A regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of 3 orthogonal orientations. A regular octahedron is a 3-ball in the Manhattan metric. A diagonal is a line segment joining two vertices of a polygon or polyhedron. Any sloping line is called diagonal. Here is the simple online diagonal of octahedron calculator which helps you to calculate diagonal of an octahedron. Just enter the value of edge length to calculate the diagonal.
A regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of 3 orthogonal orientations. A regular octahedron is a 3-ball in the Manhattan metric. A diagonal is a line segment joining two vertices of a polygon or polyhedron. Any sloping line is called diagonal. Here is the simple online diagonal of octahedron calculator which helps you to calculate diagonal of an octahedron. Just enter the value of edge length to calculate the diagonal.
Code to add this calci to your website
Formula:
D = √(2) × a
Where,
D = Diagonal
A = Edge Length
Example:
Calculate the diagonal of a octahedron in which its edge length be 20 cm.
Solution:
D = √(2) × 20
= 28.2843 cm
Related Calculators:
- Right Cylinder Calc : Find A_L
- Sphere Calc : Find A
- Aquarium Glass Thickness Calculator
- Surface Area Of A Triangular Pyramid Calculator
- Surface To Volume Ratio Calculator Octahedron
- Edge Length Of Octahedron Calculator
Правильный октаэдр | |||
---|---|---|---|
(вращающаяся модель) |
|||
Тип | правильный многогранник | ||
Комбинаторика | |||
Элементы |
|
||
Грани | правильные треугольники | ||
Конфигурация вершины | 4.4.4 | ||
Двойственный многогранник | куб | ||
Вершинная фигура |
|||
Развёртка
|
|||
Классификация | |||
Обозначения |
|
||
Символ Шлефли |
|
||
Символ Витхоффа[en] | 4 | 2 3 | ||
Диаграмма Дынкина | |||
Группа симметрии | |||
Группа вращения | |||
Количественные данные | |||
Двугранный угол | |||
Телесный угол при вершине | ср | ||
Медиафайлы на Викискладе |
Окта́эдр (греч. οκτάεδρον от οκτώ «восемь» + έδρα «основание») — многогранник с восемью гранями.
Пра́вильный окта́эдр является одним из пяти выпуклых правильных многогранников[1], так называемых платоновых тел; его грани — восемь равносторонних треугольников. Правильный октаэдр:
- двойственен кубу;
- полное усечение тетраэдра;
- квадратная бипирамида в любом из трёх ортогональных направлений;
- треугольная антипризма в любом из четырёх направлений;
- трёхмерный шар в метрике городских кварталов.
Октаэдр — трёхмерный вариант более общего понятия гипероктаэдр.
Правильный октаэдр[править | править код]
Правильный октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.
Размеры[править | править код]
Если длина ребра октаэдра равна а, то радиус сферы, описанной вокруг октаэдра, равен:
,
радиус вписанной в октаэдр сферы может быть вычислен по формуле:
двугранный угол: , где .
Радиус полувписанной сферы, которая касается всех рёбер, равен
Ортогональные проекции[править | править код]
Октаэдр имеет четыре специальные ортогональных проекции, центрированные ребром, вершиной, гранью и нормалью к грани. Второй и третий случай соответствуют плоскостям Коксетера B2 и A2.
Центрированы | Ребром | Нормалью к грани |
Вершиной | Гранью |
---|---|---|---|---|
Образ | ||||
Проективная симметрия |
[2] | [2] | [4] | [6] |
Сферическая мозаика[править | править код]
Октаэдр можно представить, как сферическую мозаику и спроецировать на плоскость с помощью стереографической проекции. Эта проекция конформна, сохраняет углы, но не длины и площадь. Отрезки на сфере отображаются в дуги окружностей на плоскости.
треугольно-центрированная |
|
Ортогональная проекция | Стереографическая проекция |
---|
Декартовы координаты[править | править код]
Октаэдр с длиной ребра может быть помещён в начало координат, так что его вершины будут лежать на осях координат. Декартовы координаты вершин тогда будут
- (±1, 0, 0);
- (0, ±1, 0);
- (0, 0, ±1).
