Многоугольник. Нахождение диагоналей вписанного четырехугольника. Теорема Птоломея.
Обозначим стороны вписанного четырехугольника ABCD через a, b, с, d и его диагонали через x и y .Проведем AK ^ BС и СL ^ AD.
Так как сумма противоположных углов вписанного четырехугольника равна 2d, то, если угол B острый, угол D должен быть тупым.
Поэтому из треугольников ABС и ADС можем написать:
x 2 = a 2 + b 2 – 2b . BK [1];
x 2 = с 2 + d 2 + 2d . DL [2].
Прямоугольные треугольники ABK и СDL подобны, т.к. они содержат по равному острому углу (углы B и СDL равны, потому что каждый из них служит дополнением до 2d к углу ADС).
Из их подобия выводим:
откуда BK . с = DL . a [3].
Таким образом, мы получим три уравнения с тремя неизвестными x, BK и DL.
Чтобы исключить BK и DL , уравняем в первых двух уравнениях последние члены, для чего умножим уравнение [1] на сd , а уравнение [2] на ab .
Сложив затем результаты и, приняв во внимание уравнение [3], найдем:
(ab + сd)x 2 = a 2 сd + b 2 сd + с 2 ab + d 2 ab =aс(ad + bс) + bd(bс+ad)=(aс + bd)(ad+bс),
.
Заметим, что в числителе подкоренной величины первый множитель – сумма произведений противоположных сторон, а второй – сумма произведений сторон, сходящихся в концах определяемой диагонали, знаменатель же представляет сумму произведений сторон, сходящихся в концах другой диагонали.
После этого мы можем, по аналогии, написать следующую формулу для диагонали y:
.
Следствие 1.
Произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон.
Действительно, перемножив выражения, выведенные для x и для y, получим:
.
Это предложение известно под именем теоремы Птоломея.
Следствие 2.
Отношение диагоналей вписанного четырехугольника равно отношению суммы произведений сторон, сходящихся в концах первой диагонали, к сумме произведений сторон, сходящихся в концах второй диагонали.
Действительно, разделив те же два равенства, найдем:
.
Эти два следствия удобны для запоминания. Из них можно обратно вывести формулы для x и y (перемножением или делением равенств, определяющих xy и x/y).
Четырехугольник, вписанный в окружность – основные свойства, признаки и формулы
Общие сведения
Фигура является вписанной в окружность, когда все ее вершины лежат на ней. Произвести вписание в окружность четырехугольника можно только в том случае, когда он выпуклый. Все его точки находятся по одну сторону от произвольной прямой, которая проходит через соседние вершины фигуры. Нужно отметить, что в этом случае окружность является описанной вокруг фигуры. Если в параллелограмм вписана окружность, то ее центр совпадает с центром окружности, которая описана вокруг него.
Четырехугольники бывают самопересекающимися. Они также могут быть вписанными, однако это встречается крайне редко. Не каждую фигуру можно вписать в круг, поскольку существуют определенные законы. Например, вокруг ромба нельзя описать круг — исключение составляет случай, когда ромб является квадратом.
Основные правила
Выпуклый четырехугольник можно вписать в окружность. Однако для этого существуют некоторые правила (критерии) или признаки. Некоторые задачи сформулированы таким образом, что нужно знать основные критерии, а также уметь доказывать возможность вписывать или описывать окружность. Около четырехугольника можно описать окружность, если выполняются следующие условия:
- Сумма углов, которые являются противоположными, соответствует 180 градусам.
- Соблюдается равенство смежного и противоположного углов.
- Угол между стороной и диагональю равен углу между противоположной стороной и диагональю.
- Произведение двух диагоналей соответствует размерности суммы произведений противоположных сторон.
- Четыре точки лежат на окружности, когда две прямые АС и BD, образующие диагонали, пересекаются в некоторой точке P, а также выполняется следующее равенство: AP * PC = BP * PD.
- Произведения тангенсов половины двух противоположных углов равны 1. Кроме того, значения произведений эквивалентны друг другу (tg (A/2) * tg (C/2) = tg (B/2) * tg (D/2) = 1).
Четвертое утверждение является теоремой Птолемея. Все эти правила являются следствиями, полученными при доказательстве различных гипотез. Правила можно применять в зависимости от условия поставленной задачи. Любой параллелограмм можно вписать в окружность, когда он является прямоугольником или квадратом.
Свойства и утверждения
При решении можно воспользоваться некоторыми свойствами, которые были доказаны. Это нужно для того, чтобы не тратить время на выведение какой-либо формулы. Применяется методика для оптимизации вычислений. К ним можно отнести следующие:
- Если вокруг четырехугольника описана окружность, то центры окружностей, которые вписанных в треугольники, образованные диагоналями фигуры, являются вершинами прямоугольника.
- Не бывает четырехугольников, вписанных в окружность, с рациональной площадью и сторонами, которые образуют арифметический или геометрический тип прогрессии.
- При продолжении сторон до точек пересечения Y и Z, внутренние биссектрисы углов Y и Z являются перпендикулярными.
Данные утверждения применяются не всегда. В некоторых случаях можно ограничиться формулами и основными соотношениями — они позволяют легко и быстро искать нужные величины.
Формулы и соотношения
Очень часто необходимо перерыть горы информации для поиска нужной формулы. Это сказывается на оптимизации решения. Кроме того, некоторые соотношения могут содержать ошибки, поскольку материал излагается неквалифицированными специалистами.
Педагоги утверждают, что обучение какой-либо дисциплине с физико-математическим уклоном должно быть основано на алгоритмах. Кроме того, рекомендуется прочитать условие задачи несколько раз до полного его понимания. В основном необходимо находить площадь, диагонали и углы четырехугольника.
