Как найти диагональ правильной пирамиды формула

как найти диагональ основания четырехугольной пирамиды?

Ангелина Вернер



Ученик

(110),
на голосовании



10 лет назад

Дополнен 10 лет назад

Правильная четырехугольная пирамида SABCD ,
О-центр основания, S-вершина SO=4,SC=5 Найти длину отрезка AC
как я поняла это диагональ основания

Голосование за лучший ответ

ГлавнаяЕГЭ. Стереометрия

В правильной четырехугольной пирамиде найти диагональ основания

Автор: Ирина Гайкова

 

Комментариев нет

437

Telegram

VK

OK

В правильной четырехугольной пирамиде SABCD точка O — центр основания, S — вершина, SD = 10, SO = 6.  Найдите длину отрезка AС.

Интересная статья? Поделитесь ею пожалуйста с другими:

Facebook

Хотите обучаться математике индивидуально?
Запишитесь на консультацию.

Мы храним ваши данные в тайне

Похожие записи:

  • В правильной треугольной пирамиде найти высоту боковой грани

  • Если каждое ребро куба увеличить на 1, то его площадь поверхности

  • Объем куба равен 24√3.  Найдите его диагональ.

Оставьте свой комментарий:

  • на Блоге
  • в Вконтакте
  • в Фейсбук

=) 8) :( ;) :P :-D =-O *IN LOVE* %) *CRAZY* Еще смайлы

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Комментарий

Имя *

Email *

Вебсайт

Получать новые комментарии по электронной почте. Вы можете подписаться без комментирования.

Нажимая на кнопку “Отправить комментарий”, я соглашаюсь с политикой обработки персональных данных

Вы уже знакомы с пирамидой, т. е. многогранником, одна грань которого является многоугольником, а остальные грани-треугольники имеют общую вершину.

Треугольные грани пирамиды, имеющие общую вершину, называют боковыми гранями, а эту общую вершину — вершиной пирамиды. Ребра боковых граней, сходящиеся в вершине пирамиды, называют боковыми ребрами пирамиды. Многоугольник, которому не принадлежит вершина пирамиды, называют основанием пирамиды (рис. 107).

Пирамиды разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Пирамида, изображенная на рисунке 107, — пятиугольная, а на рисунке 108, — восьмиугольная. Треугольную пирамиду называют еще тетраэдром. У тетраэдра все грани являются треугольниками (рис. 109).

Пирамида в геометрии - элементы, формулы, свойства с примерами

Перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания, называется высотой пирамиды. На рисунке 108 показана высота Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Плоскость, проходящая через два боковых ребра пирамиды, не принадлежащие одной грани, называется диагональной плоскостью, а сечение пирамиды диагональной плоскостью — диагональным сечением. На рисунке 111 показано диагональное сечение шестиугольной пирамиды.

Пирамида, основанием которой является правильный многоугольник, а основание ее высоты совпадает с центром этого многоугольника, называется правильной пирамидой (рис. 112).

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды.

Отметим, что в правильной пирамиде:

  • боковые ребра равны;
  • боковые грани равны;
  • апофемы, равны;
  • двугранные углы при основании равны;
  • двугранные углы при боковых ребрах равны;
  • каждая точка высоты равноудалена от вершин основания;
  • каждая точка высоты равноудалена от ребер основания;
  • каждая точка высоты равноудалена от боковых граней.

Отметим, что если в пирамиде равны все:

  • боковые ребра, то около ее основания можно описать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 113);
  • двугранные углы при основании, то в это основание можно вписать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 114).

Пирамида в геометрии - элементы, формулы, свойства с примерами Пирамида в геометрии - элементы, формулы, свойства с примерами

Боковые грани составляют боковую поверхность пирамиды, а боковые грани вместе с основанием — полную поверхность пирамиды.

Вы знаете, что боковая поверхность правильной пирамиды равна произведению полупериметра ее основания и апофемы.

Теорема 1.

Если пирамиду пересечь плоскостью, параллельной основанию, то:

  • а) боковые ребра и высота разделяются на пропорциональные части;
  • б) в сечении получается многоугольник, подобный основанию;
  • в) площади сечения и основания относятся как квадраты их расстояний от вершины пирамиды.

