнение окружности на координатной плоскости
Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:
Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .
Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид
Урок “Числовая окружность на координатной плоскости”
Краткое описание документа:
Числовой окружности в 10 классе уделяется достаточно много времени. Это связано со значимостью этого математического объекта для всего курса математики.
Огромное значение для хорошего усвоения материала имеет правильная подборка средств обучения. К наиболее эффективным таким средствам относятся видеоуроки. В последнее время они достигают пика популярности. Поэтому автор не стал отставать от современности и разработал в помощь учителям математики столь замечательное пособие – видеоурок по теме «Числовая окружность на координатной плоскости».
Данный урок по длительности занимает 15:22 минут. Это практически максимальное время, которое может затратить учитель на самостоятельное объяснение материала по теме. Так как на объяснение нового материала уходит столько много времени, то на закрепление необходимо подобрать самые эффективные задания и упражнения, а также выделить еще один урок, где обучающиеся будут решать задания по данной теме.
Урок начинается с изображения числовой окружности в системе координат. Автор строит эту окружность и поясняет свои действия. Затем автор называет точки пересечения числовой окружности с осями координат. Далее поясняется, какие координаты будут иметь точки окружности в разных четвертях.
После этого автор напоминает, как выглядит уравнение окружности. И вниманию слушателей представляется два макета с изображением некоторых точек на окружности. Благодаря этому, на следующем шаге автор показывает, как находятся координаты точек окружности, соответствующие определенным числам, отмеченным на шаблонах. Так получается таблица значений переменных xи y в уравнении окружности.
Далее предлагается рассмотреть пример, где необходимо определить координаты точек окружности. Перед тем, как начинать решать пример, вводится некоторое замечание, которое помогает при решении. А затем на экране появляется полное, четко структурированное и наполненное иллюстрациями решение. Здесь также присутствуют таблицы, которые облегчают понимание сущность примера.
Затем рассматриваются еще шесть примеров, которые менее трудоемкие, чем первый, но не менее важные и отражающие главную идею урока. Здесь решения представлены в полном объеме, с подробным рассказом и с элементами наглядности. А именно, в решении присутствуют рисунки, иллюстрирующие ход решения, и математическая запись, формирующая математическую грамотность обучающихся.
Учитель может ограничиться и теми примерами ,которые рассмотрены в уроке, но этого может быть недостаточно для качественного усвоения материала. Поэтому подобрать задания для закрепления просто крайне важно.
Урок может быть полезен не только учителям, время которых постоянно ограничено, но и обучающимся. Особенно тем, кто получает семейное образование или занимается самообразованием. Материалами могут пользоваться те обучающиеся, которые пропустили урок по данной теме.
Тема нашего урока «ЧИСЛОВАЯ ОКРУЖНОСТЬ НА КООРДИНАТНОЙ ПЛОСКОСТИ»
Мы уже знакомы с декартовой прямоугольной системой координат xOy ( икс о игрек). В этой системе координат расположим числовую окружность так, чтобы центр окружности был совмещен с началом координат, а ее радиус примем за масштабный отрезок.
Начальная точка А числовой окружности совмещена с точкой с координатами (1;0) , В – с точкой (0;1), С – с ( -1;0)( минус один, нуль), а D – с (0; -1)( нуль, минус один).
Так как каждая точка числовой окружности имеет в системе xOy (икс о игрек) свои координаты, то для точек первой четверти икх больше нуля и игрек больше нуля;
Во-второй четверти икх меньше нуля и игрек больше нуля,
для точек третьей четверти икх меньше нуля и игрек меньше нуля,
а для четвертой четверти икх больше нуля и игрек меньше нуля
Для любой точки E (x;y)(с координатами икс, игрек) числовой окружности выполняются неравенства -1≤ х≤ 1, -1≤у≤1 ( икс больше либо равно минус один, но меньше либо равно один ; игрек больше либо равно минус один, но меньше либо равно один).
Вспомним, что уравнение окружности радиусом R c центром в начале координат имеет вид х 2 + у 2 =R 2 ( икс квадрат плюс игрек квадрат равно эр квадрат). А для единичной окружности R =1, поэтому получаем х 2 + у 2 = 1
( икс квадрат плюс игрек квадрат равно один).