В x–y–z прямоугольной системе координат октаэдр с центром в точке (a, b, c) и радиусом r — это множество всех точек (x, y, z), таких, что
Площадь и объём[править | править код]
Площадь полной поверхности правильного октаэдра с длиной ребра a равна
Объём октаэдра (V) вычисляется по формуле:
Таким образом, объём октаэдра в четыре раза больше объёма тетраэдра с той же длиной ребра, в то время как площадь поверхности вдвое больше (поскольку поверхность состоит из 8 треугольников, а у тетраэдра — из четырёх).
Если октаэдр растянуть, чтобы выполнялось равенство:
формулы для поверхности и объёма превращаются в:
Кроме того, тензор моментов инерции растянутого октаэдра будет равен:
Он сводится к уравнению для правильного октаэдра, когда:
Геометрические связи[править | править код]
Октаэдр представляет собой пересечение двух тетраэдров
Внутренняя (общая) часть конфигурации из двух двойственных тетраэдров является октаэдром, а сама эта конфигурация называется звёздчатым октаэдром (лат.: stella octangula). Конфигурация является единственной звёздчатой формой октаэдра. Соответственно, правильный октаэдр является результатом отсечения от правильного тетраэдра четырёх правильных тетраэдров с половиной длины ребра (то есть полного усечения тетраэдра). Вершины октаэдра лежат на серединах рёбер тетраэдра и октаэдр связан с тетраэдром тем же образом, как кубооктаэдр и икосододекаэдр связаны с остальными платоновыми телами. Можно разделить рёбра октаэдра в отношении золотого сечения для определения вершин икосаэдра. Для этого следует расположить вектора на рёбрах, так, чтобы все грани были окружены циклами. Затем делим каждое ребро в золотом отношении вдоль векторов. Полученные точки являются вершинами икосаэдра.
Октаэдры и тетраэдры[en] можно чередовать, чтобы построить однородные относительно вершин, рёбер и граней соты, которые Фуллер назвал октетной связкой[en]. Это единственные соты, позволяющие регулярную укладку в кубе, и они являются одним из 28 видов выпуклых однородных сот[en].
Октаэдр уникален среди платоновых тел в том, что только он имеет чётное число граней при каждой вершине. Кроме того, это единственный член этой группы, который имеет плоскости симметрии, не пересекающие ни одну грань.
Если использовать стандартную терминологию многогранников Джонсона, октаэдр можно назвать квадратной бипирамидой. Усечение двух противоположных вершин приводит к усечённой бипирамиде[en].
Октаэдр является 4-связным. Это значит, что нужно удалить четыре вершины, чтобы разъединить оставшиеся. Это один из всего лишь четырёх 4-связных симплициальных хорошо покрытых многогранников, что означает, что все наибольшие независимые множества вершин имеют один и тот же размер. Другие три многогранника с этим свойством — пятиугольная бипирамида, плосконосый двуклиноид и нерегулярный многогранник с 12 вершинами и 20 треугольными гранями[2].
- Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.
- Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
- В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
Однородное раскрашивание и симметрия[править | править код]
Имеется 3 однородных раскрашивания[en] октаэдра, названных по их цветам граней: 1212, 1112, 1111.
Группой симметрии октаэдра является Oh с порядком 48, трёхмерная гипероктаэдральная группа[en]. В подгруппы этой группы входят D3d (порядка 12), группа симметрии треугольной антипризмы, D4h (порядка 16), группа симметрии квадратной бипирамиды, и Td (порядка 24), группа симметрии полностью усечённого тетраэдра. Эти симметрии можно подчеркнуть путём различного раскрашивания граней.
Название | Октаэдр | Полностью усечённый тетраэдр (Тетратетраэдр) |
Треугольная антипризма | Квадратная бипирамида | Ромбическая бипирамида |
---|---|---|---|---|---|
Рисунок (Раскраска граней) |
(1111) |
(1212) |
(1112) |
(1111) |
(1111) |
Диаграмма Коксетера | = | ||||
Символ Шлефли | {3,4} | r{3,3} | s{2,6} sr{2,3} |
ft{2,4} { } + {4} |
ftr{2,2} { } + { } + { } |
Символ Витхоффа[en] | 4 | 3 2 | 2 | 4 3 | 2 | 6 2 | 2 3 2 |
||
Симметрия | Oh, [4,3], (*432) | Td, [3,3], (*332) | D3d, [2+,6], (2*3) D3, [2,3]+, (322) |
D4h, [2,4], (*422) | D2h, [2,2], (*222) |
Порядок | 48 | 24 | 12 6 |
16 | 8 |
Развёртки[править | править код]
Существует одиннадцать вариантов развёртки октаэдра[3].