Периметр и полупериметр
Периметром выпуклого четырехугольника со сторонами a, b, c и d называется сумма длин всех его сторон. Величина обозначается литерой «Р», и вычисляется по следующей формуле: P = a + b + c +d. Кроме того, в некоторых формулах встречается величина, которая называется полупериметром. Обозначается она литерой «р». Для ее нахождения применяется такое соотношение: p = P / 2 = (a + b + c +d) / 2. Единицей измерения полупериметра являются метрические величины: мм, см, дм, м и т. д.
Для квадрата формула периметра имеет вид: P = 4 * a. Равенство легко доказывается для фигуры со стороной а. Из определения периметра получается соотношение: P = a + a + a + a. Если привести подобные слагаемые, то результирующая формула имеет вид: P = 4 * a. У прямоугольника противоположные стороны равны. Чтобы найти его периметр, нужно воспользоваться равенством: P = a + b + a + b = 2 * (a + b). Необходимо отметить, что квадрат является правильным четырехугольником, поскольку его стороны равны между собой.
Понятие площади
Площадь двумерных фигур — понятие геометрии, которое показывает ее численную характеристику или размер. Очень часто она обозначается литерой S. Измеряется величина в квадратных единицах (см 2 , м 2 и т. д. ). Фигура, имеющая характеристику S, называется квадратируемой.
Для нахождения S применяется интегральный метод, но существуют частные случаи, при которых интегрировать необязательно. Очень часто возникает необходимость перевода одной единицы в другую. Для этого существует простой алгоритм, позволяющий корректно выполнить данную операцию. Например, нужно перевести м 2 в см 2 . Необязательно заучивать единицы площади и их эквивалентность другим. Достаточно выполнить следующие действия:
- Определить базовую единицу: м и см.
- Выполнить перевод одной метрической величины в другую: 1 м = 100 см.
- Возвести обе части выражения во втором пункте в квадрат: 1 м 2 = 100 2 см 2 = 10000 см 2 .
Однако бывают и другие единицы, которые применяются для измерения размерности земельных участков: 1 ар (сокращенно а) = 1 сотке = 100 м 2 и 1 гектар (га) = 10000 м 2 .
Когда известны все стороны четырехугольника (a, b, c и d), который вписан в окружность, можно найти его S. Для этого нужно знать еще одну величину. Она называется полупериметром. Расчет выполняется по формуле: S = [(p — a) * (p — b) * (p — c) * (p — d)]^(½). Соотношение называется формулой Брахмагупты.
Необходимо отметить, что вписанный четырехугольник обладает максимальным значением S среди остальных эквивалентных фигур. Если известны четыре стороны, которые являются последовательными (a, b, c и d), а также угол В между a и b, то можно воспользоваться более упрощенной формулой: S = [(a * b + c * d) * sin (B)] / 2. В случае, когда известны все стороны и любой угол (Y) между диагоналями, соотношение можно записать таким образом: S = [(a * с + и * d) * sin (Y)] / 2.
Площадь можно выразить и другим соотношением, когда известны все стороны и угол А, который не является прямым: S = [(a 2 — b 2 — c 2 + d 2 ) * tg (A)] / 4. При известном радиусе описанной окружности и углах (A, B и Y) можно воспользоваться такой формулой: S = 2 * R^(2) * sin (A) * sin (B) * sin (Y). Следствием из последнего соотношения является S 2 . Если четырехугольник является квадратом, то неравенство преобразуется в равенство, т. е. S = 2 * R 2 .
Диагонали и углы
Для вписанного четырехугольника ABCD существуют определенные соотношения, по которым можно найти его диагонали. Для фигуры со сторонами a = AB, b = BC, c = CD и d = DA диагонали (s = АС и t = DA) находятся таким образом: s = [((a * c + b * d) * (a * d + b * c)) / (a * b + c * d)]^(½) и t = [((a * c + b * d) * (a * b + d * c)) / (a * d + c * b)]^(½). Если умножить диагональ s на t и привести подобные слагаемые, то в результате получится формула Птолемея: s * t = a * c + b * d.
При отношении двух диагоналей получается вторая теорема Птолемея: s / t = (a * d + b * c) / (a * b + d * c). Сумма диагоналей — есть неравенство такого вида: s + t >= 2 * [a * c + b * d]^(½). Неравенство преобразуется в равенство, когда диагонали равны. Однако в этом случае можно воспользоваться следующим выражением: [s + t]^(½) >= [a * c]^(2) + [b * d]^(2).
Необходимо отметить, что в произвольном выпуклом четырехугольнике диагонали делят его на 4 треугольника, которые являются между собой подобными по парам. Кроме того, при пересечении двух диагоналей AC и BD в некоторой точке М, справедливо следующее соотношение: AM / CM = (AB * AD) / (CB * CD).
Можно находить и некоторые углы фигуры. Для этого существуют определенные соотношения. Во вписанном четырехугольнике со сторонами, которые соответствуют значениям a, b, c и d, углом A между сторонами a и d, а также полупериметром p, функции тригонометрического типа для А вычисляются таким образом:
- cos (A) = (a 2 + d 2 — b 2 — c 2 ) / (2 * (a * d + b + c)).
- sin (A) = [(p — a) * (p — b) * (p — c) * (p — d)]^(½) / (a * d + b + c).
- tg (A/2) = [((p — a) * (p — d)) / ((p — b) * (p — c))]^(½).
