Как найти диагональ трапеции если она вписана

Узнать ещё

Знание — сила. Познавательная информация

Трапеция вписана в окружность

Рассмотрим несколько направлений решения задач, в которых трапеция вписана в окружность.

Когда трапецию можно вписать в окружность? Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать в окружность можно только равнобокую трапецию.

Радиус окружности, описанной около трапеции, можно найти как радиус окружности, описанной около из одного из двух треугольников, на которые трапецию делит ее диагональ.

Где находится центр окружности, описанной около трапеции? Это зависит от угла между диагональю трапеции и ее боковой стороной.

Если диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания:

Если диагональ трапеции образует с боковой стороной острый угол, центр окружности, описанной около трапеции лежит внутри трапеции.

Если диагональ трапеции образует с боковой стороной тупой угол, центр описанной около трапеции окружности лежит вне трапеции, за большим основанием.

Радиус описанной около трапеции окружности можно найти по следствию из теоремы синусов. Из треугольника ACD

Из треугольника ABC

Другой вариант найти радиус описанной окружности —

Синусы угла D и угла CAD можно найти, например, из прямоугольных треугольников CFD и ACF:

При решении задач на трапецию, вписанную в окружность, можно также использовать то, что вписанный угол равен половине соответствующего ему центрального угла. Например,

Кстати, использовать углы COD и CAD можно и для нахождения площади трапеции. По формуле нахождения площади четырехугольника через его диагонали

В равнобедренном треугольнике AMD углы при основании равны. Внешний угол CMD равен сумме внутренних углов, не смежных с ним:

Трапеция вписанная в окружность и ее свойства

Какими свойствами обладает трапеция, вписанная в окружность?

Трапеция — это четырехугольник. А четырехугольник можно вписать в окружность только тогда, когда сумма противолежащих углов составляет 180 градусов.
А это возможно только в равнобокой трапеции. То есть, только равнобокую трапецию можно вписать в окружность.

Давайте вспомним свойства равнобокой трапеции.

    В равнобокой трапеции угла при основаниях равны.

∠А = ∠С, ∠В = ∠D

∠А + ∠D = 180, ∠B + ∠С = 180

∠А + ∠С= 180, ∠B + ∠D = 180

Свойства трапеции равнобокой и трапеции, вписанной в окружность, часто можно встретить при решении задач. Поэтому нужно их помнить.

Как найти диагонали трапеции если она вписана в окружность

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<1>^<○>$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям – подобны.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

$$ 4.<9>^<○>$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` – диагональ, `c` – боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.<9>^<○>$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK“||“BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.<2>^<○>$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` – его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` – её точка пересечения с прямой `BC` (рис. 30б).

По построению `ACKD` – параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` – это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` – высота трапеции (рис. 31). По свойству $$ 4.<1>^<○>$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.<11>^<○>$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.<6>^<○>$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.<13>^<○>$$. Если `S_1` и `S_2` – площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.<14>^<○>$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` – какая-то сторона (или диагональ трапеции), `alpha` – смотрящий на неё вписанный угол.

[spoiler title=”источники:”]

http://zftsh.online/articles/5259

[/spoiler]

Диагональ выпуклого четырехугольника – это отрезок, соединяющий 2 противолежащие вершины. В
зависимости от типа геометрической фигуры диагональ обладает особыми свойствами, которые необходимо
знать и уметь применять на практике, так как большинство решений задач основывается именно на них. В
данной статье рассмотрены пути определения диагоналей, проведенных в трапеции.

Основные свойства фигуры и проведенных диагоналей способствуют выведению сокращенных формул, которые
помогут в решении задач по геометрии повышенного уровня. Рассмотрим несколько способов нахождения
искомого отрезка.