Найдем координаты точек числовой окружности, которые представлены на двух макетах (см. рис 2, 3)
Пусть точка E, которая соответствует
( пи на четыре) – середина первой четверти изображенная на рисунке. Из точки E опустим перпендикуляр EK на прямую ОА и рассмотрим треугольник ОEK. Угол АОЕ =45 0 , так как дуга АЕ составляет половину дуги АВ. Следовательно, треугольник ОЕК – равнобедренный прямоугольный, у которого ОК = ЕК. Значит, абсцисса и ордината точки Е равны, т.е. икс равно игрек. Чтобы найти координаты точки Е , решим систему уравнений: (икс равно игрек- первое уравнение системы и икс квадрат плюс игрек квадрат равно один – второе уравнение системы).Во второе уравнение системы вместо х подставим у, получим 2у 2 =1( два игрек квадрат равно единице), откуда у= = ( игрек равно один деленное на корень из двух равно корень из двух деленное на два) ( ордината положительна).Это значит, что точка Е в прямоугольной системе координат имеет координаты( , )( корень из двух деленное на два, корень из двух деленное на два).
Рассуждая аналогично, найдем координаты для точек, соответствующих другим числам первого макета и получим: соответствует точка с координатами (– , ) ( минус корень из двух деленное на два, корень из двух деленное на два); для – (– ,– ) ( минус корень из двух деленное на два, минус корень из двух деленное на два); для (семь пи на четыре) ( , )( корень из двух деленное на два, минус корень из двух деленное на два).
Пусть точка D соответствует (рис.5). Опустим перпендикуляр из DР(дэ пэ) на ОА и рассмотрим треугольник ОDР. Гипотенуза этого треугольника OD равна радиусу единичной окружности, то есть единице, а угол DОР равен тридцати градусам, так как дуга АD = диги АВ( а дэ равно одной трети а бэ), а дуга АВ равна девяносто градусов. Следовательно, DР = (дэ пэ равно одной второй О дэ равно одной второй) Так как катет, лежащий против угла в тридцать градусов равен половине гипотенузы, то есть у = ( игрек равно одной второй). Применяя теорему Пифагора, получим ОР 2 = ОD 2 – DР 2 ( о пэ квадрат равно о дэ квадрат минус дэ пэ квадрат), но ОР = х ( о пэ равно икс) . Значит, х 2 = ОD 2 – DР 2 =
значит, х 2 = (икс квадрат равно трем четвертым) и х = ( икс равно корень из трех на два).
Икс положительное, т.к. находится в первой четверти. Получили, что точка D в прямоугольной системе координат имеет координаты ( , ) корень из трех деленное на два, одна вторая.
Рассуждая аналогичным образом, найдем координаты для точек, соответствующих другим числам второго макета и все полученные данные запишем в таблицы:
ПРИМЕР1. Найдите координаты точек числовой окружности: а) С1( );
б) С2( ); в) С3(41π); г) С4( – 26π). (цэ один соответствующая тридцать пять пи на четыре, цэ два соответствующая минус сорока девяти пи на три, цэ три соответствующая сорок одному пи, цэ четыре соответствующая минус двадцати шести пи).
Решение. Воспользуемся утверждение, полученным ранее: если точка D числовой окружности соответствуют числу t, то она соответствует и любому числу вида t + 2πk( тэ плюс два пи ка), где ка –любое целое число, т.е. kϵZ (ка принадлежит зэт).
а) Получим = ∙ π = ( 8 + ) ∙π = + 2π ∙ 4.( тридцать пять пи на четыре равно тридцать пять на четыре, умноженное на пи равно сумме восьми и трех четвертых, умноженной на пи равно три пи на четыре плюс произведение двух пи на четыре).Это значит, что числу тридцать пять пи на четыре соответствует та же точка числовой окружности, что и числу три пи на четыре. Используя таблицу 1, получим С1( ) = С1(- 😉 .