В некоторых случаях нужно вычислить значение тангенса для угла Y, который находится между диагоналями, по формуле: tg (Y/2) = [((p — b) * (p — d)) / ((p — a) * (p — c))]^(½).
В геометрии существует вписанный четырехугольник, стороны которого являются целыми числами. Кроме того, целочисленными являются также его диагонали и площадь. Он называется четырехугольником Брахмагупты. Однако для преобразования любого четырехугольника в данную фигуру необходимо выполнить некоторые математические операции. Пусть он имеет следующие целочисленные параметры:
- Стороны: a, b, c и d.
- Диагонали: s и t.
- Площадь: S.
- Радиус описанной окружности: R.
В некоторых случаях возникает необходимость избавиться от рациональных значений в знаменателе. При значениях дробных параметров k, l и m нужно использовать такие соотношения:
- a = [k * (l + m) + (1 — (l * m))] * [l + m — k * (1 — (l * m))].
- b = (1 — l 2 ) * (m — k) * (1 + k * m).
- c = k * (1 + l 2 ) * (1 + m 2 ).
- d = (1 + m 2 ) * (l — k) * (1 + k * l).
- s = l * (1 + k 2 ) * (1 + m 2 ).
- t = m * (1 + k 2 ) * (1 + l 2 ).
- S = l * m * [2 * k * (1 — l * m) — (l + m) * (1 — k 2 )] * [2 * k (l + m) + (1 — l * m) * (1 — k 2 )].
- 4 * R = (1 + l 2 ) * (1 + m 2 ) * (1 + k 2 ).
Существуют также соотношения для описанной вокруг четырехугольника окружности. Математики утверждают, что при комбинации двух и более геометрических фигур время поиска некоторых параметров увеличивается.
Параметры для окружности
Радиус окружности R для четырехугольника c полупериметром р и со сторонами a, b, c, d находится по формуле Парамешвары: R = (¼) * [((a * b + c * d) * (a * c + b * d) * (a * d + b * c)) / ((p — a) * (p — b) * (p — c) * (p — d))]^(½). Соотношение было выведено в XV веке математиком из Индии Ватассери Парамешварой.
При комбинации данной формулы с соотношением Брахмагупты можно получить следующее соотношение: 4 * S * R = [(a * b + c * d) * (a * c + b * d) * (a * d + b *c)]^(½). Следует отметить, что величина S является площадью вписанного четырехугольника. Для ортогонального четырехугольника с перпендикулярными диагоналями, которые делятся на отрезки s1, s2, t1 и t2, существует некоторое соотношение, позволяющее найти диаметр окружности (D): D 2 = (s1)^2 + (s2)^2 + (t1)^2 + (t2)^2 = a 2 + c 2 = b 2 + d 2 .
Радиус в этом случае находится таким образом: R = D / 2 = [(s1)^2 + (s2)^2 + (t1)^2 + (t2)^2] / 2 = [a 2 + c 2 ] / 2 = [b 2 + d 2 ] / 2. Если выполнить сложение квадратов сторон, то получится такое равенство: 8 * R = a 2 + b 2 + c 2 + d 2 . По формуле Эйлера R можно также выразить через диагонали (s и t) и расстояние v между их серединами: R = [(s 2 + t 2 + 4 * v 2 ) / 8]^(½).
Таким образом, специалисты рекомендуют на начальных этапах обучения использовать уже готовые формулы для вычисления основных параметров выпуклого четырехугольника, вписанного в окружность.
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Фигура | Рисунок | Свойство |
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник |
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Окружность, описанная около параллелограмма | |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | |
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | |
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | |
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник | |
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
[spoiler title=”источники:”]
http://nauka.club/matematika/chetyrekhugolnik-vpisan-v-okruzhnost.html
http://www.resolventa.ru/spr/planimetry/ofcircle.htm
[/spoiler]
Примеры вписанных четырёхугольников.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Все треугольники имеют описанные окружности, но не все четырёхугольники.
Примером четырёхугольника, который нельзя вписать в окружность, может служить ромб (если только он не является квадратом). Секция «Свойства» ниже даёт необходимые и достаточные условия, чтобы вокруг четырёхугольника можно было описать окружность.
Специальные случаи[править | править код]
Любые квадраты, прямоугольники, равнобедренные трапеции или антипараллелограммы можно вписать в окружность. Дельтоид можно вписать в том и только в том случае, когда у него два угла прямые. Бицентричный четырёхугольник[en] — это вписанный четырёхугольник, который также является и описанным, а внешне бицентричный четырёхугольник — это вписанный четырёхугольник, который является также
внешне описанным[en].
Свойства[править | править код]
- Первый критерий вписанности четырёхугольника. Выпуклый невырожденный четырёхугольник является вписанным тогда и только тогда, когда четыре серединных перпендикуляра, проведённых к каждой из сторон, пересекаются в одной точке[1].
- Второй критерий вписанности четырёхугольника. Выпуклый четырёхугольник является вписанным тогда и только тогда, когда противоположные углы в сумме дают 180°, то есть[2].
- Другой вариант первого критерия вписанности четырёхугольника. Теорема была Предложением 22 в книге 3 Евклида Начала[3]. Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.
- Третий критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда любая пара его противоположных сторон антипараллельна.
- Четвертый критерий вписанности четырёхугольника. Другой критерий для того, чтобы выпуклый четырёхугольник был вписанным, требует, чтобы угол между стороной и диагональю был равен углу между противоположной стороной и другой диагональю[4]. Например,
- Пятый критерий вписанности четырёхугольника. Неравенство Птолемея утверждает, что произведение длин двух диагоналей p и q четырёхугольника равно сумме произведений противоположных сторон, только если четырёхугольник вписан: [5]
- .
- Шестой критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда любая пара его противоположных сторон антипараллельна.Если две прямые, из которых одна содержит отрезок AC, а другая — отрезок BD, пересекаются в точке E, то четыре точки A, B, C, D лежат на окружности тогда и только тогда, когда[6]
Точка пересечения E может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD, а во втором — вписанный четырёхугольник ABDC. Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка E делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах, поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.
- Седьмой критерий вписанности четырёхугольника. Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда [7]
ABCD – циклический четырехугольник, в котором E – точка пересечения диагоналей, F – точка пересечения продолжений сторон AD и BC, G – точка пересечения продолжений сторон AB и CD.(см. рис.) – окружность девяти точек треугольника EFG. Точка T пересечения средних линий ABCD принадлежит окружности .
.
ABCD является циклическим четырехугольником. E – точка пересечения диагоналей, F – точка пересечения продолжений сторон BC и AD. – окружность, диаметр которой является отрезком EF. P и Q – точки Паскаля, сформированные с помощью окружности .
(1) является циклическим четырехугольником тогда и только тогда, когда точки и коллинеарные с центром окружности .[10] [11]
(2) является циклическим четырехугольником тогда и только тогда, когда точки и являются серединами сторон и .[10][11] .
- Замечание. Седьмой и восьмой критерии вписанности четырёхугольника очень похожи и рисунки у них очень похожи. Возможно, что это – один и тот же критерий вписанности четырёхугольника, взятый из разных первоисточников. На обоих рисунках и – точки Паскаля. Есть и другие сходные точки. Хотя формально звучат оба критерия по-разному.
- Десятый критерий вписанности четырёхугольника. Условие, при котором совмещение двух треугольников с одной равной стороной даёт четырёхугольник, вписанный в окружность[12]. Для того, чтобы два треугольника с тройками длин сторон соответственно (a, b, f) и (c, d, f) при их совмещении вдоль общей стороны с длиной, равной f, давали в итоге четырёхугольник, вписанный в окружность с последовательностью сторон (a, b, c, d), необходимо условие[13]:84
- Замечание. Последнее условие даёт выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырёх его сторон (a, b, c, d). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея.
Теорема Микеля-Штейнера для четырёхстронника
- Одиннадцатый критерий вписанности четырёхугольника. Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля, вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF (см. рис. справа).
Площадь[править | править код]
Площадь S вписанного четырёхугольника со сторонами a, b, c, d задаётся формулой Брахмагупты[14]
где p, полупериметр, равен . Утверждение является следствием соотношения Бретшнайдера, поскольку противоположные углы в сумме дают 180°. Если же d= 0, вписанный четырёхугольник становится треугольником, и равенство превращается в формулу Герона.
Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа[15].
Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников[16], и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a, b, c и d сторона a может быть противоположной любой из сторон b, c или d. Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины[17].
Площадь вписанного четырёхугольника с последовательными сторонами a, b, c, d и углом B между сторонами a и b можно выразить формулой[5]
или[18]
где θ — любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой [18]
Ещё одна формула площади [19]
где R — радиус описанной окружности. Прямым следствием будет [20]
- ,
и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.
Диагонали[править | править код]
Во вписанном четырёхугольнике с вершинами A, B, C, D (в указанной последовательности) и сторонами a = AB, b = BC, c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны [21][22][17]
и
что даёт равенство Птолемея
Согласно второй теореме Птолемея[21][22],
при тех же обозначениях, что и прежде.
Для суммы диагоналей имеем неравенство [23]
Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим.
Более того[24],
В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны.
Если M и N являются средними точками диагоналей AC и BD, то[25]
где E и F — точки пересечения противоположных сторон.
Если ABCD — вписанный четырёхугольник и AC пересекает BD в точке P, то [26]
Формулы углов[править | править код]
Для вписанного четырёхугольника со сторонами a, b, c, d, полупериметром p и углом A между сторонами a и d тригонометрические функции угла A равны[27]
Для угла θ между диагоналями выполняется[18]
Если продолжения противоположных сторон a и c пересекаются под углом , то
где p — полупериметр[28]
Формула Парамешвары[править | править код]
Для вписанного четырёхугольника со сторонами , , и (в указанной последовательности) и полупериметром радиус описанной окружности задаётся формулой[22][29]
Формула была выведена индийским математиком Ватассери Парамешварой[en] в 15 веке.
Используя формулу Брахмагупты, формулу Парамешвары можно преобразовать в
- ,
где — площадь вписанного четырёхугольника.
Антицентр и коллинеарность[править | править код]
Четыре отрезка прямых, перпендикулярных одной стороне вписанного четырёхугольника и проходящих через середину противоположной стороны, пересекаются в одной точке[30][31]. Эта точка пересечения называется антицентром. Антицентр симметричен центру описанной окружности относительно “вершинного центроида”. Таким образом, во вписанном четырёхугольнике центр описанной окружности, “вершинный центроид” и антицентр лежат на одной прямой[31].
Если диагонали вписанного четырёхугольника пересекаются в точке P, а середины диагоналей — V и W, то антицентр четырёхугольника является ортоцентром треугольника VWP, а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей [31].
Во вписанном четырёхугольнике “центроид площади” Ga, “центроид вершин” Gv и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство[32]
Другие свойства[править | править код]
- Теорема Монжа об ортоцентре вписанного четырехугольника. 4 отрезка прямых (4 антимедатрисы), проведенных из середин 4 сторон вписанного четырехугольника перпендикулярно к противолежащим сторонам, пересекаются в ортоцентре Н этого четырехугольника.[33],[34]
- Японская теорема о вписанном четырёхугольнике. Во вписанном четырёхугольнике ABCD центры вписанных окружностей треугольников ABC, BCD, CDA и DAB являются вершинами прямоугольника. Это одна из теорем, известных как японская теорема. Ортоцентры тех же четырёх треугольников являются вершинами четырёхугольника, равного ABCD. Центроиды этих четырёх треугольников являются вершинами другого вписанного четырёхугольника[4].
- Следствие теоремы о вписанном угле. Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P — точка пересечения диагоналей AC и BD. Тогда угол APB является средним арифметическим углов AOB и COD. Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника[en].
- Теорема о перпендикулярности внутренних биссектрис углов при вершинах E и F, образованных на пересечениях двух пар противоположных сторон вписанного четырёхугольника. Если противоположные стороны вписанного четырёхугольника продолжить до пересечения в точках E и F, то внутренние биссектрисы углов в E и F перпендикулярны[16].
- Теорема о числовом четырехугольнике. Не существует вписанных четырёхугольников с рациональной площадью и неравными рациональными сторонами, образующими арифметическую, либо геометрическую прогрессию[36].
- Теорема о числовом четырехугольнике. Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию, то четырёхугольник является также внешне описанным[en].
Четырёхугольники Брахмагупты[править | править код]
Четырёхугольник Брахмагупты[37] — это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью.
Все четырёхугольники Брахмагупты со сторонами a, b, c, d, диагоналями e, f, площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t, u и v):
Свойства ортодиагональных вписанных четырёхугольников[править | править код]
Площадь и радиус описанной окружности[править | править код]
Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p1 и p2, а другую делит на отрезки длиной q1 и q2. Тогда[38] (первое равенство является Предложением 11 в книге Архимеда «Леммы»)
- ,
где D — диаметр описанной окружности. Равенство выполняется ввиду того, что диагонали являются перпендикулярными хордами окружности. Отсюда следует, что радиус описанной окружности R удовлетворяет равенству
или, через стороны четырёхугольника
Отсюда также следует, что
Таким образом, согласно формуле Эйлера, радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей
Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим
Другие свойства[править | править код]
- Во вписанном ортодиагональном четырёхугольнике антицентр совпадает с точкой пересечения диагоналей[39].
- Теорема Брахмагупты утверждает, что во вписанном четырёхугольнике, являющемся также ортодиагональным, перпендикуляр от любой стороны через точку пересечения диагоналей делит противоположную сторону пополам[39].
- Если вписанный четырёхугольник является также ортодиагональным, расстояние от центра описанной окружности до любой стороны равно половине длины противоположной стороны [39].
- Во вписанном ортодиагональном четырёхугольнике расстояние между серединами диагоналей равно расстоянию между центром описанной окружности и точкой пересечения диагоналей [39].
См. также[править | править код]
- Теорема о бабочке
- Описанная окружность
- Степень точки относительно окружности
- Таблица хорд Птолемея[en]
- Пятиугольник Роббинса
- Внеописанный четырёхугольник
- Четырёхугольник
Примечания[править | править код]
- ↑ Usiskin, 2008, с. 63–65, Глава 10. Cyclic quadrilaterals.
- ↑ Usiskin, 2008, с. 63–65.
- ↑ Joyce, 1997, с. Book 3, Proposition 22.
- ↑ 1 2 Andreescu, Enescu, 2004, с. 2.3 Cyclic quads.
- ↑ 1 2 Durell, Robson, 2003, с. 25.
- ↑ Bradley, 2007, с. 179.
- ↑ Hajja, 2008, с. 103–6.
- ↑ Fraivert, David. New points that belong to the nine-point circle (англ.) // The Mathematical Gazette (англ.) (рус. : journal. — 2019. — July (vol. 103, no. 557). — P. 222—232. — doi:10.1017/mag.2019.53.
- ↑ Fraivert, David. New applications of method of complex numbers in the geometry of cyclic quadrilaterals (англ.) // International Journal of Geometry : journal. — 2018. — Vol. 7, no. 1. — P. 5—16. Архивировано 7 июня 2019 года.
- ↑ 1 2 3 Fraivert, David; Sigler, Avi & Stupel, Moshe (2020), Necessary and sufficient properties for a cyclic quadrilateral, International Journal of Mathematical Education in Science and Technology, <https://doi.org/10.1080/0020739X.2019.1683772> Архивная копия от 10 июня 2020 на Wayback Machine
- ↑ 1 2 Фрейверт, Д. М. (2019), Новая тема в евклидовой геометрии на плоскости: теория «точек Паскаля», формируемых с помощью окружности на сторонах четырехугольника, Математическое образование: современное состояние и перспективы : материалы Международной научной конференции, <http://libr.msu.by/handle/123456789/9675> Архивная копия от 10 ноября 2019 на Wayback Machine
- ↑ См. подраздел «Диагонали» статьи «Вписанный четырёхугольник»
- ↑ Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ. Co., 2007
- ↑ Durell, Robson, 2003, с. 24.
- ↑ Peter, 2003, с. 315–6.
- ↑ 1 2 Coxeter, Greitzer, 1967, с. 57, 60.
- ↑ 1 2 Johnson, 2007, с. 84.
- ↑ 1 2 3 Durell, Robson, 2003, с. 26.
- ↑ Prasolov, 2006, с. 86, Задача 4.44.
- ↑ Alsina, Nelsen, 2009, с. 64.
- ↑ 1 2 Durell, Robson, 2003, с. 25,.
- ↑ 1 2 3 Alsina, Nelsen, 2007, с. 147–9.
- ↑ Crux, 2007, с. 123, # 2975.
- ↑ Crux, 2007, с. 64, #1639.
- ↑ ABCD is a Cyclic quadrilateral. Let M, N be midpoints of diagonals AC, BD respectively… (недоступная ссылка — история). Art of Problem Solving (2010).
- ↑ A. Bogomolny, An Identity in (Cyclic) Quadrilaterals, Interactive Mathematics Miscellany and Puzzles,
[1] Архивная копия от 28 мая 2019 на Wayback Machine, Accessed 18 March 2014. - ↑ Siddons, Hughes, 1929, с. 202.
- ↑ Durell, Robson, 2003, с. 31.
- ↑ Hoehn, 2000, с. 69–70.
- ↑ Altshiller-Court, 2007, с. 131.
- ↑ 1 2 3 Honsberger, 1995, с. 35–39, 4.2 Cyclic quadrilaterals.
- ↑ Bradley, 2011.
- ↑ Замечательные точки и линии четырехугольников// https://math.mosolymp.ru/upload/files/2018/khamovniki/geom-10/2018-04-17-Zam_pr_ch-ka.pdf Архивная копия от 6 сентября 2022 на Wayback Machine
- ↑ Теорема Монжа// https://bambookes.ru/stuff/reshenie_zadach/geometrija/4-1-0-8264 Архивная копия от 6 сентября 2022 на Wayback Machine
- ↑ Вокруг задачи Архимеда. Архивная копия от 29 апреля 2016 на Wayback Machine Упр. 7, рис. 11, следствие, c. 5
- ↑ Buchholz, MacDougall, 1999, с. 263–9.
- ↑ Sastry, 2002, с. 167–173.
- ↑ Posamentier, Salkind, 1970, с. 104–5.
- ↑ 1 2 3 4 Altshiller-Court, 2007, с. 131,137-8.
Литература[править | править код]
- Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. — Mathematical Association of America, 2009. — ISBN 978-0-88385-342-9.
- Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. — 2007. — Т. 7.
- Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. — 2nd. — Courier Dover, 2007. — ISBN 978-0-486-45805-2. (org. 1952)
- =Titu Andreescu, Bogdan Enescu. Mathematical Olympiad Treasures. — Springer, 2004. — ISBN 978-0-8176-4305-8.
- Christopher Bradley. Three Centroids created by a Cyclic Quadrilateral. — 2011.
- Christopher J. Bradley. The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates. — Highperception, 2007. — ISBN 1906338000.
- R. H. Buchholz, J. A. MacDougall. Heron quadrilaterals with sides in arithmetic or geometric progression // Bulletin of the Australian Mathematical Society. — 1999. — Т. 59, вып. 2. — doi:10.1017/S0004972700032883.
- Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta’s formula. — Mathematical Association of America, 1967. — ISBN 978-0-88385-619-2. Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. — Москва: «Наука», 1978. — (Библиотека математического кружка).
- Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum. — 2007.
- D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. — 2016. — Т. 42. — P. 81–107. — doi:10.18642/jmsaa_7100121742.
- C. V. Durell, A. Robson. Advanced Trigonometry. — Courier Dover, 2003. — ISBN 978-0-486-43229-8. (orig. 1930)
- Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. — 2008. — Т. 8.
- Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. — 2000. — Т. 84, вып. 499 March. — JSTOR 3621477.
- Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. — Cambridge University Press, 1995. — Т. 37. — (New Mathematical Library). — ISBN 978-0-88385-639-0.
- Roger A. Johnson. Advanced Euclidean Geometry. — Dover Publ, 2007. (orig. 1929)
- Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. — 2003. — Т. 34, вып. 4 September. — JSTOR 3595770.
- Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. — 2nd. — Courier Dover, 1970. — ISBN 978-0-486-69154-1. Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
- , <http://students.imsa.edu/~tliu/Math/planegeo.pdf> Архивная копия от 21 сентября 2018 на Wayback Machine Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. — 5-е. — Москва: МЦНМО OAO «Московские учебники», 2006. — ISBN 5-94057-214-6.
- K.R.S. Sastry. Brahmagupta quadrilaterals // Forum Geometricorum. — 2002. — Т. 2.
- A. W. Siddons , R. T. Hughes. Trigonometry. — Cambridge University Press, 1929.
- Zalman Usiskin, Jennifer Griffin, David Witonsky, Edwin Willmore. The Classification of Quadrilaterals: A Study of Definition. — IAP, 2008. — (Research in mathematics education). — ISBN 978-1-59311-695-8.
- D. E. Joyce. Euclid’s Elements. — Clark University, 1997.
- D. Fraivert. Pascal-points quadrilaterals inscribed in a cyclic quadrilateral // The Mathematical Gazette. — 2019. — Т. 103, вып. 557.
Внешние ссылки[править | править код]
- Derivation of Formula for the Area of Cyclic Quadrilateral
- Incenters in Cyclic Quadrilateral at cut-the-knot
- Four Concurrent Lines in a Cyclic Quadrilateral at cut-the-knot
- Weisstein, Eric W. Cyclic quadrilateral (англ.) на сайте Wolfram MathWorld.
- Euler centre and maltitudes of cyclic quadrilateral at Dynamic Geometry Sketches, interactive dynamic geometry sketch.
Вписанные и описанные четырехугольники
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
Рассмотрим теоремы о вписанных и описанных четырехугольниках и их свойствах.
Теорема 1. Четырёхугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны
Теорема 2. Четырёхугольник можно описать вокруг окружности тогда и только тогда, когда суммы его противоположных сторон равны.
Теорема 3. Диагонали вписанного четырёхугольника разбивают его на две пары подобных треугольников.
Теорема 4. (Птолемея). Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Теорема 5. Площадь описанного четырехугольника равна произведению полупериметра четырёхугольника на радиус вписанной в него окружности.
Теорема 6. Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Теорема 7. Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Теорема 8. Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной.
Теорема 9. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
Теорема 10. В любой ромб можно вписать окружность.
Теорема 11. В любой квадрат можно вписать окружность.
Теорема 12. В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом.
Теорема 13. В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.
Теорема 14. В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон равна сумме длин оснований.
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
Задача 1. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Решение:
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
Ответ: 122.
Задача 2. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Решение:
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
Ответ: 12.
Задача 3. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Решение:
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .
Ответ: 10.
Задача 4. Угол A четырехугольника , вписанного в окружность, равен . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Решение:
Четырехугольник вписан в окружность. Значит, сумма его противоположных углов равна
Поэтому
Ответ: 148.
Задача 5. Углы четырехугольника относятся как . Найдите угол D, если около данного четырехугольника можно описать окружность. Ответ дайте в градусах.
Решение:
Пусть
Сумма всех углов четырехугольника равна
А сумма каждой пары противоположных углов равна (т.к. четырехугольник вписан в окружность).
Запишем эти два условия в виде двух уравнений с двумя неизвестными:
Подставляем второе уравнение в первое и получаем
Ответ: 90.
Задача 6. Стороны четырехугольника и стягивают дуги описанной окружности, градусные величины которых равны соответственно и . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Решение:
Сумма противоположных углов вписанного четырехугольника равна .
Поэтому
Угол А – вписанный, опирается на дугу , равную сумме дуг и , т.е.
Тогда вписанный угол А равен половине дуги , т.е.
Ответ: 107.
Задача 7. Точки расположенные на окружности, делят эту окружность на четыре дуги и градусные величины которых относятся соответственно как Найдите угол A четырехугольника Ответ дайте в градусах.
Решение:
Угол А – вписанный, опирается на дугу равную сумме дуг и Найдем дуги и
Обозначим градусные величины дуг и как согласно заданному соотношению между дугами.
Тогда или
Сумма дуг и составляет
Вписанный угол А равен половине дуги т.е.
Ответ: 15.
Задача 8. Радиус окружности, описанной около квадрата, равен Найдите длину стороны этого квадрата.
Решение:
Радиус окружности, описанной около квадрата, равен половине диагонали квадрата. Тогда диагональ квадрата равна
Выразим сторону квадрата через его диагональ:
Ответ: 32.
Задача 9. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?
Решение:
Если правильный шестиугольник вписан в окружность, то радиус окружности равен стороне шестиугольника. Поэтому сторона равна 6.
Ответ: 6.
Задача 10. Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен , большее основание равно 12. Найдите радиус описанной окружности этой трапеции.
Решение:
Поскольку трапеция вписана в окружность, она равнобедренная.
Рассмотрим равнобедренную трапецию с основаниями
Тогда боковые стороны
Проведем параллельно Тогда треугольник – равнобедренный, т.к. и равносторонний, т.к. Поэтому
– параллелограмм по построению, но , поэтому – ромб, и
Получаем, что О – центр описанной окружности с радиусом, равным меньшему основанию –
Ответ: 6.
Задача 11. Найти диагональ параллелограмма, вписанного в окружность радиусом 6 см.
Решение:
Согласно одной из теорем, окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Прямой угол, вписанный в окружность, опирается на диаметр. Поэтому диагональ равна диаметру, см.
Ответ: 12.
Задача 12. Около трапеции описана окружность. Периметр трапеции равен 60, средняя линия равна 25. Найдите боковую сторону трапеции.
Решение:
Средняя линия трапеции равна полусумме оснований. Поэтому сумма оснований
Сумму боковых сторон найдем как разность между периметром и суммой оснований:
Трапеция вписана в окружность, следовательно, трапеция равнобедренная, боковые стороны равны:
Ответ: 5.
Задача 13. Найдите радиус окружности, описанной около прямоугольника, две стороны которого равны 13 и
Решение:
Прямой угол, вписанный в окружность, опирается на диаметр. Поэтому диагональ равна диаметру окружности.
В то же время по теореме Пифагора диагональ найдем как
Радиус окружности равен половине диаметра:
Ответ: 9.
Задача 14. Найдите радиус окружности, вписанной в квадрат со стороной 16.
Решение:
Радиус окружности, вписанной в квадрат, равен половине его стороны. Поэтому
Ответ: 8.
Задача 15. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.
Решение:
Трапеция описана около окружности. Следовательно, сумма оснований равна сумме боковых сторон и равна 11 (половине периметра).
Боковая сторона тогда боковая сторона
Радиус вписанной окружности равен половине т.е. 2.
Ответ: 2.
Задача 16. Найдите высоту трапеции, в которую вписана окружность радиуса 14.
Решение:
Высота трапеции, в которую вписана окружность, равна диаметру этой окружности:
Ответ: 28.
Задача 17. Боковые стороны трапеции, описанной около окружности, равны 19 и 13. Найдите среднюю линию трапеции.
Решение:
Трапеция описана около окружности. Следовательно, сумма оснований равна сумме боковых сторон и равна
Средняя линия трапеции равна полусумме оснований
Ответ: 16.
Задача 18. Около окружности, радиус которой равен 2, описан многоугольник, периметр которого равен 16. Найдите его площадь.
Решение:
Площадь описанного многоугольника можно найти как произведение полупериметра на радиус вписанной окружности:
Ответ: 16.
Задача 19. В равнобедренной трапеции, вписанной в окружность, диагонали взаимно перпендикулярны. Средняя линия трапеции равна 12. Найти радиус вписанной окружности.
Решение:
Радиус окружности, вписанной в трапецию, равен половине ее высоты.
Рассмотрим равнобедренную трапецию
Проведем Треугольник – прямоугольный (с прямым углом С) и равнобедренный. Его гипотенуза равна сумме оснований трапеции (т.к. – параллелограмм, и ),
Высота трапеции является также высотой и медианой, проведенной из прямого угла равнобедренного прямоугольного треугольника .
Радиус вписанной окружности
Ответ: 6.
Задача 20. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.
Решение:
Пусть О – центр описанной окружности. Проведем высоту проходящую через точку О. Тогда (радиусы окружности),
Треугольники и – прямоугольные. Применяя теорему Пифагора, найдем:
Ответ: 7.
Это были задачи по теме «Вписанные и описанные четырехугольники» из первой части ОГЭ и ЕГЭ. Покажем более сложную задачу, из второй части ОГЭ по математике.
Задача 21. В четырёхугольник можно вписать и вокруг него можно описать окружность. Диагонали этого четырёхугольника перпендикулярны. Найдите его площадь, если радиус описанной окружности равен 5, а
Решение:
Обозначим Тогда
Обозначим также
Вписать окружность в четырехугольник можно тогда и только тогда, когда суммы длин противоположных сторон четырехугольника равны.
Значит, Отсюда
Пусть О – точка пересечения диагоналей четырёхугольника
При пересечении и образуется четыре прямоугольных треугольника. Это
Пусть
Запишем для каждого из этих треугольников теорему Пифагора:
Из
Из
Из
Из
Мы получили систему уравнений.
Сложив первое и третье из них и выразив как получим:
Кроме того, Это мы нашли в самом начале.
Из системы уравнений
находим:
Значит,
Перестроим чертеж. Это надо сделать обязательно. Появились новые данные – рисуем новый чертеж. По условию, четырехугольник вписан в окружность.
Треугольники и равны по трем сторонам. Значит, углы и равны.
Четырехугольник вписан в окружность, поэтому сумма углов и равна 180 градусов. Мы получили, что углы и – прямые. Тогда – диаметр окружности.
По условию, , тогда
опирается на диаметр.
– прямоугольный, – его гипотенуза.
По теореме Пифагора для :
Отсюда
Ответ: 40.
Если вы хотите разобрать большее количество примеров – записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Вписанные и описанные четырехугольники» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Вписанный четырехугольник — это четырехугольник, все вершины которого лежат на одной окружности.
Центр окружности, описанной около четырехугольника — точка пересечения серединных перпендикуляров, проведенных к сторонам четырехугольника.
Признаки вписанного четырехугольника
Для того, чтобы четырехугольник был вписанным, необходимо и достаточно, чтобы выполнялось одно из следующих равенств:
Специальные случаи
Любые квадраты, прямоугольники, равнобедренные трапеции можно вписать в окружность.
Свойства вписанного четырехугольника
- Произведение диагоналей вписанного четырехугольника равняется сумме произведений его противолежащих сторон.
- Диагонали вписанного четырехугольника относятся как суммы, произведений сторон, сходящихся в концах диагоналей.
- Диагонали вписанного четырехугольника разбивают его на две пары подобных треугольников.
- Сумма квадратов противолежащих сторон четырехугольника равна квадрату диаметра описанной окружности.
- Сумма противолежащих углов четырехугольника равна .
Использование свойств и признаков вписанного четырехугольника при решении геометрических задач.
Задача 1. Высоты и остроугольного треугольника пересекаются в точке . Докажите, что .
Решение. Рассмотрим четырехугольник .
.
Следовательно, вокруг четырехугольника можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу .
Рассмотрим четырехугольник .
.
Следовательно, вокруг четырехугольника можно описать окружность и по свойству вписанного четырехугольника .
— свойство смежных углов.
Следовательно, .
ч.т.д.
Задача 2. В остроугольном треугольнике проведены высоты и . На них из точек и опущены перпендикуляры и соответственно. Докажите, что прямые и параллельны.
Решение. Рассмотрим четырехугольник .
.
Следовательно, вокруг четырехугольника можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу .
Рассмотрим четырехугольник .
.
Следовательно, вокруг четырехугольника можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу .
— соответственные углы, образованные при пересечении прямых и секущей .
Следовательно, прямые и параллельны.
ч.т.д.
Посмотри, углы ( displaystyle alpha ) и ( displaystyle beta ) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами ( displaystyle varphi ) и ( displaystyle psi )? Они вроде бы тоже противоположные?
Можно ли вместо углов ( displaystyle alpha ) и ( displaystyle beta ) взять углы ( displaystyle varphi ) и ( displaystyle psi )?
Конечно, можно!
Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет ( displaystyle 180{}^circ ).
Оставшиеся два угла тогда сами собой тоже дадут в сумме ( displaystyle 180{}^circ ). Не веришь? Давай убедимся.
Смотри:
Пусть ( displaystyle alpha +beta =180{}^circ ). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, ( displaystyle 360{}^circ ).
То есть ( displaystyle alpha +beta +varphi +psi =360{}^circ ) — всегда! ( displaystyle 180{}^circ )
Но ( displaystyle alpha +beta =180{}^circ ), →( displaystyle varphi +psi =360{}^circ -180{}^circ =180{}^circ).
Волшебство прямо!
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )
и наоборот:
Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник вписанный.
Доказательство смотри чуть дальше.
А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна ( displaystyle 180{}^circ ).
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?