  • Диагональ трапеции через нижнее основание, боковую сторону
    и угол между ними
  • Диагональ трапеции через четыре стороны
  • Диагональ трапеции через высоту, нижнее основание и угол
    при нижнем основание
  • Диагональ трапеции через высоту, верхнее основание и угол
    при нижнем основание
  • Диагональ трапеции через высоту, нижнее основание и боковую
    сторону
  • Диагональ трапеции через высоту, основании и другую
    известную диагональ
  • Диагональ трапеции через площадь и другую известную
    диагональ
  • Диагональ трапеции через высоту, среднию линию и другую
    известную диагональ
  • Диагональ равнобедренной трапеции через основании и боковую
    сторону
  • Диагональ равнобедренной трапеции через высоту и среднию
    линию
  • Диагональ равнобедренной трапеции через высоту и
    основании
  • Диагональ равнобедренной трапеции через площадь и угол
    между диагоналями
  • Диагональ прямоугольной трапеции через основание и
    сторону
  • Диагональ прямоугольной трапеции через основание и
    высоту

Вычисление через нижнее основание, боковую сторону и угол между ними

Зная длину стороны, большего основания трапеции и противолежащий по отношению к диагонали угол, можно
быстро найти результат благодаря формуле:

D = √(a² + b² — 2ac * cos β)

где c — сторона трапеции, a — основание, β – угол между ними.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена диагональ, противолежащий к ней острый угол равен 75
градусам. Прилежащие к данному углу основание и сторона трапеции равны 6,1 и 7 см. Найти проведенный
отрезок. D = √(6,1² + 7³ —  2 * 6,1 * 7 * cos75°) = 8 см – искомая
величина.

Вычисление через известные длины четырех сторон трапеции

Допустим, что a, b – основания, c и d – боковые стороны. Значение диагонали с учетом этих данных
легко можно найти, подставив их в формулу:

D =√(c² + ab — a * (c² — d²) / (a — b))

где a, b — основания, c, d — боковые стороны трапеции.

Цифр после
запятой:

Результат в:

Пример. Дана трапеция с боковыми сторонами 6 и 5 см, основаниями 4 и 8 см. Нужно
найти диагональ, которая лежит против угла. Применим данную формулу для решения: D = √(36 + 4 * 8 — 4(36 — 25) / (8 — 4)) = √(36 + 32 — 44 / 4) = 7,5 см
– неизвестная диагональ.

Вычисление через высоту, нижнее основание и угол при нижнем основании

Зная длину проведенной в трапеции высоты к нижнему основанию, значение которого также известно, и
один из двух углов при нижнем основании фигуры, можно найти диагональ, применив формулу:

D = √(h² + (a — h * ctg β)²)

где h — высота, a — нижнее основание, β – внутренний угол при основании.

Цифр после
запятой:

Результат в:

Пример. К нижнему основанию трапеции равному 7 м проведена высота, длина которой 8
м. Известен угол между нижним основанием и боковой стороной — 71°. Найти диагональ,
противолежащую известному углу. D = √(64 + (7 — 8 * ctg 71°)²) = 9 м
– длина искомого отрезка.

Вычисление через высоту, верхнее основание и угол при нижнем основании

В данном случае не нужно тратить время на поиски нижнего основания трапеции, стоит воспользоваться
формулой:

D = √(h² + (b + h * ctg α)²)

где b – длина верхнего основания трапеции.

Цифр после
запятой:

Результат в:

Пример. К нижнему основанию трапеции проведена высота длиной 6 мм. Длина верхнего
основания фигуры равна 4 мм, а внутренний угол — 71°. Найти: значение диагонали трапеции,
проходящей через вершину известного угла. D = √(36 + (4 + 6 * ctg 71°)²) = 8,5 мм.

Вычисление через высоту, нижнее основание и боковую сторону

Если известна длина одной из боковых сторон, нижнее основание и высота, проведенная к нему,
необходимо применить формулу:

D = √(a² + c² — 2a * √(c² — h²))

где a – нижнее основание трапеции, c – боковая сторона, h — высота.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена высота длиной 8 см к нижнему основанию длиной 7 см.
Известно, что одна из боковых сторон равна 9 см. Найти: диагональ, противолежащую острому углу между
нижним основанием и известной боковой стороной. D = √(49 + 81 — 14√81 — 64) = √(130 — 14√17) = √72,3 = 8,5 см
– искомая величина.