Двойственность[править | править код]
Октаэдр двойственен кубу.
Огранка[править | править код]
Однородный тетрагемигексаэдр является огранкой с тетраэдральной симметрией правильного октаэдра, сохраняющая расположение рёбер[en] и вершин[en]. Огранка имеет четыре треугольных грани и 3 центральных квадрата.
Неправильные октаэдры[править | править код]
Следующие многогранники комбинаторно эквивалентны правильному октаэдру. Они все имеют шесть вершин, восемь треугольных граней и двенадцать рёбер, что соответствует один к одному параметрам правильного октаэдра.
- Треугольные антипризмы — две грани представляют собой равносторонние треугольники, лежащие в параллельных плоскостях и имеющие общую ось симметрии. Остальные шесть треугольников равнобедренные.
- Четырёхугольные бипирамиды, в которых по меньшей мере один экваториальный четырёхугольник лежит в плоскости. Правильный октаэдр является специальным случаем, когда все три четырёхугольника являются плоскими квадратами.
- Многогранник Шёнхардта, невыпуклый многогранник, который нельзя разбить на тетраэдры без введения новых вершин.
Другие выпуклые восьмигранники[править | править код]
Четырёхугольный
трапецоэдр
В общем случае, октаэдром может называться любой многогранник с восемью гранями. Правильный октаэдр имеет 6 вершин и 12 рёбер, минимальное число для октаэдра. Неправильные восьмигранники могут иметь до 12 вершин и 18 рёбер[3][4].
Существует 257 топологически различных выпуклых восьмигранников, исключая зеркальные копии[3]. В частности, имеется 2, 11, 42, 74, 76, 38, 14 восьмигранников с числом вершин от 6 до 12 соответственно[5][6]. (Два многогранника «топологически различны», если они имеют внутренне различное расположение граней и вершин, так что нет возможности преобразовать одно тело в другое просто изменением длины рёбер или углов между рёбрами или гранями.)
Некоторые известные неправильные восьмигранники:
- Шестиугольная призма: Две грани являются параллельными правильными шестиугольниками, шесть квадратов соединяют соответствующие пары сторон шестиугольников.
- Семиугольная пирамида: Одна грань является семиугольником (обычно правильным), а оставшиеся семь граней являются треугольниками (обычно равнобедренными). Невозможно добиться, чтобы все треугольные грани были равносторонними.
- Усечённый тетраэдр: Четыре грани тетраэдра усекаются до правильных шестиугольников и образуются три дополнительные равносторонние треугольные грани на месте отсечённых вершин.
- Четырёхугольный трапецоэдр: Восемь граней конгруэнтны дельтоидам.
Октаэдры в физическом мире[править | править код]
Октаэдры в природе[править | править код]
- Многие природные кубические кристаллы имеют форму октаэдра. Это алмаз, сульфат алюминия-калия, хлорид натрия, перовскит, оливин, флюорит, шпинель.
- Форму октаэдра имеют межатомные пустоты (поры) в плотноупакованных структурах чистых металлов (никеле, меди, магнии, титане, лантане и многих других) и ионных соединений (хлорид натрия, сфалерит, вюрцит и др.).
- Пластины сплава камасита[en] в октаэдритных метеоритах расположены параллельно восьми граням октаэдра.
Октаэдры в искусстве и культуре[править | править код]
Две одинаково сложенные змейки Рубика могут аппроксимировать октаэдр.
- В играх игральная кость в виде октаэдра известна как «d8».
- Если каждое ребро октаэдра заменить одноомным резистором, общее сопротивление между противоположными вершинами будет составлять 1/2 ома, а между смежными вершинами — 5/12 ома[7].
- Шесть музыкальных нот можно расположить на вершинах октаэдра так, что каждое ребро представляет созвучную пару, а каждая грань — созвучную тройку.
- Противотанковый ёж имеет форму трёх диагоналей октаэдра.
Тетраэдральная связка[править | править код]
Каркас из повторяющихся тетраэдров и октаэдров изобретён Фуллером в 1950-х и он известен как пространственная рама[en] и считается прочнейшей структурой, сопротивляющейся напряжениям консольной балки.
Связанные многогранники[править | править код]
Правильный октаэдр можно увеличить до тетраэдра добавлением четырёх тетраэдров на чередующиеся грани. Добавление тетраэдров ко всем восьми граням образует звёздчатый октаэдр.
тетраэдр | звёздчатый октаэдр |
---|
Октаэдр принадлежит семейству однородных многогранников, связанных с кубом.
Симметрия: [4,3], (*432)[en] | [4,3]+, (432) | [3+,4], (3*2) | ||||||
---|---|---|---|---|---|---|---|---|
{4,3} | t{4,3} | r{4,3} | t{3,4} | {3,4} | rr{4,3} | tr{4,3} | sr{4,3} | s{3,4} |
Двойственные многогранники | ||||||||
V43 | V3.82 | V(3.4)2 | V4.62 | V34 | V3.43 | V4.6.8 | V34.4 | V35 |
Он также является одним из простейших примеров гиперсимплекса[en], многогранника, образованного определённым пересечением гиперкуба с гиперплоскостью.
Октаэдр входит в последовательность многогранников с символом Шлефли {3,n}, продолжающейся на гиперболическую плоскость.
Сферическая | Евклидова | Компактная гипербол. | Пара- компактная |
Некомпактная гиперболическая | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3.3 | 33 | 34 | 35 | 36 | 37 | 38 | 3∞ | 312i | 39i | 36i | 33i |
Тетратетраэдр[править | править код]
Правильный октаэдр можно рассматривать как полностью усечённый тетраэдр и может быть назван тетратетраэдром. Это можно показать с помощью раскрашенной в два цвета модели. При этом раскрашивании октаэдр имеет тетраэдральную симметрию.
Сравнение последовательности усечения тетраэдра и его двойственной фигуры:
Симметрия: [3,3], (*332) | [3,3]+, (332) | ||||||
---|---|---|---|---|---|---|---|
{3,3} | t{3,3} | r{3,3} | t{3,3} | {3,3} | rr{3,3} | tr{3,3} | sr{3,3} |
Двойственные многогранники | |||||||
V3.3.3 | V3.6.6 | V3.3.3.3 | V3.6.6 | V3.3.3 | V3.4.3.4 | V4.6.6 | V3.3.3.3.3 |
Вышеприведённые тела можно понимать как срезы, ортогональные к длинной диагонали тессеракта. Если расположить эту диагональ вертикально с высотой 1, то первые пять сечений сверху будут на высотах r, 3/8, 1/2, 5/8 и s, где r — любое число в интервале (0,1/4], а s — любое число в интервале [3/4,1).
Октаэдр в качестве тетратетраэдра существует в последовательности симметрий квазиправильных многогранников и мозаик с конфигурацией вершин (3.n)2, проходя от мозаик на сфере к евклидовой плоскости, а затем в гиперболическую плоскость. В орбифолдной нотации[en] симметрии *n32 все эти мозаики являются построениями Витхоффа внутри фундаментальной области симметрии с генерирующими точками на прямом угле области[8][9].
Построение |
Сферическая | Евклидова | Гиперболическая | ||||
---|---|---|---|---|---|---|---|
*332 | *432 | *532 | *632 | *732 | *832… | *∞32 | |
Квазирегулярные фигуры |
|||||||
Вершина | (3.3)2 | (3.4)2 | (3.5)2 | (3.6)2 | (3.7)2 | (3.8)2 | (3.∞)2 |
Треугольная антипризма[править | править код]
В качестве треугольной антипризмы октаэдр связан с семейством шестиугольной диэдральной симметрии.
Симметрия: [6,2], (*622) | [6,2]+, (622) | [6,2+], (2*3) | ||||||
---|---|---|---|---|---|---|---|---|
{6,2} | t{6,2} | r{6,2} | t{2,6} | {2,6} | rr{2,6} | tr{6,2}[en] | sr{6,2} | s{2,6} |
Двойственные им многогранники | ||||||||
V62 | V122 | V62 | V4.4.6[en] | V26 | V4.4.6[en] | V4.4.12 | V3.3.3.6[en] | V3.3.3.3 |
Многогранник | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ||||||||||||
Конфигурация | V2.3.3.3 | 3.3.3.3 | 4.3.3.3 | 5.3.3.3 | 6.3.3.3 | 7.3.3.3 | 8.3.3.3 | 9.3.3.3 | 10.3.3.3 | 11.3.3.3 | 12.3.3.3 | …∞.3.3.3 |
Квадратная бипирамида[править | править код]
Многогранник | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ||||||||||
Конфигурация | V2.4.4 | V3.4.4 | V4.4.4 | V5.4.4 | V6.4.4 | V7.4.4 | V8.4.4 | V9.4.4 | V10.4.4 | …V∞.4.4 |
См. также[править | править код]
- Граф октаэдра
- Звёздчатый октаэдр
- Координационная теория
- Октаэдральная симметрия[en]
- Октаэдральное число
- Ромбоусечённый додекаэдр
- Триакисоктаэдр
- Усечённый октаэдр
- Центрированное октаэдральное число[en]
Примечания[править | править код]
- ↑ Селиванов Д. Ф.,. Тело геометрическое // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Finbow, Hartnell, Nowakowski, Plummer, 2010, с. 894–912.
- ↑ 1 2 3 Weisstein, Eric W. Octahedron (англ.) на сайте Wolfram MathWorld.
- ↑ Steven Dutch. Enumeration of Polyhedra. Дата обращения: 8 ноября 2015. Архивировано из оригинала 10 октября 2011 года.
- ↑ Counting polyhedra. Дата обращения: 8 ноября 2015. Архивировано 6 мая 2016 года.
- ↑ Архивированная копия. Дата обращения: 14 августа 2016. Архивировано 17 ноября 2014 года.
- ↑ Klein, 2002, с. 633–649.
- ↑ Williams, 1979.
- ↑ Two Dimensional symmetry Mutations by Daniel Huson
Литература[править | править код]
- Большая советская энциклопедия
- Arthur S. Finbow, Bert L. Hartnell, Richard J. Nowakowski, Michael D. Plummer. On well-covered triangulations. III // Discrete Applied Mathematics. — 2010. — Т. 158, вып. 8. — doi:10.1016/j.dam.2009.08.002.
- Douglas J. Klein. Resistance-Distance Sum Rules // Croatica Chemica Acta. — 2002. — Т. 75, вып. 2. Архивировано 10 июня 2007 года.
- R. Williams. Chapter 5 The Kaleidoscope, Section: 5.7 Wythoff’s // The Geometrical Foundation of Natural Structure: A Source Book of Design. — New York: Dover Publications, 1979.
Ссылки[править | править код]
- Weisstein, Eric W. Octahedron (англ.) на сайте Wolfram MathWorld.
- Klitzing Polytopes, 3D convex uniform polyhedra
- Editable printable net of an octahedron with interactive 3D view
- Paper model of the octahedron
- K.J.M. MacLean, A Geometric Analysis of the Five Platonic Solids and Other Semi-Regular Polyhedra
- The Uniform Polyhedra
- Virtual Reality Polyhedra The Encyclopedia of Polyhedra
- Conway Notation for Polyhedra Try: dP4
Пространственная диагональ октаэдра при заданном объеме Решение
ШАГ 0: Сводка предварительного расчета
ШАГ 1. Преобразование входов в базовый блок
Объем октаэдра: 470 Кубический метр –> 470 Кубический метр Конверсия не требуется
ШАГ 2: Оцените формулу
ШАГ 3: Преобразуйте результат в единицу вывода
14.1280764437412 метр –> Конверсия не требуется
7 Пространственная диагональ октаэдра Калькуляторы
Пространственная диагональ октаэдра при заданном объеме формула
Пространственная диагональ октаэдра = sqrt(2)*((3*Объем октаэдра)/sqrt(2))^(1/3)
dSpace = sqrt(2)*((3*V)/sqrt(2))^(1/3)
-
Вы здесь:
- Главная
- Октаэдр
Октаэдр
Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, «хедра» – означает грань (октаэдр – восьмигранник).
Поэтому на вопрос – “что такое октаэдр?”, можно дать следующее определение: “Октаэдр это геометрическое тело из восьми граней, каждая их которых – правильный треугольник“.
Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел.
Октаэдр имеет следующие характеристики:
- Тип грани – правильный треугольник;
- Число сторон у грани – 3;
- Общее число граней – 8;
- Число рёбер, примыкающих к вершине – 4;
- Общее число вершин – 6;
- Общее число рёбер – 12;
Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°.
Октаэдр имеет центр симметрии – центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.
Математические характеристики октаэдра
Октаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.
Радиус описанной сферы октаэдра определяется по формуле:
, где a – длина стороны.
Сфера может быть вписана внутрь октаэдра.
Радиус вписанной сферы октаэдра определяется по формуле:
Площадь поверхности октаэдра
Для наглядности, площадь поверхности октаэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон октаэдра (это площадь правильного треугольника) умноженной на 8. Либо воспользоваться формулой:
Объем октаэдра определяется по следующей формуле:
Октаэдр можно представить в виде двух правильных пирамид с четырехугольным основанием, соединенных друг с другом через это основание.
Популярное
Звезда Кеплера
Монумент «Звезда Кеплера» (норв. Keplerstjernen), высотой 45 метров, расположен недалеко от города Осло (Норвегия) в окрестностях аэропорта…
Многогранники в архитектуре. Часть 1
Архитектурные шедевры находятся в разных уголках земного шара и отражают особенности человеческой души. Тайные людские желания воплощаются в форме необыкновенных зданий. В…
Многогранники в архитектуре. Часть 2
Визитная карточка Республики Беларусь – новое здание Национальной библиотеки в Минске. Проект нового здания был разработан еще в конце 80-х годов прошлого века и в 1989…
Многогранники для Новогодней сказки
Сделать новогодний праздник красивым и необычным, чтобы дети видели в нём сказку, а гости восхищались, можно только своими руками. Бумажные многогранники –…
Диагональ в многоугольнике (многограннике) — отрезок, соединяющий любые две несмежные вершины, то есть, вершины, не принадлежащие одной стороне многоугольника (одному ребру многогранника).
У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали.
Подсчет диагоналей
Диагоналей нет у треугольника на плоскости и у тетраэдра в пространстве, поскольку все вершины этих фигур попарно связаны сторонами (ребрами).
Количество диагоналей N у многоугольника легко вычислить по формуле:
N = n·(n – 3)/2,
где n — число вершин многоугольника. По этой формуле нетрудно найти, что
- у треугольника — 0 диагоналей
- у прямоугольника — 2 диагонали
- у пятиугольника — 5 диагоналей
- у шестиугольника — 9 диагоналей
- у восьмиугольника — 20 диагоналей
- у 12-угольника — 54 диагонали
- у 24-угольника — 252 диагонали
Количество диагоналей многогранника с числом вершин n легко подсчитать только для случая, когда в каждой вершине многогранника сходится одинаковое число ребер k. Тогда можно пользоваться формулой:
N = n·(n – k – 1)/2,
которая даем сумманое число пространственных и граневых диагоналей. Отсюда можно найти, что
- у тетраэдра (n=4, k=3) — 0 диагоналей
- у октаэдра (n=6, k=4) — 3 диагонали (все пространственные)
- у куба (n=8, k=3) — 16 диагоналей (12 граневых и 4 пространственных)
- у икосаэдра (n=12, k=5) — 36 диагоналей (все пространственные)
- у додекаэдра (n=20, k=3) — 160 диагоналей (25 граневых и 135 пространственных)
Если в разных вершинах многогранника сходится разное число ребер, подсчет заметно усложняется и должен проводится индивидуально для каждого случая.
Фигуры с равными диагоналями
На плоскости существует два правильных многоугольника, у которых все диагонали равны между собой. Это квадрат и правильный пятиугольник. У квадрата две одинаковых диагонали, пересекающихся в центре под прямым углом. У правильного пятиугольника пять одинаковых диагоналей, которые вместе образуют рисунок пятиконечной звезды (пентаграммы).
Единственный правильный многогранник, у которого все диагонали равны между собой — правильный восьмигранник октаэдр. У него три диагонали, которые попарно перпендикулярно пересекаются в центре. Все диагонали октаэдра — пространственные (диагоналей граней у октаэдра нет, т.к. у него треугольные грани).
Помимо октаэдра есть еще один правильный многогранник, у которого все пространственные диагонали равны между собой. Это куб (гексаэдр). У куба четыре одинаковых пространственных диагонали, которые также пересекаются в центре. Угол между дигоналями куба состаляет либо arccos(1/3) ≈ 70,5° (для пары диагоналей, проведенных к смежным вершинам), либо arccos(–1/3) ≈ 109,5° (для пары диагоналей, проведенных к несмежным вершинам).
Ссылки:
- ru.wikipedia.org — Википедия: Диагональ
- dic.academic.ru — иллюстрация разницы между граневой и пространственной диагоналями многогранника
Дополнительно в базе данных Генона:
- Как найти диагональ прямоугольника?
- Сколько вершин, ребер и граней у тетраэдра?
- Сколько вершин, ребер и граней у куба (гексаэдра)?