б) Аналогично координаты С2: = ∙ π = – (16 + ∙π = + 2π ∙ ( – 8 ). Значит, числу
соответствует та же точка числовой окружности, что и числу . А числу соответствует на числовой окружности та же точка, что и числу
( показать второй макет и таблицу 2). Для точки имеем х = , у =.
в) 41π = 40π + π = π + 2π ∙ 20.Значит, числу 41π соответствует та же точка числовой окружности, что и числу π – это точка с координатами ( -1 ; 0).
г) – 26π = 0 + 2π ∙ ( – 13), то есть числу – 26π соответствует та же точка числовой окружности, что и числу ноль, – это точка с координатами ( 1;0).
ПРИМЕР 2. Найти на числовой окружности точки с ординатой у = и записать, каким числам t они соответствуют.
Решение. Прямая у = пересекает числовую окружность в двух точках. Одна точка соответствует числу , вторая точка соответствует числу ,
Следовательно все точки получаем прибавляя полный оборот 2πk где k показывает сколько полных оборотов делает точка , т.е. получаем ,
а любому числу все числа вида + 2πk. Часто в таких случаях говорят, что получили две серии значений : + 2πk, + 2πk.
ПРИМЕР 3. Найти на числовой окружности точки с абсциссой х = и записать, каким числам t они соответствуют.
Решение. Прямая х = пересекает числовую окружность в двух точках. Одна точка соответствует числу ( смотри второй макет),
а значит и любому числу вида + 2πk. А вторая точка соответствует числу , а значит, и любому числу вида + 2πk. Эти две серии значений можно охватить одной записью : ± + 2πk( плюс минус два пи на три плюс два пи ка).
ПРИМЕР 4. Найти на числовой окружности точки с ординатой у > и записать, каким числам t они соответствуют.
Прямая у = пересекает числовую окружность в двух точках M и P. А неравенству у > соответствуют точки открытой дуги МР, это значит дуги без концов (то есть без и ) , при движении по окружности против часовой стрелки , начиная с точки М, а заканчивая в точке Р. Значит, ядром аналитической записи дуги МР является неравенство и записать, каким числам t они соответствуют.
Единичная числовая окружность на координатной плоскости
п.1. Понятие тригонометрии
Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., – спроектирован с использованием тригонометрии.
Базовым объектом изучения в тригонометрии является угол.
Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.
п.2. Числовая окружность
Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.
Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0). Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0. Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным . |
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°. |
п.3. Градусная и радианная мера угла
Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).
В целом, более обоснованной и естественной для измерения углов является радианная мера.
Найдем радианную меру прямого угла ∠AOB=90°. Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr. Длина дуги AB: (l_=frac<4>=frac<2pi r><4>=frac<pi r><2>.) Тогда радианная мера угла: $$ angle AOB=frac>=frac<pi r><2cdot r>=frac<pi> <2>$$ |
30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
(frac<pi><6>) | (frac<pi><4>) | (frac<pi><3>) | (frac<pi><2>) | (frac<2pi><3>) | (frac<3pi><4>) | (frac<5pi><6>) | (pi) | (frac<3pi><2>) | (2pi) |
п.4. Свойства точки на числовой окружности
Построим числовую окружность. Обозначим O(0;0), A(1;0)
Каждому действительному числу t на числовой окружности соответствует точка Μ(t). При t=0, M(0)=A. При t>0 двигаемся по окружности против часовой стрелки, описывая дугу ⌒ AM=t. Точка M – искомая. При t Например: |
Отметим на числовой окружности точки, соответствующие (frac<pi><6>, frac<pi><4>, frac<pi><2>, frac<2pi><3>, pi), а также (-frac<pi><6>, -frac<pi><4>, -frac<pi><2>, -frac<2pi><3>, -pi) Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности. |