Вычисление через высоту, основании и другую известную диагональ

Кроме данных о высоте, верхнем и нижнем основании, одной из диагоналей, необходимо значить величину
углов, образующихся при пересечении диагоналей трапеции. Известно, что углы между отрезками
считаются смежными, а значит их синусы равны. Таким образом, подставляем все данные в формулу:

D = h(a+b) / d * sin α

где a, b – основания трапеции, α – острый или тупой угол между диагоналями, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана трапеция с основаниями 15 и 5 мм. Проведена высота длиной 10 мм, а
длина большей диагонали равна 20 мм. Найти: вторую диагональ, если известно, что угол при
пересечении отрезков равен 60°. D = 20(15 + 5) / 20 * sin 60° = 20 / sin 60° = 11,54 мм.

Вычисление через площадь трапеции и другую известную диагональ

Здесь также понадобится значение угла между данными отрезками. Способ нахождения через известную
площадь фигуры и другую диагональ имеет формулу вида:

D = 2S / d * sin α

где S – площадь, α – угол, d — известная диагональ

Цифр после
запятой:

Результат в:

Пример. Дана трапеция площадью 87 мм² с диагональю длиной 14,7 мм. Как найти
неизвестную диагональ, если угол между отрезками равен 65 градусам. D = 2 * 87 / 14,7 * sin 65° = 174 / 14,7 * sin 65° = 13 мм
– искомая величина.

Вычисление через высоту, среднюю линию и другую известную диагональ

Средняя линия трапеции – это отрезок, проходящий через середины боковых сторон данного
четырёхугольника. Через это значение искомая диагональ находится по формуле:

D = 2 * mh / d * sin α

где буквой m обозначается средняя линия трапеции, h — высота, d — известная
диагональ.

Цифр после
запятой:

Результат в:

Пример. Диагонали трапеции, одна из которых равна 19 мм, пересекаются под углом 65
градусов. Проведена средняя, длина которой 8 мм, а высота трапеции равна 15,5 мм. Найти: вторую
диагональ. D = 2 * 8 * 15,5 / 19 * sin 65° = 13 * sin 65° = 14,4 мм
длина неизвестной диагонали.

Диагональ равнобедренной трапеции через основания и боковую сторону

Равнобедренная трапеция – часто встречающийся вид данного четырёхугольника. Основными признаками
равнобедренной фигуры служит равенство внутренних углов при основании, а также равенство диагоналей.
Найти диагональ, проведенную в равнобедренной трапеции, можно несколькими способами. К примеру,
вычислить искомую величину можно по формуле:

D = √(c² + a * b)

где c – известная боковая сторона, a и b – верхнее и нижнее основание трапеции.

Цифр после
запятой:

Результат в:

Пример. Углы трапеции при основаниях, равных 8 и 18 см, имеют одинаковую градусную
меру. Одна из боковых сторон равна 6 см. Найти: диагональ. Из равенства углов делаем вывод, что дана
равнобедренная трапеция. Затем подставляем известные значения в формулу: D = √(36 + 8 * 18) = √180 = 13,4 см
– длина диагоналей равнобедренной трапеции.

Диагональ равнобедренной трапеции через высоту и среднюю линию

Зная длину высоты и отрезок, проходящий через середины сторон равнобедренной трапеции, можно легко
найти искомую величину по формуле:

D = √(h² + m²)

где буквой m обозначена средняя линия, а h — высота.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена высота длиной 7 м, диагонали равны. Как найти
диагонали, если известна длина средней линии – 9 м? Из равенства диагоналей можно сделать вывод, что
трапеция равнобедренная. А значит, что для быстрого решения нужно воспользоваться выше указанной
формулой: D = √(7² + 9²) = √(49+81) = √130 = 14,4 м – диагонали трапеции.

Диагональ равнобедренной трапеции через высоту, верхнее и нижнее основание

Формула нахождения искомого отрезка при помощи высоты и известных величин оснований имеет следующий
вид:

D = √(h² + (a² + b²) / 4)

где a и b – верхнее и нижнее основание равнобедренной трапеции, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана равнобедренная трапеция, в которой к нижнему основанию проведена высота
длиной 7 см. Основания – 5 и 11 см. Найти: диагонали. D = √(7² +(5² + 11²) / 4) = √(49 + 146 / 4) = √85,5 = 10,6 см
– длина диагоналей.