Используя рисунок 115, докажите эту теорему самостоятельно.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Секущая плоскость, параллельная основанию пирамиды, разделяет ее на две части (рис. 116). Одна из этих частей также является пирамидой, а другая — многогранником, который называется усеченной пирамидой.

Параллельные грани усеченной пирамиды называются ее основаниями (рис. 117). Основания усеченной пирамиды — подобные многоугольники, стороны которых попарно параллельны, поэтому ее боковые грани являются трапециями.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-либо точки одного основания пирамиды к плоскости другого основания.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Усеченная пирамида называется правильной, если она является частью правильной пирамиды. Высота боковой грани правильной усеченной пирамиды называется апофемой усеченной пирамиды. На рисунке 118 показана четырехугольная правильная усеченная пирамида и одна из ее апофем.

Теорема 2.

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований и апофемы:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть правильная Пирамида в геометрии - элементы, формулы, свойства с примерами-угольная усеченная пирамида (рис. 119). Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — соответственно периметры нижнего и верхнего оснований и Пирамида в геометрии - элементы, формулы, свойства с примерами — апофема пирамиды.

Боковая поверхность данной пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами равных трапеций. Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — основания одной из этих трапеций, тогда ее площадь равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Учитывая, что боковая поверхность пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами таких трапеций, получим, что

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теперь установим формулу для вычисления объема пирамиды.

Тела, имеющие равные объемы, называются равновеликими.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теорема 3.

Треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть две треугольные пирамиды с равновеликими основаниями и равными высотами (рис. 120). Разделим высоты одной и другой пирамид на Пирамида в геометрии - элементы, формулы, свойства с примерами долей и через точки деления проведем плоскости, параллельные основаниям. Этим самым пирамиды разделяются на Пирамида в геометрии - элементы, формулы, свойства с примерами частей. Для каждой части первой пирамиды построим наибольшие по объему призмы, целиком содержащиеся в пирамиде, а для каждой части другой пирамиды — наименьшие по объему призмы, целиком содержащие эту часть.

Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — объемы первой и второй пирамид, a Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — суммарные объемы призм, построенных для этих пирамид. При счете от оснований пирамид призма в Пирамида в геометрии - элементы, формулы, свойства с примерами-й части первой пирамиды равновелика призме для Пирамида в геометрии - элементы, формулы, свойства с примерами-й части второй пирамиды, так как у этих призм равновелики основания и равные высоты. Поэтому объем Пирамида в геометрии - элементы, формулы, свойства с примерами больше объема Пирамида в геометрии - элементы, формулы, свойства с примерами на объем первой призмы, у которой основанием является основание второй пирамиды, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — высота пирамиды (см. рис. 120), т.е. Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — площадь основания пирамиды. Теперь учтем, что Пирамида в геометрии - элементы, формулы, свойства с примерами, a Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами. При увеличении значения переменной Пирамида в геометрии - элементы, формулы, свойства с примерами значение выражения Пирамида в геометрии - элементы, формулы, свойства с примерами стремится к нулю, а это означает, что Пирамида в геометрии - элементы, формулы, свойства с примерами, или

Пирамида в геометрии - элементы, формулы, свойства с примерами

Такие же рассуждения можно провести, если первую и вторую пирамиды поменять ролями. В результате получим неравенство

Пирамида в геометрии - элементы, формулы, свойства с примерами

Из неравенств (1) и (2) следует, что Пирамида в геометрии - элементы, формулы, свойства с примерами.

Теорема 4.

Объем пирамиды равен третьей доле произведения площади ее основания и высоты:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть треугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 121). Достроим ее до призмы Пирамида в геометрии - элементы, формулы, свойства с примерами с основанием Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122). Отделим от призмы данную пирамиду, получится четырехугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122 и 123). Диагональная плоскость Пирамида в геометрии - элементы, формулы, свойства с примерами разделяет ее на две пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, у которых одна и та же высота, проведенная из вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, и равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому, в соответствии с теоремой 3, пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Сравним пирамиду Пирамида в геометрии - элементы, формулы, свойства с примерами с данной пирамидой Пирамида в геометрии - элементы, формулы, свойства с примерами. У них равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты, проведенные из вершин Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, поэтому эти пирамиды также равновелики. Получается, что все три пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Поскольку объем призмы Пирамида в геометрии - элементы, формулы, свойства с примерами равен произведению Пирамида в геометрии - элементы, формулы, свойства с примерами площади Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, которая равна высоте пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, то объем пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, т. е. третьей части призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, равен третьей доле этого объема, т. е. Пирамида в геометрии - элементы, формулы, свойства с примерами.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пусть теперь есть произвольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 124). Через диагонали Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами, выходящие из одной вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, проведем диагональные сечения, они разделят данную пирамиду на треугольные пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами. Поскольку все они имеют общую высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, то

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пример:

Найдем объем усеченной пирамиды, нижнее и верхнее основания которой имеют площади Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 125).

Для этого достроим данную усеченную пирамиду до полной. Пусть высота дополнительной пирамиды равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Искомый объем Пирамида в геометрии - элементы, формулы, свойства с примерами можно найти как разность объемов полной и дополнительной пирамид:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Чтобы найти высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, используем установленное в теореме 1 утверждение о том, что площади сечений пирамиды относятся как квадраты их расстояний от вершины:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Решим это уравнение, учитывая, что Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — положительные числа:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Таким образом, объем Пирамида в геометрии - элементы, формулы, свойства с примерами усеченной пирамиды равен третьей доле произведения высоты Пирамида в геометрии - элементы, формулы, свойства с примерами пирамиды и суммы площадей Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами оснований пирамиды и их среднего геометрического Пирамида в геометрии - элементы, формулы, свойства с примерами.

  • Конус в геометрии
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Стереометрия – формулы, определение и вычисление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2022 года; проверки требуют 4 правки.

Пирами́да (от др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину[1]. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Пирамида является частным случаем конуса[2].

История развития пирамиды в геометрии[править | править код]

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объём пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит
[3], а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12[4]).

Элементы пирамиды[править | править код]

SO — высота
SF — апофема
OF — радиус вписанной в основание окружности

  • вершина пирамиды — общая точка боковых граней, не лежащая в плоскости основания;
  • основание — грань, которой не принадлежит вершина пирамиды;
  • боковые грани — треугольные грани, сходящиеся в вершине;
  • боковые рёбра — рёбра, являющиеся сторонами двух боковых граней (и, соответственно, не являющиеся сторонами основания);
  • высота пирамиды — перпендикуляр из вершины пирамиды на её основание;
  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через её вершину и диагональ основания.

Развёртка пирамиды[править | править код]

Развёртка правильной пятиугольной пирамиды:
1. в плоскости основания («звезда»)
2. в плоскости одной из боковых граней

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.

Свойства[править | править код]

Если все боковые рёбра равны, то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами[править | править код]

Описание сферы вокруг правильной пирамиды:
SD — высота пирамиды.
AD — радиус окружности, описывающей основание.
В — середина ребра боковой грани
С — точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS — радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D — центр основания
SF — апофема
ASD — биссекторная плоскость угла между боковыми гранями
BCE — биссекторная плоскость угла между основанием и боковой гранью
С — точка пересечения всех биссекторных плоскостей
CK=CD — радиус сферы вписанной в пирамиду

Сфера[править | править код]

  • около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие)[5]. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
  • в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Конус[править | править код]

  • Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие);[6]
  • Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
  • Высоты у таких конусов и пирамид равны между собой.

Цилиндр[править | править код]

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой[править | править код]

  • Объём пирамиды может быть вычислен по формуле:
V={frac {1}{3}}Sh,
где  S — площадь основания и  h — высота;[7]
V={frac {1}{6}}V_{p},
где {textstyle  V_{p}} — объём параллелепипеда;
  • Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[8]:
V={frac {1}{6}}a_{1}a_{2}dsin varphi ,
где a_{1},a_{2} — скрещивающиеся рёбра , d — расстояние между a_{1} и a_{2} , varphi  — угол между a_{1} и a_{2};
  • Боковая поверхность — это сумма площадей боковых граней:
S_{b}=sum _{i}^{}S_{i}
  • Полная поверхность — это сумма площади боковой поверхности и площади основания:
 S_{p}=S_{b}+S_{o}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
{displaystyle S_{b}={frac {1}{2}}Pa={frac {n}{2}}b^{2}sin alpha }
где a — апофема ,  P — периметр основания,  n — число сторон основания,  b — боковое ребро, alpha  — плоский угол при вершине пирамиды.

Особые случаи пирамиды[править | править код]

Правильная пирамида[править | править код]

Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами:

Прямоугольная пирамида[править | править код]

Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

Тетраэдр[править | править код]

Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.

См. также[править | править код]

  • Усечённая пирамида
  • Бипирамида

Примечания[править | править код]

  1. Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  2. Математика в понятиях, определениях и терминах. Ч. 1. Пособие для учителей. Под ред. Л. В. Сабинина. М., Просвещение, 1978. 320 с. С. 253.
  3. Б. Л. ван дер Варден. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — 3-е изд.. — М.: КомКнига, 2007. — 456 с. — ISBN 978-5-484-00848-3.
  4. М. Е. Ващенко-Захарченко. Начала Евклида с пояснительным введением и толкованиями. — Киев, 1880. — С. 473. — 749 с.
  5. Саакян С. М., Бутузов В. Ф. Изучение геометрии в 10—11-х классах: книга для учителя. — 4-е изд., дораб.. — М.: Просвещение, 2010. — 248 с. — (Математика и информатика). — ISBN 978-5-09-016554-9.
  6. Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.
  7. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, §357.
  8. Кушнир И. А. Триумф школьной геометрии. — К.: Наш час, 2005. — 432 с. — ISBN 966-8174-01-1.
  9. Готман Э. Свойства правильной пирамиды, вписанной в сферу Архивная копия от 22 января 2012 на Wayback Machine // Квант. — 1998. — № 4.

Литература[править | править код]

  • Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  • Калинин А. Ю., Терешин Д. А. Стереометрия. 11 класс. — 2-е изд. — М.: Физматкнига, 2005. — 332 с. — ISBN 5-89155-134-9.
  • А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
  • Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.

Ссылки[править | править код]

  • Бумажные модели пирамид Архивная копия от 4 января 2010 на Wayback Machine (англ.)
  • «Начала» Евклида.

Когда человек слышит слово “пирамида”, то сразу вспоминает величественные египетские сооружения. Тем не менее древние каменные гиганты являются лишь одним из представителей класса пирамид. В данной статье рассмотрим с геометрической точки зрения свойства правильной четырехугольной пирамиды .

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Литовские статуты: даты и история изданий, регламент, хронология принятия статутовВам будет интересно:Литовские статуты: даты и история изданий, регламент, хронология принятия статутов

Набор правильных пирамид

Мы видим что первая фигура имеет треугольное основание, вторая – четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Правильная четырехугольная пирамида

Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.

Правильная четырехугольная пирамида

Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).

Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.

Египетские пирамиды в Гизе являются правильными четырехугольными.

Далее приведем формулы, позволяющие определить все характеристики этой фигуры.

Четыре основных линейных параметра

Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.

Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:

b = √(a2 / 2 + h2)

Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):

ab = √(a2 / 4 + h2)

Очевидно, что боковое ребро b всегда больше апофемы ab.

Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.

Площадь и объем фигуры

Это еще два важных свойства правильной четырехугольной пирамиды . Основание фигуры имеет следующую площадь:

So = a2

Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:

Sb = 2 × a × ab

Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.

Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:

S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)

Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.

Развертка правильной пирамиды

Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:

V = 1/3 × h × a2

То есть V равен третьей части произведения высоты фигуры на площадь ее основания.

Свойства правильной усеченной четырехугольной пирамиды

Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.

Усеченная четырехугольная пирамида

Удобнее всего изучать характеристики усеченной пирамиды, если ее основания параллельны друг другу. В этом случае нижнее и верхнее основания будут подобными многоугольниками. Поскольку в четырехугольной правильной пирамиде основание – это квадрат, то образованное при срезе сечение тоже будет представлять квадрат, но уже меньшего размера.

Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.

Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:

V = 1/3 × h × (So1 + So2 + √(So1 × So2))

Здесь h – расстояние между основаниями фигуры, So1, So2 – площади нижнего и верхнего оснований.

Добавить комментарий