Как найти делитель числа в дроби

В данной публикации мы рассмотрим, как десятичную дробь можно разделить на натуральное целое число или другую десятичную дробь. Также разберем примеры для закрепления изложенного материала.

  • Деление десятичной дроби на натуральное число

    • Делитель – 10, 100, 1000, 10000 и т.д.

    • Делитель – любое число

  • Деление десятичной дроби на другую десятичную дробь

Деление десятичной дроби на натуральное число

Делитель – 10, 100, 1000, 10000 и т.д.

Чтобы разделить десятичную дробь на натуральное число 10, 100, 1000, 10000 и т.д., выполняем перенос десятичного разделителя (запятой) влево на столько позиций, сколько нулей содержит делитель.

Пример 1

62,75 : 10 = 6,275

Объяснение: В числе 10 всего один ноль, значит запятую сдвигаем на одну позицию влево.

Пример 2

154,39 : 100 = 1,5439

Объяснение: В числе 100 два нуля, значит запятую сдвигаем на две позиции.

Примечание: если количество нулей в делителе больше количества цифр в целой части делимого, значит отсчитываем столько позиций, сколько позволяет дробь, затем дописываем оставшееся количество нулей слева, ставим запятую и добавляем ноль в целой части новой десятичной дроби.

Пример 3

62,75 : 1000 = 0,06275

Объяснение: Т.к. в числе 1000 три нуля, отсчитываем две позиции влево, добавляем оставшийся ноль с левой стороны, пишем запятую и затем – ноль в целой части полученной дроби.

Делитель – любое число

Чтобы разделить десятичную дробь на любое натуральное целое число:

  • Не обращая внимания на запятую, выполняем деление столбиком, как будто делимым является целое число, а не дробь.
  • Как только остаток не будет делиться нацело на делитель, ставим запятую в частном. При этом, если целая часть делимого изначально меньше делителя, значит целая часть новой дроби (частного) будет меньше единицы, т.е. равна 0.
  • Продолжаем выполнять деление, записывая получаемые цифры уже в дробной части результата. Здесь, если остаток невозможно нацело поделить на делитель, к нему и к частному одновременно добавляем ноль справа и продолжаем действие до тех пор, пока не получим нулевой остаток (для конечных дробей), либо пока не будет получено требуемое количество цифр после запятой в частном.

Пример 4: разделим дробь 12,516 на 3.

Решение:

Деление десятичной дроби на целое натуральное число

Пример 5: разделим дробь 3,726 на 15.

Решение:

Деление десятичной дроби на целое натуральное число

Т.к. целая часть исходной дроби меньше делителя, значит целая часть частного равняется 0 (т.е. пишем ноль, ставим запятую и продолжаем выполнять деление).

Деление десятичной дроби на другую десятичную дробь

Чтобы разделить одну десятичную дробь на другую, умножаем обе дроби на такое число (10, 100, 1000 и т.д.), чтобы они стали целыми числами (количество нулей у множителя зависит от наибольшего количества цифр после запятой у той или иной дроби). Затем находим частное.

Примечание: этот же прием можно применять, чтобы разделить десятичную дробь на целое число.

Пример 6: найдем, сколько будет 5,468 делить на 3,2.

Решение:

У дроби 5,468 три цифры после запятой, а у 3,2 – всего одна. Значит их обе умножаем на 1000, затем находим требуемый результат.

Деление чисел столбиком

#хакнем_математика 👈 рубрика, содержащая интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳

Иллюстрация защищена товарным знаком и принадлежит медиа-группе «Хакнем»
Иллюстрация защищена товарным знаком и принадлежит медиа-группе «Хакнем»

Цикл статей “Дроби”

Первая часть Вторая часть Третья часть Четвертая часть Пятая часть

Здравствуйте, уважаемые читатели!

Отмечу, что в одних учебниках материал этой статьи рассматривается в 5-ом классе, в других — в 6-ом. Прежде чем продолжить чтение этой статьи, предлагаю Вам познакомиться с пятой статьёй цикла «Признаки делимости чисел: где мы их применяем в жизни», автор которой #ирина_чудневцева любезно предоставила её в наше с Вами распоряжение.

Нахождение Наибольшего Общего Делителя (НОД) и Наименьшего Общего Кратного (НОК) двух чисел служит для преобразований обыкновенных дробей при их сокращениях или для приведения к общему знаменателю при сложении и вычитании.

При наличии достаточного опыта эти преобразования во многих случаях производятся «в уме» и довольно быстро приводят к нужному результату.

Однако так бывает далеко не всегда. При достаточно больших значениях как числителя, так и знаменателя сделать устно подобные преобразования достаточно затруднительно.

В таких случаях необходимо каждое из этих чисел разложить на простые множители. Именно при выполнении этой операции нам на помощь приходят признаки делимости.

Давайте подробно рассмотрим операцию сокращения дроби

Полезные советы о том, как легко сократить сложные дроби и привести их к наименьшему общему знаменателю?

Запишем раскладываемое на простые множители число и справа от него проведём вертикальную черту, за которой запишем возможно наименьший простой делитель этого числа.

Результат деления запишем под первым числом, а его наименьший простой делитель — за чертой… Далее запишем частное от деления числа на простой множитель под самим числом, а его наименьший простой делитель — за чертой.

Продолжим этот процесс до появления в частном числа 1.

Полезные советы о том, как легко сократить сложные дроби и привести их к наименьшему общему знаменателю?

Отметим каким-либо способом (обычно это делается подчёркиванием) совпадающие множители в этих разложениях.

Произведение подчёркнутых множителей и будет наибольшим

общим делителем: НОД(273; 462) = 3 × 7 = 21.

ВНИМАНИЕ! Теперь для сокращения дроби нам нет нужды делить её числитель и знаменатель на найденный НОД!

В качестве числителя и знаменателя сокращённой дроби будут

произведения неотмеченных множителей в их разложениях:

Полезные советы о том, как легко сократить сложные дроби и привести их к наименьшему общему знаменателю?

Пусть теперь эти числа (273 и 462) будут знаменателями каких-то обыкновенных дробей, которые следует привести к общему знаменателю. Не вызывает сомнений, что этот общий знаменатель должен быть наименьшим из всех возможных.

Таким Наименьшим Общим Знаменателем будет Наименьшее Общее Кратное (НОК) этих чисел.

НОК(273; 462) — это одно из этих чисел, умноженное на

произведение неотмеченных множителей в разложении другого

числа:

НОК(273; 462) = 273 × (2×11) = 462 × 13 = 6006.

Умножим числитель каждой дроби на неотмеченные простые множители в разложении на простых множителей знаменателя другой дроби — это будут дополнительные множители, и поставим полученное произведение в числитель приведённой к общему знаменателю дроби, а её знаменателем будет найденное значение НОК.

Осталось показать, что произведение двух чисел равно произведению НОД и НОК этих чисел, Сделаем это сначала в общем виде.

Пусть натуральное число m = ad, а натуральное число n = bd,

где d = НОД(m; n), a — произведение неотмеченных простых множителей в разложении числа m, b — произведение неотмеченных простых множителей в разложении числа n.

Тогда

mn = ad×bd, НОД(m; n) × НОК(m; n) = d × m × b = d × ad ×b = ad × bd= mn.

Предлагаю читателю самостоятельно убедится в справедливости

этого равенства при m = 273 и n = 462.

Если вам было интересно, не забудьте подписаться на наш канал и хэштег #хакнем_математика

Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.

Канал Хакнем Школа благодарит нашего автора Себихова Александра Николаевича за познавательный контент и возможность опубликования его в нашем канале!

Другие статьи автора:

Полезные советы о том, как легко сократить сложные дроби и привести их к наименьшему общему знаменателю?

Цикл статей “Дроби”

1 статья

2 статья

3 статья

4 статья

5 статья

6 статья [Текущая]

Самые старые упоминания о таких математических явлениях, как дробь, учёные обнаружили в древнем Египте. Особенностью их было то, что у них были обозначения только вида 12, 23,13, при этом больше двойки числа, делимого они не использовали, а использовали метод сложения, к примеру, вместо дроби 56, писали 12 +13.

Но применять такие дроби было сложно, поэтому учёные разных областей пытались вывести общую универсальную формулу для удобства. Так появилась шестидесятеричная, но проводить вычисления с ней тоже было очень трудно, однако её довольно долго применяли в Вавилоне и Греции. Существовала также система называемая Асс, её суть в делении на 12, использовали её римляне. Результат такого деления, точнее одну долю, называли унцией. Самой близкой по своей системе исчисления была дробь, которую предложили в Индии, разница от современных была в формате записи, без чёрточки, и такая дробь была перевернута, в верхней части находился делитель, а в нижней делимое. Та запись, которую и по сей день используют в математике была придумана арабами.

Что такое дробь, основные понятия и виды

Определение

Дробь — число, состоящее из нескольких равных долей.

По сути дробь — это деление одного числа на другое. Выделяют два вида: обыкновенные и десятичные.

Обыкновенная дробь — означает, состоящая из целых чисел. Обыкновенные, имею два типа записи к примеру:

  • 15- разделена наклонной линией, читается как одна пятая;
  • [frac{1}{5}] — горизонтальной линией.

Определения:

  • Числитель — число, находящееся в верхней границе дроби;
  • Знаменатель — число которое мы видим в нижней границе дроби.

Например: 15, где 1- числитель, 5- знаменатель. Для того чтобы проще объяснить, что такое дробь приведём простой пример. Торт разрезан на 5 кусков, если мы взяли два и них то это 25 (две пятые части торта).

Обыкновенные дроби имеют два типа правильные и неправильные.

Правильной дробью называется дробь с значениями, в которых числитель меньше знаменателя. Такое название данный тип дроби получил не зря, ведь так логичнее и правильнее, когда часть меньше целого.

Неправильная в свою очередь имеет обратные значения, когда числитель больше знаменателя.

Примечание. Дроби, у которых знаменатель и числитель одинаковы, тоже неправильные.

Смешанная дробь. Существует также такое определение как смешанная дробь, такой вид, представляет собой дробь, состоящую из двух частей целой и дробной. Пример — [4 frac{3}{5}], где четыре это целая часть, а 35 дробная. Такой тип дроби можно получить, только при делении неправильного вида дробей.

Десятичные дроби. К десятичным, относят дроби которые в знаменателе имеют 10 в натуральной степени. К примеру [frac{5}{10}, frac{6}{100}] и тд. Такие, так же могут иметь вид строчной записи, 0,5 и 0,06. При этом в такой записи целая часть отделяется от дробной знаком запятой.

Существуют также понятия сократимой и несократимой дроби. Сократимая дробь, это та, в которой можно произвести деление числителя и знаменателя на одно и то же число.

Несократимая дробь, если такие действия выполнить нельзя.

Составная дробь, многоуровневая или выражение, имеющее несколько черт дроби. Пример [frac{frac{3}{7}}{-31}]

Равные и неравные дроби. Для того чтобы сказать, являются дроби равными или нет, нужно их сравнить.

Равные обыкновенные [frac{a}{d} frac{c}{b}] — можно вывести при помощи такого верного равенства а*b=d*c , если такое равенство не верно то данные дроби будут называться неравными.

Положительные и отрицательные дроби.

Положительные называют обыкновенные дроби, с положительными числами, при необходимость перед такими дробями ставится знак +, пример [+frac{6}{9}].

Отрицательными, считаются дроби со знаком минус, пример [-frac{6}{9}].

Стоит отметить что две дроби вида [-frac{6}{9} text { и }+frac{6}{9}] являются противоположными.

Алгебраическая дробь.

Отличается она тем, что на месте числителя и знаменателя находятся алгебраические значения, числа заменены буквами. Примеры —

[ frac{x+y}{x-y}, frac{x^{3}+1}{x^{2}-x+2}, frac{a^{2}-4}{a+2}, frac{a}{2}, frac{3 a+7}{5} ]

Если в такой дроби буквы заменить числами, то она сразу станет обыкновенной.

Одночлен — это выражение, содержащее числа, степени положительные и их произведение. Пример: в.

Многочлен — это сумма одночленов. Пример: 7а+6в

Дроби на координате прямых.

Дроби на координате прямых.

Если рассматривать координату прямых, то положительные дроби на ней будут расположены справа от нулевого значения, а отрицательные слева.

Действия, которые можно выполнить с дробями

В общем то, действия с дробями это все те же действия, которые можно выполнить с числами:

  • Сравнение;
  • Сложение;
  • Вычитание;
  • Умножение;
  • Деление.

Свойства дроби

Чтобы сложить или вычесть дроби, дробь обязана иметь равные знаменатели, необходимо просто выполнить это действие с их числителями

Примеры:

[ frac{4}{9}+frac{5}{9}=frac{4+5}{9} ; text { и } frac{4}{9}-frac{5}{9}=frac{5-4}{9}. ]

Что же касается дробей с разной частью делителя (Знаменателя), то тут чтобы выполнить действия сложения и вычитания с ними необходимо привести знаменатели к общему числу.

Примеры: [frac{4}{9}+frac{5}{8}=frac{4+5}{9 cdot 8}], точно так же и для вычитания.

Чтобы выполнить такое действие, как умножение обыкновенных дробей, нужно произвести умножение сначала с их числителями, а после и знаменателями.

Пример: [frac{4}{9} cdot frac{5}{8}=frac{4 cdot 5}{9 cdot 8}].

При умножении дроби на число, в такой вычислении просто умножается числитель на заданное число, а знаменатель остаётся тем же.

Пример: [frac{4}{9} cdot 6=frac{4 cdot 6}{9}];

Что же касается деления, то при делении одной дроби на другую, нужно произвести умножение, при котором первая дробь остаётся в неизменном виде, а вторая переворачивается. То есть получается мы умножаем числитель первой дроби данного примера, на знаменатель второй, и полученное число находится в верхней части дроби, а в нижней умножение знаменателя первой дроби на числитель второй.

Пример: [frac{4}{9} backslash frac{5}{8}=frac{4 cdot 8}{9 cdot 5}].

Сравнение дробей

Чтобы провести сравнение с разными делителями (знаменателями), необходимо сделать так, чтобы знаменатель стал общим только тогда можно будет сравнить числители. Соответственно, где числитель больше там и дробь больше.

Основное свойство дробей

Основным свойством дроби является выражение — «числитель и знаменатель можно делить и умножать на одно и то же число при этом значение всей дроби не поменяется.»

Еще одно определение которое пригодится нам для сокращения дроби это НОД.

НОД — наибольший общий делитель.

Общий делитель — это число, которое может быть делителем каждого из указанных чисел.

Пример: если взять число 3, то оно станет общим делителем для чисел 6 и 9. так как 9=3*3 а 6=3*2.

Алгоритм Евклида для вычисления НОД (наибольшего общего делителя)

Не всегда, сходу, можно понять какое число является наибольшим общим числителем, особенно если числа крупные, поэтому существует специальный алгоритм для выведения такого числа НОД.

Суть алгоритма такова: для нахождения НОД чисел а и b (где они целые и положительные числа, к тому же a больше b), выполняется ряд делений с остатком, получается ряд равенств, где деление останавливается в том случае если rk+1=0, при этом rk=НОД(a, b)

Пример. Рассчитаем НОД для 28 и 64.

Как находим:

Распишем простые множители для каждого числа и подчеркнем одинаковые

Д (28) = 2 * 2 * 7

Д (64) = 2 * 2 * 2 * 2 * 2 * 2

Найдем произведение одинаковых простых множителей и запишем ответ

НОД (28; 64) = 2 * 2 = 4

Ответ: НОД (28; 64) = 4

Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.

вычисления НОД 1

Сокращение дроби

Выражение сократить дробь, фактически означает что необходимо провести деление её числителя и знаменателя на одно и то же число, не равное единице.

Результатом таких действий станет появление новой дроби, значение которой, равно первичной.

Например: возьмём обыкновенную дробь [frac{12}{44}] и произведем сокращение. Для этого разделим и числитель и знаменатель на 2, получится такая дробь [frac{12}{44} backslash 2=frac{12 backslash 2}{44 backslash 2}=frac{6}{22}].

Нет времени решать самому?

Наши эксперты помогут!

Несократимый вид дроби, приведение к такому виду

Обычно целью таких манипуляций с дробями является получение из исходного вида дроби несократимый. К примеру дробь, которая получилась у нас выше, [frac{6}{22}] при сокращении на два, как мы видим все ещё можно сократить.

Для того чтобы привести дробь к виду несократимой, нужно выполнить манипуляции по делению, числителя и знаменателя на наибольший НОД. В таком случае по свойству НОД в числителе и знаменателе окажутся простые числа, а дробь будет несократимой.

[ frac{a}{d}=frac{a backslash text { НОД }(a, d)}{d backslash text { НОД }(a, d)} ]

Из вышесказанного следует, что приведение дроби к несократимому виду значит, нужно произвести деление числителя и знаменателя на их НОД.

Пример: вернёмся к нашему примеру дроби [frac{12}{44}], для приведения ее к несократимому виду нужной сначала найти наибольший общий делитель чисел 12 и 44. таким числом НОД для них является цифра 4.

Получается: [frac{12}{44}=frac{12 backslash 4}{44 backslash 4}=frac{3}{11}].

Для чего нужно сокращение? Такие манипуляции с дробями необходимо применять, в случаях работы с большими числами.

Стоит вспомнить негласное правило математики, суть его в том, что если что-то можно сделать проще нужно упростить. Поэтому, говоря о сокращении дроби, имеется в виду именно приведение к несократимому виду, а не просто уменьшение числителя и знаменателя.

Правило сокращения

Для того чтобы сократить, необходимо:

  • Найти делитель наибольшего значения, который будет общим для знаменателя и числителя;
  • Разделить числитель и знаменатель на него.

Примеры:

Дана такая дробь: [frac{182}{195}]. сократим её.

Найдём такой делитель, при помощи применения алгоритма Евклида.

195 = 182 *1+13

182=13*14

Из чего следует, что НОД(182,195)=13

Поэтому для сокращения дроби [frac{182}{195}], разделим числитель 182 и знаменатель 195 на 13 и получим равенство: [frac{182}{195}=frac{182 backslash 13}{195 backslash 13}=frac{14}{25}]

Таким образом мы и получили несократимую дробь равную исходной.

Второй способ.

Второй способ основан на разложении числителя и знаменателя исходной дроби на простые множители, из которых позже все общие множители убираются.

Пример сокращения: [frac{123}{154}] для сокращения представим числитель и знаменатель дроби в виде простых множителей

[ frac{182}{195}=frac{2 cdot 7 cdot 13}{3 cdot 5 cdot 13} ]

Затем уберём все общие множители, как в числителе так и в знаменателе, [frac{182}{195}=frac{2 cdot 7 cdot 13}{3 cdot 5 cdot 13}=frac{2 cdot 7}{3 cdot 5}=frac{14}{15}]

Третий способ сокращения дроби.

Третий способ — способ последовательного сокращения. Применяя такой способ, сокращение происходит поэтапно, сокращая каждый раз на какой-либо очевидный общий множитель.

Пример: [frac{18000}{22000}]

При сокращении такой дроби сразу можно увидеть, что и числитель и знаменатель деяться на 1000 в результате такого деления получается:

[ frac{18000}{22000}=frac{18000 backslash 1000}{22000 backslash 1000}=frac{18}{22} ]

Следующим этапом мы видим, что оба значения и числителя, и знаменателя делятся на 2, получим несократимую дробь.

[ frac{18}{22}=frac{18000 backslash 2}{22000 backslash 2}=frac{9}{11} ]

Как мы видим сокращение дроби не такой сложный процесс, главное подобрать удобный способ.

Сокращение алгебраической дроби

Так же, как и в примерах выше, сокращение алгебраической дроби, это деление числителя и знаменателя на общий делитель. Отличие в том, что в алгебраической, таким общим множителем является многочлен и одночлен.

Для того чтобы сократить такие дроби нужно пройти три этапа:

  • Определение множителя, который будет общим для числителя и знаменателя;
  • Сокращение коэффициента;
  • Деление числителя и знаменателя на множитель.

Сокращая дробь со степенями, применяется правило деления степеней с равными основаниями.

Формула:

[ a^{n} div a^{m}=a^{n-m} ]

Рассмотрим пример сокращения со степенями:

[ frac{x^{3}}{x^{2}}=frac{x^{3} / x^{2}}{x^{2} / x^{2}}=frac{x^{3-2}}{x^{2-2}}=frac{x^{1}}{x^{0}}=frac{x}{1}=x ]

Исходя из вышеописанной схемы:

  • Сокращаем x3 и x2;
  • Производим деление выбирая меньшее значение степени;
  • Вычитаем.

В результате получаем сокращенную дробь.

Не забываем, что сократить можно только одинаковые буквенные множители.

Сокращение дробей с одночленами.

Пример: [frac{40 x}{5 x^{2}}=frac{8}{x^{2-1}}=frac{8}{x}]

Решение:

  • 8 — тот самый множитель, который является общим
  • Х и x2 делим на x и получаем ответ.

Дроби с многочленами: сокращение.

Для сокращения таких видов, существует два правила:

  • Сократить многочлен в взятый в скобки, можно только с точно таким же многочленом в скобках;
  • Сократится должен весь многочлен, взятый в скобки, нельзя сократить только часть.

Пример: [frac{x-c}{x(x-c)}=frac{1}{x}]

Вынесение общего множителя при сокращении.

Бывают случаи, когда при сокращении алгебраической дроби с многочленами, их нет одинаковых, в таком случае нужно убрать общий множитель за скобки.

Для такого вынесения тоже существуют правила их 4:

  1. необходимо найти число, на которое можно разделить числа каждого одночлена;
  2. необходимо также найти буквенный множитель, который повторяется, в каждом одночлене, их может быть несколько;
  3. выносим буквенный множитель, который был найден, за скобки;
  4. производим работу с оставшимися многочленами в скобках.