Диагональ равнобедренной трапеции через площадь и угол между диагоналями

Как уже говорилось, синусы углов, образованных пересечением диагоналей, равны, так как углы являются
смежными. Поэтому для вычисления по следующей формуле, необходим любой из этих углов. Формула:

D = √2*S / sin α

где S — площадь, sin α — угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Дана равнобедренная трапеция, площадь которой равна 86 мм². Найти: длину
диагоналей, один из углов при пересечении которых равен 120 градусам. D = √(2 * 86 / sin 120°) = √(172 / sin 120°) = 14 мм.

Диагональ прямоугольной трапеции через основание и сторону

В прямоугольной трапеции одна из боковых сторон расположена перпендикулярно основаниям (под углом
90°). Зная одно из оснований такого четырёхугольника и боковую сторону, можно легко найти диагональ,
применив следующую формулу:

D = √(a² + c²)

где a – основание, c — сторона.

Цифр после
запятой:

Результат в:

Пример. Внутренний угол трапеции между боковой стороной и основаниями равен 90
градусам. Сторона равна 20 м, нижнее основание – 15 м. Найти: диагональ трапеции, противолежащую
прямому углу. Исходя их известных данных, делаем вывод, что дана прямоугольная трапеция. Затем
подставляем значения в формулу: D = √(20²+15²) = 25 м. Аналогичный способ
решения можно применить для того случая, когда известна длина верхнего основания.

Диагональ прямоугольной трапеции через основание и высоту

В данном случае высота равна боковой стороне, перпендикулярной основанию, поэтому вместо стороны в
формулу просто подставляется значение высоты при необходимости:

D = √(a² + h²)

где a — основание, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана прямоугольная трапеция с высотой равной 15 см и основанием — 10
см. Найти: диагональ. D = √(15² + 10²) = 18 см.

Трапеция – выпуклая плоская геометрическая фигура, которая представляет собой четырёхугольник.
Обязательным условием данного вида является параллельность двух сторон (они называются основаниями).
Как и упоминалось выше, в зависимости от боковых сторон трапеция может быть равнобедренной и
прямоугольной.

Рассмотрим некоторые свойства четырёхугольника, знание которых необходимо для решения самых
простейших задач:

  • В трапецию можно вписать окружность, если сумма оснований равна сумме боковых сторон.
  • Средняя линия параллельна основаниям, M=(a+b)/2, где a и b – основания.
  • На одной прямой лежат точки пересечения диагоналей и продолжения длин боковых сторон.

Диагональ, построенная в данной фигуре, отличается следующими свойствами:

  • Диагонали разделяют фигуру на 2 подобных треугольника, углы которых равны, а стороны
    пропорциональны.
  • Проведенные диагонали также образуют 2 идентичных треугольника, стороны которых совпадают со
    сторонами трапеции.
  • Отрезок, проходящий через точку пересечения диагоналей и соединяющий основания фигуры, делится в
    пропорции, равной соотношению оснований фигуры.
  • Отрезок, проходящий через середины диагоналей, делит боковые стороны трапеции на 2 равные
    части.

В решении задач значение диагонали поможет определить немалое количество нужных величин: высота,
площадь, периметр, все стороны и среднюю линию трапеции, внутренние углы. Хорошие навыки применения
тригонометрических функций способствуют быстрой скорости решения по данных формулам, которые
значительно облегчают и ускоряют процесс.


Найти длину диагонали трапеции

зная все четыре стороны

или две стороны и угол

или высоту, сторону и угол

или площадь, другую диагональ и угол

и еще много других формул.

1. Формулы длины диагоналей трапеции по теореме косинусов или через четыре стороны

Формулы диагонали трапеции по теореме косинусов

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции по теореме косинусов:

Все формулы диагонали трапеции

Все формулы диагонали трапеции

Формулы диагоналей трапеции через четыре стороны:

Формулы диагонали трапеции через стороны

Формулы диагонали трапеции через стороны

2. Формула длины диагоналей трапеции через высоту

Формула длины диагоналей трапеции через высоту

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции через высоту:

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту


3. Формула длины диагонали трапеции через другую диагональ

Формула длины диагонали трапеции через другую диагональ

a – нижнее основание

b – верхнее основание

α, β углы между диагоналями

h – высота трапеции

m – средняя линия трапеции

S – площадь трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции :

Формулы диагонали трапеции через другую диагональ

Формулы диагонали трапеции через другую диагональ

Справедливо для данного случая :