Отметим на числовой окружности точки, соответствующие (frac<pi><6>, frac<13pi><6>, frac<25pi><6>), и (-frac<11pi><6>). Все четыре точки совпадают, т.к. begin Mleft(frac<pi><6>right)=Mleft(frac<pi><6>+2pi kright)\ frac<pi><6>-2pi=-frac<11pi><6>\ frac<pi><6>+2pi=frac<13pi><6>\ frac<pi><6>+4pi=frac<25pi> <6>end |
п.5. Интервалы и отрезки на числовой окружности
Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
Числовой промежуток | Соответствующая дуга числовой окружности |
Отрезок | |
$$ -frac<pi> <6>lt t lt frac<pi> <3>$$ а также, с учетом периода $$ -frac<pi><6>+2pi klt tltfrac<pi><3>+2pi k $$ |
|
Интервал | |
$$ -frac<pi> <6>leq t leq frac<pi> <3>$$ а также, с учетом периода $$ -frac<pi><6>+2pi kleq tleqfrac<pi><3>+2pi k $$ |
|
Полуинтервал | |
$$ -frac<pi> <6>leq t ltfrac<pi> <3>$$ а также, с учетом периода $$ -frac<pi><6>+2pi kleq tltfrac<pi><3>+2pi k $$ |
п.6. Примеры
Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin BE=30^<circ>=frac<pi><6>.\ EC=60^<circ>=frac<pi><3>.\ AE=EC+CD=90^<circ>+30^<circ>=120^<circ>=frac<2pi><3>.\ ED=EC+CD=60^<circ>+90^<circ>=150^<circ>=frac<5pi><6>. end
Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac<pi><2>; frac<3pi><4>; frac<7pi><6>; frac<7pi><4>).
Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. begin -frac<pi><2>=-90^<circ>, frac<3pi><4>=135^<circ>\ frac<7pi><6>=210^<circ>, frac<7pi><4>=315^ <circ>end |
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac<11pi><2>; 5pi; frac<17pi><6>; frac<27pi><4>).
Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk – четное количество π), чтобы попасть в промежуток от 0 до 2π. Далее – действуем, как в примере 2. begin -frac<11pi><2>=frac<-12+1><2>cdotpi=-6pi+frac<pi><2>rightarrow frac<pi><2>=90^<circ>\ 5pi=4pi+pirightarrow pi=180^<circ>\ frac<17pi><6>=frac<18-1><6>pi=3pi-frac<pi><6>rightarrow pi-frac<pi><6>=frac<5pi><6>\ frac<27pi><4>=frac<28-1><4>pi=7pi-frac<pi><4>rightarrow pi-frac<pi><4>=frac<3pi> <4>end |
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
Сравниваем каждое число с границами четвертей: begin 0, fracpi2approxfrac<3,14><2>=1,57, piapprox 3,14\ 3pi 3cdot 3,14\ frac<3pi><2>approx frac<3cdot 3,14><2>=4,71, 2piapprox 6,28 end |
(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти
(pilt 4lt frac<3pi> <2>Rightarrow ) угол 4 радиана находится в 3-й четверти
(frac<3pi><2>lt 5lt 2pi Rightarrow ) угол 5 радиана находится в 4-й четверти
(7gt 2pi), отнимаем полный оборот: (0lt 7-2pilt fracpi2Rightarrow) угол 7 радиан находится в 1-й четверти.
Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb)), запишите количество полученных базовых точек.
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.
[spoiler title=”источники:”]
http://urokimatematiki.ru/urok-chislovaya-okruzhnost-na-koordinatnoy-ploskosti-833.html
http://reshator.com/sprav/algebra/10-11-klass/edinichnaya-chislovaya-okruzhnost-na-koordinatnoj-ploskosti/
[/spoiler]
Говорят,
что в трехмерном пространстве введена
декартова прямоугольная система
координат
,
если заданы:
1) некоторая точка
0, называемая началом координат;
2) некоторый
прямоугольный базис
в множестве всех геометрических векторов.
Оси
и,
проведенные через точкув направлении базисных ортови,
называются координатными осями системы
координат.
Если
– произвольная точка пространства, то
направленный отрезокназывается радиус-вектором точки.
Координатами точкив системеназываются координаты ее радиус-векторакак геометрического вектора в базисе,
т.е.
.
Если
и– две произвольные точки в пространстве,
то координаты вектораравны
. (4)
Отсюда на основании
(3) расстояние между точками выражается
формулой
.
При решении задач
аналитической геометрии целесообразно
максимально использовать методы
векторной алгебры.
Пример
1. Заданы
вершины
и точкапересечения медиан треугольника.
Найти координаты вершины.
Решение:
Так как координаты
вершины
заданы, то для вычисления координат
вершиныдостаточно найти координаты вектора.
Пусть– медиана, проведенная из вершины.
Тогда
(5)
(здесь использован
тот факт, что точка
делит медианув отношении).
Далее, из условий задачи с помощью
формулы (4) вычисляем координаты векторови,
откуда на основании (5) получаеми, наконец, вновь используя формулу (4),
находим координаты точки:
;
;
.
Пусть на прямой
заданы точкии,
причем.
Рассмотрим векторыи.
Так как они коллинеарны, то найдется
такое действительное число,
что.
Числоназывается отношением, в котором точкаделит направленный отрезок,
причем оно положительно, если точканаходится внутри отрезка,
отрицательно,
еслинаходится вне,
и равно 0, если.
Пример
2. Зная
координаты точек
ии отношение,
в котором точкаделит направленный отрезок,
найти координаты точки.
Решение:
Пусть
– начало координат. Обозначим:.
Так как
,
то
,
Откуда (так как
)
.
Полученная формула
и дает решение задачи в векторной форме.
Переходя в этой
формуле к координатам, получим
. (6)
Пример
3. Даны вершины
треугольника
,и.
Вычислить длину биссектрисы его
внутреннего угла при вершине.
Решение.
Найдем разложение вектора
по базису из векторови.
Пусть
и–орты
векторови.
Тогда векторсонаправлен
с вектором(ср. с задачей 2.47), т.е. существует числотакое, что
. (7)
С другой стороны,
(8)
Формулы (7) и (8)
представляют собой два разложения
вектора
по базису из векторови.
В силу единственности разложения вектора
по базису имеем
и. (9)
Решая систему (9),
находим
,
Так что формула
(7) принимает вид
.
(10)
Из условий задачи
находим:
и
и,
и на основании (10) получаем
,
откуда
и
.
4.
Скалярное произведение векторов.
Скалярным
произведением ненулевых векторов
иназывается число
.
Для скалярного
произведения наряду с обозначением
используется также обозначение.
Геометрические
свойства скалярного произведения:
1)
(условие перпендикулярности векторов);
2) если
,
то
.
Алгебраические
свойства скалярного произведения:
1)
;
2)
;
3)
.
Если векторы
ипредставлены своими координатами в
прямоугольном базисе, то скалярное
произведение равно
.
Из этой формулы,
в частности, следует формула для
определения косинуса угла между векторами
.
Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
на главную
Как найти координаты точки
Поддержать сайт
Каждой точке координатной плоскости соответствуют две координаты.
Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором —
ордината точки.
Рассмотрим как в системе координат (на координатной плоскости):
- находить координаты точки;
- найти положение точки.
Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.
Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».
Обозначают координаты точки, как указано выше (·) A (2; 3).
Пример (·) A (2; 3) и (·) B (3; 2).
Запомните!
На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.
Особые случаи расположения точек
- Если точка лежит на оси «Oy»,
то её абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси «Ox», то её ордината равна 0.
Например,
точка F (3, 0). - Начало координат — точка O имеет координаты, равные нулю O (0,0).
- Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
- Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
- Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
Как найти положение точки по её координатам
Найти точку в системе координат можно двумя способами.
Первый способ
Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:
- Отметить на оси «Ox», точку с координатой
«−4», и провести через неё прямую перпендикулярную оси «Ox». - Отметить на оси «Oy»,
точку с координатой 2, и провести через неё прямую перпендикулярную
оси «Oy». - Точка пересечения перпендикуляров (·) D — искомая точка.
У неё абсцисса равна «−4», а ордината равна 2.
Второй способ
Чтобы найти точку D (−4 , 2) надо:
- Сместиться по оси «x» влево на
4 единицы, так как у нас
перед 4
стоит «−». - Подняться из этой точки параллельно оси y вверх на 2 единицы, так
как у нас перед 2 стоит «+».
Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий: