Подскажите как найти дельту)
Ученик
(162),
закрыт
12 лет назад
Дополнен 12 лет назад
ммм. . спасибо большое) ) Помогла очень)
PaulW
Гуру
(3172)
12 лет назад
Дельта = (данное значение – среднее значение)
Удобнее делать в виде таблицы, но для начала посчитаем среднее = (0,2+1+1,5)/3 = 0,9
0,2 – 0,9 = -0,7
1 – 0,9 = 0,1
1,5 – 0,9 = 0,6
Саул
Профи
(640)
6 лет назад
Дельта = (данное значение – среднее значение)
Удобнее делать в виде таблицы, но для начала посчитаем среднее = (0,2+1+1,5)/3 = 0,9
0,2 – 0,9 = -0,7
1 – 0,9 = 0,1
1,5 – 0,9 = 0,6
Как рассчитать дельту
Четвертой буквой греческого алфавита, «дельтой», в науке принято называть изменение какой-либо величины, погрешность, приращение. Записывается этот знак различными способами: чаще всего в виде небольшого треугольника Δ перед буквенным обозначением величины. Но иногда можно встретить и такое написание δ, либо латинской строчной буквой d, реже латинской прописной – D.
Инструкция
Для нахождения изменения какой-либо величины вычислите или измерьте ее начальное значение (x1).
Вычислите или измерьте конечное значение этой же величины (x2).
Найдите изменение данной величины по формуле: Δx=x2-x1. Например: начальное значение напряжения электрической сети U1=220В, конечное значение – U2=120В. Изменение напряжения (или дельта напряжения) будет равно ΔU=U2–U1=220В-120В=100В
Для нахождения абсолютной погрешности измерения определите точное или, как его иногда называют, истинное значение какой-либо величины (x0).
Возьмите приближенное (при измерении – измеренное) значение этой же величины (x).
Найдите абсолютную погрешность измерения по формуле: Δx=|x-x0|. Например: точное число жителей города – 8253 жителя (х0=8253), при округлении этого числа до 8300 (приближенное значение х=8300). Абсолютная погрешность (или дельта икс) будет равна Δx=|8300-8253|=47, а при округлении до 8200 (х=8200), абсолютная погрешность – Δx=|8200-8253|=53. Таким образом, округление до числа 8300 будет более точным.
Для сравнения значений функции F(х) в строго фиксированной точке х0 со значениями этой же функции в любой другой точке х, лежащей в окрестностях х0, используются понятия «приращение функции» (ΔF) и «приращение аргумента функции» (Δx). Иногда Δx называют «приращением независимой переменной». Найдите приращение аргумента по формуле Δx=x-x0.
Определите значения функции в точках х0 и х и обозначьте их соответственно F(х0) и F(х).
Вычислите приращение функции: ΔF= F(х)- F(х0). Например: необходимо найти приращение аргумента и приращение функции F(х)=х˄2+1 при изменении аргумента от 2 до 3. В этом случае х0 равно 2, а х=3.
Приращение аргумента (или дельта икс) будет Δx=3-2=1.
F(х0)= х0˄2+1= 2˄2+1=5.
F(х)= х˄2+1= 3˄2+1=10.
Приращение функции (или дельта эф) ΔF= F(х)- F(х0)=10-5=5
Обратите внимание
Вычитать нужно не из большего числа меньшее, а из конечного значения (не важно: больше оно или меньше) начальное!
Полезный совет
При нахождении Δ все значения используйте только в одинаковых единицах измерения.
Источники:
- Справочник по математике для средних учебных заведений, А.Г. Цыпкин, 1983
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
Используя этот онлайн калькулятор для вычисления определителя (детерминанта) матриц, вы сможете очень просто и быстро найти определитель (детерминант) матрицы.
Воспользовавшись онлайн калькулятором для вычисления определителя (детерминанта) матриц, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на транспонирование матриц, а также закрепить пройденный материал.
Найти определитель (детерминант) матрицы
Введите значения Матрицы:
Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
- Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.
Теория. Определитель (детерминант) матрицы.
Вычисление определителя матрицы 2×2
Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:
∆ = | = a 11· a 22 – a 12· a 21 |
Правило треугольника для вычисления определителя матрицы 3×3
Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
∆ = |
|
= |
Вычисление определителя матрицы произвольного размера
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Определитель матрицы: алгоритм и примеры вычисления определителя матрицы
Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .
|А|, ∆ , det A – символы, которыми обозначают определитель матрицы.
Способ вычисления определителя выбирают в зависимости от порядка матрицы.
Определитель матрицы 2-го порядка вычисляют по формуле:
d e t A = 1 – 2 3 1 = 1 × 1 – 3 × ( – 2 ) = 1 + 6 = 7
Определитель матрицы 3-го порядка: правило треугольника
Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:
- правило треугольника;
- правило Саррюса.
Как найти определитель матрицы 3-го порядка по методу треугольника?
а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 – a 31 × a 22 × a 13 – a 21 × a 12 × a 33 – a 11 × a 23 × a 32
А = 1 3 4 0 2 1 1 5 – 1
d e t A = 1 3 4 0 2 1 1 5 – 1 = 1 × 2 × ( – 2 ) + 1 × 3 × 1 + 4 × 0 × 5 – 1 × 2 × 4 – 0 × 3 × ( – 1 ) – 5 × 1 × 1 = ( – 2 ) + 3 + 0 – 8 – 0 – 5 = – 12
Правило Саррюса
Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:
- дописать слева от определителя два первых столбца;
- перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
- перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».
а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 – a 31 × a 22 × a 13 – a 21 × a 12 × a 33 – a 11 × a 23 × a 32
А = 1 3 4 0 2 1 – 2 5 – 1 1 3 0 2 – 2 5 = 1 × 2 × ( – 1 ) + 3 × 1 × ( – 2 ) + 4 × 0 × 5 – 4 × 2 × ( – 2 ) – 1 × 1 × 5 – 3 × 0 × ( – 1 ) = – 2 – 6 + 0 + 16 – 5 – 0 = 3
Методы разложения по элементам строки и столбца
Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:
- разложением по элементам строки;
- разложением по элементам столбца.
Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.
Разложение матрицы по элементам строки:
d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n
Разложение матрицы по элементам столбца:
d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i
Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.
А = 0 1 – 1 3 2 1 0 0 – 2 4 5 1 3 2 1 0
- раскладываем по 2-ой строке:
А = 0 1 – 1 3 2 1 0 0 – 2 4 5 1 3 2 1 0 = 2 × ( – 1 ) 3 × 1 – 1 3 – 2 5 1 3 1 0 = – 2 × 1 – 1 3 4 5 1 2 1 0 + 1 × 0 – 1 3 – 2 5 1 3 1 0
- раскладываем по 4-му столбцу:
А = 0 1 – 1 3 2 1 0 0 – 2 4 5 1 3 2 1 0 = 3 × ( – 1 ) 5 × 2 1 0 – 2 4 5 3 2 1 + 1 × ( – 1 ) 7 × 0 1 – 1 2 1 0 3 2 1 = – 3 × 2 1 0 – 2 4 5 3 2 1 – 1 × 0 1 – 1 2 1 0 3 2 1
Свойства определителя
- если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
- если поменять местами строки и столбцы, то знак поменяется на противоположный;
- определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.
Пример 6
А = 1 3 4 0 2 1 0 0 5
d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10
Определитель матрицы, который содержит нулевой столбец, равняется нулю.
Как рассчитать дельту между двумя числами
Как рассчитать дельту между двумя числами – Рецепты
Содержание
Математики любят греческие буквы, и они используют дельту заглавной буквы, которая выглядит как треугольник (∆), чтобы обозначить изменение. Когда дело доходит до пары чисел, дельта означает разницу между ними. Вы получаете эту разницу, используя простую арифметику и вычитая меньшее число из большего. В некоторых случаях числа расположены в хронологическом порядке или в другой упорядоченной последовательности, и вам, возможно, придется вычесть большее из меньшего, чтобы сохранить порядок. Это может привести к отрицательному числу.
Абсолютная дельта
Если у вас есть случайная пара чисел и вы хотите узнать дельту – или разницу – между ними, просто вычтите меньшее из большего. Например, дельта между 3 и 6 составляет (6 – 3) = 3.
Если одно из чисел отрицательное, сложите два числа. Операция выглядит так: (6 – <-3>) = (6 + 3) = 9. Легко понять, почему дельта больше в этом случае, если вы визуализируете два числа на оси x графика. Число 6 находится на 6 единиц справа от оси, а отрицательное 3 – на 3 единицы слева.Другими словами, она дальше от 6, чем положительная 3, которая находится справа от оси.
Чтобы найти дельту между парой дробей, вам нужно запомнить некоторые из школьных арифметических действий. Например, чтобы найти дельту между 1/3 и 1/2, вы должны сначала найти общий знаменатель. Для этого умножьте знаменатели вместе, а затем умножьте числитель каждой дроби на знаменатель другой дроби. В данном случае это выглядит так: 1/3 x 2/2 = 2/6 и 1/2 x 3/3 = 3/6. Вычтите 2/6 из 3/6, чтобы получить дельту, которая равна 1/6.
Относительная дельта
Относительная дельта сравнивает разницу между двумя числами, A и B, в процентах от одного из чисел. Основная формула – A – B / A x100. Например, если вы зарабатываете 10 000 долларов в год и жертвуете 500 долларов на благотворительность, относительная разница в вашей зарплате составляет 10 000–500 / 10 000 x 100 = 95%. Это означает, что вы пожертвовали 5 процентов своей зарплаты, и у вас все еще осталось 95 процентов. Если вы зарабатываете 100000 долларов в год и делаете такое же пожертвование, вы оставляете 99,5 процента своей зарплаты и жертвуете только 0,5 процента на благотворительность, что не столь впечатляюще с точки зрения налоговой отчетности.
От дельты к дифференциалу
Вы можете представить любую точку на двумерном графике парой чисел, которые обозначают расстояние от точки до пересечения осей в направлениях x (по горизонтали) и y (по вертикали). Предположим, у вас есть две точки на графике, называемые точкой 1 и точкой 2, и эта точка 2 находится дальше от пересечения, чем точка 1. Дельта между значениями x этих точек – ∆ x – задается выражением (x2 – Икс1), а ∆ y для этой пары точек есть (y2 – у1). Когда вы делите ∆y на ∆x, вы получаете наклон графика между точками, который показывает, насколько быстро x и y изменяются относительно друг друга.
Наклон дает полезную информацию. Например, если вы наносите время на ось x и измеряете положение объекта во время его перемещения в пространстве по оси y, наклон графика показывает вам среднюю скорость объекта между этими двумя измерениями.
Однако скорость может быть непостоянной, и вы можете узнать скорость в определенный момент времени. Дифференциальное исчисление предоставляет концептуальный трюк, который позволяет вам это делать. Уловка состоит в том, чтобы представить две точки на оси x и позволить им приблизиться друг к другу бесконечно близко. Отношение ∆y к ∆x – ∆y / ∆x – когда ∆x приближается к 0, называется производной. Обычно это выражается как dy / dx или как df / dx, где f – алгебраическая функция, описывающая график. На графике, на котором время (t) отложено по горизонтальной оси, «dx» становится «dt», а производная dy / dt (или df / dt) является мерой мгновенной скорости.
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/matritsy/opredelitel-matritsy/
http://ru.corpeus.org/calculate-delta-between-two-numbers-6c80d4b0d64-62a6c8
[/spoiler]
Как рассчитать дельту
Четвертой буквой греческого алфавита, «дельтой», в науке принято называть изменение какой-либо величины, погрешность, приращение. Записывается этот знак различными способами: чаще всего в виде небольшого треугольника Δ перед буквенным обозначением величины. Но иногда можно встретить и такое написание δ, либо латинской строчной буквой d, реже латинской прописной- D.
Для нахождения изменения какой-либо величины вычислите или измерьте ее начальное значение (x1).
Вычислите или измерьте конечное значение этой же величины (x2).
Найдите изменение данной величины по формуле: Δx=x2-x1. Например: начальное значение напряжения электрической сети U1=220В, конечное значение – U2=120В. Изменение напряжения (или дельта напряжения) будет равно ΔU=U2–U1=220В-120В=100В
Для нахождения абсолютной погрешности измерения определите точное или, как его иногда называют, истинное значение какой-либо величины (x0).
Возьмите приближенное (при измерении – измеренное) значение этой же величины (x).
Найдите абсолютную погрешность измерения по формуле: Δx=|x-x0|. Например: точное число жителей города – 8253 жителя (х0=8253), при округлении этого числа до 8300 (приближенное значение х=8300). Абсолютная погрешность (или дельта икс) будет равна Δx=|8300-8253|=47, а при округлении до 8200 (х=8200), абсолютная погрешность – Δx=|8200-8253|=53. Таким образом, округление до числа 8300 будет более точным.
Для сравнения значений функции F(х) в строго фиксированной точке х0 со значениями этой же функции в любой другой точке х, лежащей в окрестностях х0, используются понятия «приращение функции» (ΔF) и «приращение аргумента функции» (Δx). Иногда Δx называют «приращением независимой переменной». Найдите приращение аргумента по формуле Δx=x-x0.
Определите значения функции в точках х0 и х и обозначьте их соответственно F(х0) и F(х).
Вычислите приращение функции:ΔF= F(х)- F(х0). Например: необходимо найти приращение аргумента и приращение функции F(х)=х˄2+1 при изменении аргумента от 2 до 3. В этом случае х0 равно 2, а х=3.
Приращение аргумента (или дельта икс) будет Δx=3-2=1.
F(х0)= х0˄2+1= 2˄2+1=5.
F(х)= х˄2+1= 3˄2+1=10.
Приращение функции (или дельта эф) ΔF= F(х)- F(х0)=10-5=5
Математики любят греческие буквы и используют дельту заглавной буквы, которая выглядит как треугольник (∆), чтобы символизировать изменение. Когда дело доходит до пары чисел, дельта обозначает разницу между ними. Вы получаете эту разницу, используя основную арифметику и вычитая меньшее число из большего. В некоторых случаях числа располагаются в хронологическом порядке или в некоторой другой упорядоченной последовательности, и вам, возможно, придется вычесть большее из меньшего, чтобы сохранить порядок. Это может привести к отрицательному числу.
Абсолютная Дельта
Если у вас есть случайная пара чисел, и вы хотите узнать дельту – или разницу – между ними, просто вычтите меньшее из большего. Например, дельта между 3 и 6 составляет (6 – 3) = 3.
Если одно из чисел отрицательно, сложите два числа вместе. Операция выглядит следующим образом: (6 – {-3}) = (6 + 3) = 9. Легко понять, почему в этом случае дельта больше, если вы визуализируете два числа на оси x графика. Число 6 равно 6 единицам справа от оси, но отрицательное значение 3 равно 3 единицам слева. Другими словами, он дальше от 6, чем от положительного 3, который находится справа от оси.
Вам нужно запомнить некоторую арифметику вашей начальной школы, чтобы найти дельту между парой дробей. Например, чтобы найти дельту между 1/3 и 1/2, вы должны сначала найти общий знаменатель. Для этого умножьте знаменатели вместе, а затем умножьте числитель в каждой дроби на знаменатель другой дроби. В этом случае это выглядит так: 1/3 x 2/2 = 2/6 и 1/2 x 3/3 = 3/6. Вычтите 2/6 из 3/6, чтобы получить дельту, которая составляет 1/6.
Относительная дельта
Относительная дельта сравнивает разницу между двумя числами, A и B, в процентах от одного из чисел. Базовая формула A – B / A x100. Например, если вы зарабатываете 10 000 долларов в год и жертвуете 500 долларов на благотворительность, относительная дельта вашей зарплаты составляет 10 000 – 500/10 000 x 100 = 95%. Это означает, что вы пожертвовали 5 процентов своей зарплаты, а у вас осталось 95 процентов. Если вы зарабатываете 100 000 долларов в год и делаете то же самое пожертвование, вы сохранили 99, 5% своей зарплаты и пожертвовали только 0, 5% на благотворительность, что не очень впечатляет в момент налогообложения.
От дельты к дифференциалу
Вы можете представить любую точку на двумерном графике парой чисел, которые обозначают расстояние от точки до пересечения осей в направлениях x (горизонтальное) и y (вертикальное). Предположим, у вас есть две точки на графике, называемые точкой 1 и точкой 2, и эта точка 2 находится дальше от пересечения, чем точка 1. Дельта между значениями x этих точек – ∆ x – определяется как (x 2 – x 1), и y для этой пары точек равно (y 2 – y 1). Когда вы делите ∆y на ∆x, вы получаете наклон графика между точками, который говорит вам, как быстро x и y изменяются относительно друг друга.
Склон предоставляет полезную информацию. Например, если вы наносите время вдоль оси x и измеряете положение объекта при его перемещении в пространстве по оси Y, наклон графика показывает среднюю скорость объекта между этими двумя измерениями.
Скорость может быть не постоянной, и вы можете узнать скорость в определенный момент времени. Дифференциальное исчисление обеспечивает концептуальный трюк, который позволяет вам сделать это. Хитрость заключается в том, чтобы представить две точки на оси х и позволить им бесконечно сближаться. Отношение ∆y к ∆x – ∆y / ∆x – при приближении ∆x к 0 называется производной. Обычно это выражается как dy / dx или как df / dx, где f – алгебраическая функция, которая описывает граф. На графике, на котором время (t) отображается на горизонтальной оси, «dx» становится «dt», а производная dy / dt (или df / dt) является мерой мгновенной скорости.