4. Формулы длины диагонали трапеции через сумму квадратов диагоналей

Формулы длины диагоналей трапеции через сумму квадратов диагоналей

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

d1 , d2 – диагонали трапеции

Формула суммы квадратов диагоналей :

Сумма квадратов диагоналей трапеции

Формулы диагоналей трапеции :

Формула длины диагонали через сумму квадратов диагоналей трапеции

Формула длины диагонали через сумму квадратов диагоналей трапеци



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Подробности

Опубликовано: 23 октября 2013

Обновлено: 13 августа 2021

Помогите пожалуйста с задачей

Анна



Ученик

(88),
закрыт



11 лет назад

В окружность радиуса 2корня из 5 вписана трапеция с основаниями 8 и 2корня из 11. Нужно найти диагональ трапеции

Семен Аркадьевич

Высший разум

(340149)


11 лет назад

Эта задача имеет два варианта решения в зависимости от того находится ли центр окружности внутри трапеции или вне ее. Но в любом случае найди высоту. В одном случае она равна 5, в другом 1.
А высота, диагональ и средняя линия составляют прямоугольный треугольник. Не сложно найти диагональ.

Все вопросы в агент.

Виды трапеции

  1. Произвольная трапеция – это четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна)
  2. Равнобедренная трапеция – это такая трапеция, у которой боковые стороны равны
  3. Прямоугольная трапеция – это такая трапеция, у которой есть прямые углы при боковой стороне

Свойства трапеции

  1. Средняя линия трапеции (FE) параллельна основаниям и равна их полусумме
    $$
    FE = {AB + DC over 2}
    $$
  2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне
    Например: биссектриса AH отсекает на основании DC отрезок DH , который равен боковой стороне AD
  3. Треугольники AOB и DOC, образованные отрезками диагоналей и основаниями трапеции, подобны
  4. Треугольники AOD и BOC, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь
  5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (AD + BC = AB + DC)
  6. Отрезок (KL), соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии, т.е.
    $$
    KL = {DC – AB over 2}
    $$
  7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
  8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности

Свойства и признаки равнобедренной трапеции

  1. В равнобедренной трапеции углы при любом основании равны (∠ADC = ∠DCB и ∠DAB = ∠ABC)
  2. В равнобедренной трапеции длины диагоналей равны (AC = BD)
  3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная
  4. Около равнобедренной трапеции можно описать окружность
  5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований

Формулы площади произвольной трапеции

Площадь трапеции через основания и высоту

$$
S = {AB + DC over 2} * AG
$$

Площадь трапеции через среднюю линию и высоту

$$
S = FE * AG
$$

Площадь трапеции через диагонали и угол между ними

$$
S = {AC * BD over 2} * sin(∠AOD) = {AC * BD over 2} * sin(∠AOB)
$$

Площадь трапеции через четыре стороны

$$
S = {DC + AB over 2} * sqrt{AD^2 – ({(DC – AB)^2 + AD^2 – BC^2 over 2 * (DC – AB)})^2}
$$

Формулы площади равнобедренной трапеции

Площадь трапеции через стороны

$$
S = {DC + AB over 2} * sqrt{AD^2 – {(DC – AB)^2 over 4}}
$$

Площадь трапеции через стороны и угол

$$
S = AD * sin(∠ADC) * (DC – AD * cos(∠ADC))
$$
$$
S = AD * sin(∠ADC) * (AB + AD * cos(∠ADC))
$$

Площадь трапеции через диагонали и угол между ними

$$
S = {AC^2 over 2} * sin(∠AOD) = {AC^2 over 2} * sin(∠BOC)
$$

Площадь трапеции через среднюю линию, боковую сторону и угол при основании

$$
S = FE * AD * sin(∠ADC) = FE * AD * sin(∠DAB)
$$

Площадь трапеции если в нее вписана окружность

$$
S = {4 * R_В^2 over sin(∠ADC)} = {4 * R_В^2 over sin(∠DAB)}
$$
$$
S = {AB * DC over sin(∠ADC)} = {AB * DC over sin(∠DAB)}
$$

Формулы сторон произвольной трапеции

Основание через другое основание и среднюю линию

$$
AB = 2 * FE – DC
$$
$$
DC = 2 * FE – AB
$$

Основание через другое основание, диагонали и угол между ними

$$
DC = {AC * BD over AG} * sin(∠AOD) – AB
$$
$$
AB = {AC * BD over AG} * sin(∠AOD) – DC
$$

Длины сторон

$$
DC = AB + AG * (ctg(∠ADC) + ctg(∠BCD))
$$
$$
AB = DC – AG * (ctg(∠ADC) + ctg(∠BCD))
$$
$$
DC = AB + AD * cos(∠ADC) + BC * cos(∠BCD)
$$
$$
AB = DC – AD * cos(∠ADC) – BC * cos(∠BCD)
$$
$$
AD = {AG over sin(∠ADC)}
$$
$$
BC = {AG over sin(∠BCD)}
$$

Формулы сторон равнобедренной трапеции

Длины сторон

$$
AD = {AG over sin(∠ADC)}
$$
$$
AD = {DC – AB over 2 * cos(∠ADC)}
$$
$$
DC = AB + 2 * AG * ctg(∠ADC)
$$
$$
AB = DC – 2 * AG * ctg(∠ADC)
$$
$$
DC = AB + 2 * AB * cos(∠ADC)
$$
$$
AB = DC – 2 * AB * cos(∠ADC)
$$

Длина основания через диагональ, боковую сторону и другое основание

$$
DC = {AC^2 – DA^2 over AB}
$$
$$
AB = {AC^2 – DA^2 over DC}
$$

Длина боковой стороны через диагональ и основания

$$
AD = sqrt{AC^2 – AB * DC}
$$

Длина основания через высоту, другое основание, диагонали и угол между ними

$$
DC = {AC^2 over AG} * sin(∠AOD) – AB
$$
$$
AB = {AC^2 over AG} * sin(∠AOD) – DC
$$

Длина основания через высоту, другое основание и площадь трапеции

$$
DC = {2 * S over AG} – AB
$$
$$
AB = {2 * S over AG} – DC
$$

Длина боковой стороны через площадь трапеции, среднюю линию и угол при основании

$$
AD = {S over FE * sin(∠ADC)} = {S over FE * sin(∠DAB)}
$$

Длина боковой стороны через площадь трапеции, основания и угол при основании

$$
AD = {2 * S over (AB + DC) * sin(∠ADC)}
$$
$$
AD = {2 * S over (AB + DC) * sin(∠DAB)}
$$

Формулы сторон прямоугольной трапеции

Длины оснований

$$
DC = AB + BC * cos(∠BCD) = AB + AD * ctg(∠BCD)
$$
$$
AB = DC – BC * cos(∠BCD) = DC – AD * ctg(∠BCD)
$$
$$
DC = AB + sqrt{BC^2 – AD^2}
$$
$$
AB = DC – sqrt{BC^2 – AD^2}
$$

Длина основания через боковую сторону, другое основание, диагонали и угол между ними

$$
DC = {AC * BD over AD} * sin(∠AOD) – AB
$$
$$
AB = {AC * BD over AD} * sin(∠AOD) – DC
$$

Длина основания через площадь трапеции, другое основание и высоту

Высота в прямоугольной трапеции равна стороне, которая перпендикулярна основаниям (AD = AG)
$$
DC = {2 * S over AD} – AB
$$
$$
AB = {2 * S over AD} – DC
$$

Формулы диагоналей произвольной трапеции

Длина диагоналей через четыре стороны

$$
BD = sqrt{BC^2 + DC * AB – {DC * (BC^2 – AD^2) over DC – AB}}
$$
$$
AC = sqrt{AD^2 + DC * AB – {DC * (AD^2 – BC^2) over DC – AB}}
$$

Длина диагоналей по теореме косинусов

$$
BD = sqrt{DC^2 + BC^2 – 2 * DC * BC * cos(∠BCD)}
$$
$$
AC = sqrt{DC^2 + AD^2 – 2 * DC * AD * cos(∠ADC)}
$$

Длина диагоналей через высоту

$$
BD = sqrt{AG^2 + (DC – AG * ctg(∠BCD))^2}
$$
$$
BD = sqrt{AG^2 + (AB + AG * ctg(∠ADC))^2}
$$
$$
BD = sqrt{DC^2 + BC^2 – 2 * DC * sqrt{BC^2 – AG^2}}
$$
$$
AC = sqrt{AG^2 + (DC – AG * ctg(∠ADC))^2}
$$
$$
AC = sqrt{AG^2 + (AB + AG * ctg(∠BCD))^2}
$$
$$
AC = sqrt{DC^2 + AD^2 – 2 * DC * sqrt{AD^2 – AG^2}}
$$

Длина диагоналей через стороны и другую диагональ

$$
BD = sqrt{AD^2 + BC^2 + 2 * DC * AB – AC^2}
$$
$$
AC = sqrt{AD^2 + BC^2 + 2 * DC * AB – BD^2}
$$

Длина диагоналей через высоту, основания, другую диагональ и угол между диагоналей

$$
BD = {AG * (DC + AB) over AC * sin(∠AOD)}
$$
$$
AC = {AG * (DC + AB) over BD * sin(∠AOD)}
$$
$$
sin(∠AOD) = sin(∠AOB)
$$

Длина диагоналей через площадь трапеции, другую диагональ и угол между диагоналей

$$
BD = {2 * S over AC * sin(∠AOD)}
$$
$$
AC = {2 * S over BD * sin(∠AOD)}
$$
$$
sin(∠AOD) = sin(∠AOB)
$$

Длина диагоналей через среднюю линию, высоту, другую диагональ и угол между диагоналей

$$
BD = {2 * FE * AG over AC * sin(∠AOD)}
$$
$$
AC = {2 * FE * AG over BD * sin(∠AOD)}
$$
$$
sin(∠AOD) = sin(∠AOB)
$$

Формулы диагоналей равнобедренной трапеции

Длина диагоналей через стороны

$$
AC = sqrt{AD^2 + AB * DC}
$$

Длина диагоналей по теореме косинусов

$$
AC = sqrt{DC^2 + AD^2 – 2 * DC * AD * cos(∠ADC)}
$$
$$
AC = sqrt{DC^2 + AD^2 + 2 * DC * AD * cos(∠DAB)}
$$

$$
AC = sqrt{AB^2 + AD^2 – 2 * AB * AD * cos(∠DAB)}
$$
$$
AC = sqrt{AB^2 + AD^2 + 2 * AB * AD * cos(∠ADC)}
$$

Длина диагоналей

$$
AC = sqrt{AG^2 + FE^2}
$$
$$
AC = sqrt{AG^2 + {(DC + AB)^2 over 4 }}
$$
$$
AC = sqrt{{AG * (AB + DC) over sin(∠AOD)}} = sqrt{{2 * S over sin(∠AOD)}} = sqrt{{2 * FE * AG over sin(∠AOD)}}
$$

Длина диагоналей через высоту основание и угол при основании

$$
AC = sqrt{AG^2 + (DC – AG * ctg(∠ADC))^2}
$$
$$
AC = sqrt{AG^2 + (AB + AG * ctg(∠ADC))^2}
$$

Длина диагоналей через сторону и высоту

$$
AC = sqrt{DC^2 + AD^2 – 2 * DC * sqrt{AD^2 – AG^2}}
$$

Формулы диагоналей прямоугольной трапеции

$$
BD = sqrt{AD^2 + AB^2}
$$
$$
AC = sqrt{AC^2 + DC^2}
$$

Формулы средней линии произвольной трапеции

Длина средней линии через основания

$$
FE = {DC + AB over2}
$$

Длина средней линии через основание, высоту и углы при нижнем основании

$$
FE = DC – AG * {ctg(∠ADC) + ctg(∠BCD) over 2}
$$
$$
FE = AB + AG * {ctg(∠ADC) + ctg(∠BCD) over 2}
$$

Длина средней линии через диагонали, высоту и угол между диагоналями

$$
FE = {AC * BD over 2 * AG} * sin(∠AOD)
$$
$$
FE = {AC * BD over 2 * AG} * sin(∠AOB)
$$

Длина средней линии через площадь и высоту

$$
FE = {S over AG}
$$

Формулы средней линии равнобедренной трапеции

Длина средней линии через основания

$$
FE = {DC + AB over2}
$$

Длина средней линии через основание, высоту и углы при нижнем основании

$$
FE = DC – AG * ctg(∠ADC) = AB + AG * ctg(∠ADC)
$$

Длина средней линии через основания, боковую сторону и высоту

$$
FE = DC – sqrt{AD^2 – AG^2} = AB + sqrt{AD^2 – AG^2}
$$

Длина средней линии через диагонали, высоту и угол между диагоналями

$$
FE = {AC^2 over 2 * AG} * sin(∠AOD) = {AC^2 over 2 * AG} * sin(∠AOB)
$$

Длина средней линии через площадь и боковую сторону

$$
FE = {S over AD * sin(∠ADC)}
$$

Формулы средней линии прямоугольной трапеции

Длина средней линии через основания, высоту и угол при нижнем основании

$$
FE = DC – AG * {ctg(∠BCD) over 2}
$$
$$
FE = AB + AG * {ctg(∠BCD) over 2}
$$

Длина средней линии через основания, боковую сторону и угол при нижнем основании

$$
FE = DC – BC * {cos(∠BCD) over 2}
$$
$$
FE = AB + BC * {cos(∠BCD) over 2}
$$

Длина средней линии через основания и боковые стороны

$$
FE = DC – {sqrt{BC^2 – AD^2} over 2}
$$
$$
FE = AB + {sqrt{BC^2 – AD^2} over 2}
$$

Длина средней линии через диагонали, высоту и угол между диагоналями

$$
FE = {AC * BD over 2 * AG} * sin(∠AOD)
$$
$$
FE = {AC * BD over 2 * AG} * sin(∠AOB)
$$

Формулы высоты произвольной трапеции

Длина высоты через четыре стороны

$$
AG = sqrt{AD^2 – ({(DC – AB)^2 + AD^2 – BC^2 over 2 * (DC – AB)})^2}
$$

Длина высоты через боковую сторону и прилегающий угол к основанию

$$
AG = AD * sin(∠ADC) = BC * sin(∠BCD)
$$

Длина высоты через диагонали и углы между ними

$$
AG = {AC * BD over AB + DC} * sin(∠AOD)
$$
$$
AG = {AC * BD over AB + DC} * sin(∠AOB)
$$

Длина высоты через среднюю линию, диагонали и углы между ними

$$
AG = {AC * BD over 2 * FE} * sin(∠AOD)
$$
$$
AG = {AC * BD over 2 * FE} * sin(∠AOB)
$$

Длина высоты через площадь и основания

$$
AG = {2 * S over AB + DC}
$$

Длина высоты через площадь и среднюю линию

$$
AG = {S over FE}
$$

Формулы высоты равнобедренной трапеции

Длина высоты через по сторонам

$$
AG = sqrt{AD^2 – {(DC – AB)^2 over 4}}
$$

Длина высоты через боковую сторону и прилегающий угол к основанию

$$
AG = AD * sin(∠ADC)
$$

Длина высоты через основания и прилегающий угол к основанию

$$
AG = {DC – AB over 2} * tg(∠ADC)
$$

Длина высоты через диагонали и углы между ними

$$
AG = {AC^2 over AB + DC} * sin(∠AOD)
$$
$$
AG = {AC^2 over AB + DC} * sin(∠AOB)
$$

Длина высоты через площадь и основания

$$
AG = {2 * S over AB + DC}
$$

Длина высоты через площадь и среднюю линию

$$
AG = {S over FE}
$$

Формулы боковых сторон прямоугольной трапеции

Сторона AD

Сторона AD в прямоугольной трапеции равна высоте, поэтому все формулы высоты произвольной трапеции актуальны для стороны AD прямоугольной трапеции.

Сторона BC по трём сторонам

$$
BC = sqrt{AD^2 + (DC – AB)^2}
$$

Сторона BC через основания и угол ∠BCD

$$
BC = {DC – AB over cos(∠BCD)}
$$

Сторона BC через Сторону AD

$$
BC = {AD over sin(∠BCD)}
$$

Сторона BC через площадь, среднюю линию и угол ∠BCD

$$
BC = {S over FE * sin(∠BCD)}
$$

Сторона BC через площадь, основания и угол ∠BCD

$$
BC = {2 * S over (AB + DC) * sin(∠BCD)}
$$

Добавить комментарий