Для того чтобы умножить многочлен на одночлен, необходимо по очереди умножить каждый член многочлена на одночлен.

Приведём пример:

[frac{6 x+42 a}{7 a+x}=frac{6(x+7 a)}{7 a+x}=frac{6}{7}]

Калькулятор сокращения дробей

Подведём итоги. Для того чтобы не возникло трудностей с сокращением, стоит запомнить:

  • Сокращая дробь вам необходимо найти общий множитель для числителя и знаменателя, если речь идет об алгебраических дробях, но и НОД обыкновенных;
  • Разделить числитель и знаменатель на общий множительделитель;
  • Если дробь алгебраическая, при делении многочлена на множитель необходимо вынести общий множитель за скобки;
  • Стоит хорошо выучить все формулы и определения, связанные с дробями.
  • Всегда проверять результат сокращения.



Профи

(714),
закрыт



11 лет назад

Дополнен 11 лет назад

Покажите на примере!!! !

Дополнен 11 лет назад

Напишите решение пожалуйста!

софья фотина

Мастер

(1906)


11 лет назад

НОК бывает только у натуральных чисел. В данном случае это знаменатели дробей. Такой НОК называется НОЗом (наименьший общий знаменатель). Обычно для нахождения НОКа раскладывают числа на простые множители и делают ещё несколько шагов. Но можно просто перемножить числа и поделить это произведение на НОД (наибольший общий делитель), если он существует. Если НОДа у 2 чисел нет (такие чила называются взаимно простыми), то НОК равен их произведению. Примеры. 5 и 7 -взимно простые: нет числа, НА КОТОРОЕ нацело делятся и 5 и 7(1 не в счёт). Значит, НОК (5,7)=5*7=35.Если же у тебя числа 8 и 12,то их НОД можно найти разложив их на простые множители (простыми называются числа, которые делятся нацело только сами на себя и на1).8=2*2*2,12=2*2*3.В этих 2 призведениях найди все общие множители-это2 и2-значит, НОД=2*2=4.А теперь перемножь заданные числа и подели их на4: (12*8)4=24-это и естьНОК. Учисел 8 и 9 нет общихделителей (8=2*2*2,9=3*3),они взаимно простые и их НОК=8*9.

Как находить наименьший общий делитель

Сложение и вычитание натуральных дробей возможно только в том случае, когда они имеют одинаковый знаменатель. Чтобы не усложнять расчеты при приведении их единому знаменателю, найдите наименьший общий делитель знаменателей и производите расчет.

Как находить наименьший общий делитель

Вам понадобится

  • – умение раскладывать число на простые множители;
  • – умение производить действия с дробями.

Инструкция

Запишите математическое действие по сложению дробей. Затем, найдите их наименьшее общее кратное. Для этого произведите следующую последовательность действий: 1. Представьте каждый из знаменателей в виде произведения простых чисел (простое число, это такое число, которое без остатка делится только на 1 и само себя, например 2, 3, 5, 7 и т.д.).2. Сгруппируйте все простые делители, которые выписаны, указав их степени. 3. Выберите наибольшие степени каждого из этих простых множителей, которые встречаются в этих числах. 4. Перемножьте выписанные степени.

Например, общим знаменателем для дробей со знаменателями 15, 24 и 36 будет число, которое рассчитайте таким образом: 15=3•5; 24=2^3•3;36=2^3•3^2.Впишите наибольшие степени всех простых делителей этих чисел: 2^3•3^2•5=360.

Поделите общий знаменатель на каждый и знаменателей складываемых дробей. На получившееся число умножьте их числители. Под общей чертой дроби напишите наименьше общее делимое, которое является одновременно наименьшим общим знаменателем. В числителе сложите числа, которые получились в результате умножения каждого числителя на частное наименьшего общего делимого на знаменатель дроби. Сумма всех числителей и поделенная на наименьший общий знаменатель и будет искомым числом.

Например, чтобы сложить дроби 4/15, 7/24 и 11/36 поступите так. Найдите наименьший общий знаменатель, который равен 360. Затем поделите 360/15=24, 360/24=15, 360/36=10. Число 4, которое является числителем первой дроби, умножьте на 24 (4•24=96), число 7 на 15 (7•15=105), число 11 на 10 (11•10=110). Затем сложите эти числа (96+105+110=301). Получим результат 4/15+7/24+11/36=301/360.

Источники:

  • как найти наименьшее число

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий