Прямоугольник – плоская геометрическая фигура. Прямоугольник – это четырехугольник, у которого все углы прямые. Как же найти диагональ квадрата, если известны длины его сторон?
Разделим прямоугольник диагональю на два равных треугольника. В этом случае диагональ будет являться гипотенузой этих треугольников. А, как известно из теоремы Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
Итак, для поиска диагонали прямоугольника необходимо:
найти сумму квадратов сторон прямоугольника а2 + b2, где а и b – длины сторон прямоугольника;
извлечь из полученного результата квадратный корень.
Пример:
Определим длину диагонали прямоугольника со сторонами 3 и 4 см.
Находим сумму квадратов сторон прямоугольника 32 + 42 = 9 + 16 = 25.
Извлечь из полученного результата квадратный корень – длина диагонали равна 5 см.
Вот пример задачи.
Периметр прямоугольника равен 34, а площадь 60. Найти диагональ прямоугольника. Найти диагональ прямоугольника
Обозначим стороны пр-ка как a и b
Тогда a+b=17
ab=60
По теореме Виета Стороны будут корнямии ур-ния
х²-17х+60=0 Решая, получим: a=12;b=5
Искомая диагональ находится по теореме Пифагора.
d=√a²+b² =13(см)
Одна из основных фигур курса математики – прямоугольник.
Впервые о нем заговорили еще в Древнем Египте, а позже и в
Древней Греции. Именно свойства его диагоналей помогают
решить многие задания учебного курса. Подход, который
сейчас используется в геометрии разработал Евклид. Формулы,
представленные в данной статье, пригодятся как при решении
домашних упражнений, так и на ЕГЭ. Именно такие задачки
помогают набрать недостающие баллы, поэтому ими не стоит пренебрегать.
- Диагональ прямоугольника через его стороны
- Диагональ прямоугольника через площадь и известную сторону
- Диагональ прямоугольника через периметр и сторону
- Диагональ прямоугольника через диаметр описанной окружности
- Диагональ прямоугольника через радиус описанной окружности
- Диагональ прямоугольника через площадь и острый угол между диагоналями
- Диагональ прямоугольника через угол прилегающей диагонали и длину стороны прилегающей к этому углу
- Диагональ прямоугольника через угол прилегающей диагонали и длину стороны противоположной этому углу
- Что такое диагональ прямоугольника, когда требуется ее вычисление
Диагональ прямоугольника через его стороны
Если заданы хотя бы 2 стороны, то вычислить линию, соединяющую противоположные вершины, будет довольно просто. Применяется классическая теорема Пифагора. Достаточно подставить приведенные в дано числовые параметры в виде суммы квадратов под корнем:
Где a, b – это стороны, а d – прямая, которую мы ищем.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через площадь и известную сторону
Когда в дано есть S и одна сторона, то узнать искомое значение можно используя следующее равенство:
Где D – это прямая, которую необходимо найти, a и b – любая заданная сторона, а S – площадь.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через периметр и сторону
Когда задан периметр (сумма сторон) и, хотя бы одна сторона, отрезок, соединяющий несмежные точки высчитывают так:
Где P – сумма сторон, a и b – любая заданная сторона.
Рассчитать искомый отрезок можно и через соотношение сторон и площадь.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через диаметр описанной окружности
Поиск отрезка через описанную окружность еще более прост, здесь даже не придется проводить расчеты: D = d
Где d – это обозначенный диаметр.
Различить вписанную/описанную окружность легко. Когда геометрическое тело вписано куда-то, то оно всегда будет находиться в другой фигуре. Когда окружность описана, то она находится снаружи, она как бы описывает другое геометрическое тело. Описанные фигуры задевают собой точки, а вписанные – касаются сторон.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через радиус описанной окружности
Для расчета искомого отрезка через описанную окружность нужно провести вычисления, где: D = 2R
Где R – это заданный радиус.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через площадь и острый угол между диагоналями
Если необходимо узнать прямую, соединяющую вершины 4-хугольника, это можно осуществить с помощью двух диагоналей. Для получения ответа к задаче понадобится sin β между ними и S (произведение длины и ширины).
Расчет проводится с равенством:
Где соответственно S – это площадь, а sin β – это острый угол, расположенный внутри фигуры (меж пересекающимися прямыми).
Если в 4-хугольнике расчертить 2 отрезка, объединяющие несмежные вершины, то они будут равны меж собой (все 4 отрезка), а точка пересечения разделит их пополам.
Пересечение всегда происходит в геометрическом центре самой фигурки. Этот же центр является центром описанной окружности.
Площадь (S):
Цифр после запятой:
Результат в:
Диагональ прямоугольника через угол прилегающей диагонали и длину стороны прилегающей к этому углу
Когда одна из сторон 4-хугольника прилегает к углу, то просчитать отрезок, соединяющий вершины тоже возможно:
Где b – это сторона, прилегающая к углу, а cos a – это тот самый угол.
Косинус угла в треугольнике с прямым углом рассчитывается по формуле – длина соседней стороны, разделенная на гипотенузу. Синус – это противолежащий катет, разделенный на гипотенузу. Либо можно поступить еще проще, подсмотрев в таблицу Брадиса.
Цифр после запятой:
Результат в:
Диагональ прямоугольника через угол прилегающей диагонали и длину стороны противоположной этому углу
Чтобы найти нужный отрезок внутри четырехугольника, должен быть задан угол, прилегающий к искомому отрезку и сторона, противоположная углу:
Где a – это сторона четырехугольника, а sin a – это прилегающий угол.
Длинная сторона 4-хугольника– это длина, а короткая – его ширина. Помните, что каждая сторона одновременно является высотой.
Цифр после запятой:
Результат в:
Что такое диагональ прямоугольника, когда требуется ее вычисление
Прямоугольник – это частный случай параллелограмма. Иначе 4-хугольник с попарно равными сторонами, параллельными друг другу, а также равными прямыми углами по 90⁰. Сумма углов четырехугольника составляет 360⁰.
Диагональ разделяет фигуру на два новых элемента – треугольники с прямым углом. Это прямая, объединяющая противоположные вершины. Имея 2 прямоугольных треугольника, отрезок уже можно рассчитать по теореме Пифагора. По теореме гипотенуза – это квадрат из суммы катетов (обозначенных сторон треугольника), возведенных в квадрат.
Линии, соединяющие противоположные точки в четырехугольнике всегда пересекаются друг с другом.
Отрезок обозначают как d или D. Если названы все точки, то его можно называть в соответствии с ними – AC или BD.
Знания о линии, проходящей через несмежные точки 4-хугольника может понадобиться в легких геометрических упражнениях, так и в более сложных многоуровневых задачках, которые появляются на ЕГЭ. Свойства данного отрезка помогают находить важные параметры прямоугольника. Зная данные обеих линий, соединяющих противоположные углы, можно рассчитать S геометрического тела.
Перед решением любой геометрической задачки рекомендуется сделать чертеж и обозначить всю заданную информацию. Так будет значительно проще сосредоточиться на искомом значении.
Если регулярно решать тесты по геометрии, то формулы легче запомнятся, а их применение будет доведено до автоматизма.
Посчитать диагональ прямоугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Посчитать диагональ прямоугольника
Чтобы посчитать диагональ прямоугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Посчитать чему равна диагональ (d) любого прямоугольника (в том числе и квадрата) можно зная длины его сторон (a и b).
Просто подставьте их в калькулятор и получите результат.
Чему равна диагональ прямоугольника если сторона
a = ,
а сторона
b = ?
Ответ: d =
0
Теория
Чему равна диагональ прямоугольника d если известны длина стороны a и длина стороны b?
Формула
d = √a2 + b2
Пример
Если сторона a = 10 см, а сторона b = 5 см, то:
d = √102 + 52 = √100 + 25 ≈ 11.18 см
См. также
Загрузить PDF
Загрузить PDF
Диагональ — это отрезок, который соединяет две противолежащие вершины прямоугольника.[1]
В прямоугольнике две равные диагонали.[2]
Если известны стороны прямоугольника, диагональ можно найти по теореме Пифагора, потому что диагональ делит прямоугольник на два прямоугольных треугольника. Если стороны не даны, но известны другие величины, например, площадь и периметр или отношение сторон, можно найти стороны прямоугольника, а затем по теореме Пифагора вычислить диагональ.
-
1
-
2
-
3
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
4
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[5]
Вы найдете , то есть гипотенузу треугольника, а значит и диагональ прямоугольника.Реклама
-
1
Запишите формулу для вычисления площади прямоугольника. Формула: , где — площадь прямоугольника, — длина прямоугольника, — ширина прямоугольника.[6]
(На рисунке вместо S использовано обозначение А.) -
2
В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо .
- Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула запишется так: .
-
3
Перепишите формулу так, чтобы обособить . Для этого разделите обе стороны уравнения на . Затем полученное выражение нужно подставить в формулу для вычисления периметра.
-
4
Запишите формулу для вычисления периметра прямоугольника. Формула: , где — длина прямоугольника, — ширина прямоугольника.[7]
-
5
В формулу подставьте значение периметра прямоугольника. Это значение подставляется вместо .
- Например, если периметр прямоугольника равен 24 сантиметра, формула запишется так: .
-
6
Разделите обе стороны уравнения на 2. Вы получите сумму сторон прямоугольника, а именно .
-
7
В формулу подставьте выражение для вычисления . Это выражение, полученное при обособлении .
-
8
Избавьтесь от дроби. Для этого обе части уравнения умножьте на .
-
9
Приравняйте уравнение к 0. Для этого из обеих сторон уравнения вычтите член с переменной первого порядка.
-
10
Упорядочьте члены уравнения. Первым членом будет член с переменной второго порядка, затем член с переменной первого порядка, а затем свободный член. При этом не забудьте про знаки («плюс» и «минус»), которые стоят перед членами. Обратите внимание, что уравнение запишется в виде квадратного уравнения.
-
11
Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.
-
12
Найдите . Для этого приравняйте каждый множитель к нулю и вычислите . Вы получите два значения (это корни уравнения), которые в случае прямоугольника являются его длиной и шириной.
-
13
-
14
-
15
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
16
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[10]
Вы найдете , то есть гипотенузу треугольника, а значит, и диагональ прямоугольника.Реклама
-
1
-
2
-
3
В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо .
- Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула примет вид: .
-
4
В формулу подставьте выражение, характеризующее отношение сторон. В случае прямоугольника можно подставить выражение для вычисления или .
-
5
Запишите квадратное уравнение. Для этого раскройте скобки и приравняйте уравнение к нулю.
-
6
Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.
-
7
Найдите . Для этого приравняйте каждый множитель к нулю и вычислите . Вы получите два значения (так называемые корни уравнения).
-
8
Подставьте найденное значение ширины (или длины) в уравнение, характеризующее отношение сторон. Так можно найти другую сторону прямоугольника.
-
9
-
10
-
11
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
12
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[16]
Вы найдете , то есть гипотенузу треугольника, а значит и диагональ прямоугольника.Реклама
Об этой статье
Эту страницу просматривали 555 469 раз.
Была ли эта статья полезной?
Содержание
- – Как найти диагональ в треугольнике?
- – Как правильно рассчитать диагональ?
- – Как найти площадь прямоугольника по диагонали?
- – Как можно найти диагональ прямоугольника?
- – Что такое диагональ в треугольнике?
- – Как найти диаметр прямоугольника?
- – Как найти длину диагонали?
- – Как найти длину стороны ромба если известны диагонали?
- – Как найти площадь по диагонали?
- – Как найти площадь по стороне и диагонали?
- – Как найти площадь прямоугольника в 4 классе?
- – Как найти диагональ в четырехугольнике?
- – Как найти диагональ ромба?
- – Как найти диагональ в параллелограмме?
Площадь прямоугольника равна произведению длины стороны a на длину стороны b. Периметр прямоугольника равен удвоенной сумме сторон a и b. Диагональ прямоугольника равна квадратному корню из суммы квадратов сторон a и b.
Как найти диагональ в треугольнике?
Диагональ прямоугольника или квадрата всегда:
- Делит фигуру на две равных прямоугольных треугольника.
- В полученных треугольниках диагональ будет являться гипотенузой
- Диагональ будет равняться корню квадратному из суммы квадратов катетов согласно теореме Пифагора
Как правильно рассчитать диагональ?
Если известны длины сторон прямоугольника, несложно определить его диагональ, используя теореме Пифагора. Согласно теоремы квадрат гипотенузы равен сумме квадратов катетов.
Как найти площадь прямоугольника по диагонали?
Площадь прямоугольника равна половине произведения квадрата его диагонали на синус угла между диагоналями.
Как можно найти диагональ прямоугольника?
Рассматриваемый параметр можно найти, используя периметр основной геометрической фигуры, ее площадь или соотношение соответствующих сторон. Для этого используют формулу диагонали прямоугольника: $d=sqrt{a^2+b^2}$, где а и b – стороны прямоугольника.
Что такое диагональ в треугольнике?
Диагональ треугольника – это несуществующий элемент треугольника. По определению, диагональю называется элемент геометрической фигуры под названием отрезок, соединяющий две вершины, которые не лежат на одной стороне.
Как найти диаметр прямоугольника?
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя. , то есть гипотенузу треугольника, а значит и диагональ прямоугольника.
Как найти длину диагонали?
Площадь прямоугольника равна произведению длины стороны a на длину стороны b. Периметр прямоугольника равен удвоенной сумме сторон a и b. Диагональ прямоугольника равна квадратному корню из суммы квадратов сторон a и b.
Как найти длину стороны ромба если известны диагонали?
сторона ромба равна половине корня из суммы квадратов его диагоналей.
Как найти площадь по диагонали?
Формулы площади квадрата
- Формула площади квадрата по длине стороны Площадь квадрата равна квадрату длины его стороны. S = a2
- Формула площади квадрата по длине диагонали Площадь квадрата равна половине квадрата длины его диагонали. S = d2 где S – площадь квадрата, a – длина стороны квадрата, d – длина диагонали квадрата.
Как найти площадь по стороне и диагонали?
Если известны любая сторона и диагональ
Умножьте длину известной стороны на полученное число. S — искомая площадь прямоугольника; a — известная сторона; d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).
Как найти площадь прямоугольника в 4 классе?
Для вычисления площади прямоугольника нужно умножить его длину на ширину. Запомните! Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Как найти диагональ в четырехугольнике?
Кроме того, диагональ можно найти, зная площадь квадрата. Она равна: S = d^2/2. Отсюда длину диагонали вычислите по формуле: d = √2S. Несколько иным образом решайте задачу, когда дан не прямоугольник, а параллелограмм.
Как найти диагональ ромба?
Величину длинной диагонали выражаем как: AC =2a*cos(α/2).
Как найти диагональ в параллелограмме?
Диагонали параллелограмма
- Формулы диагоналей параллелограмма через стороны и косинус угла β (по теореме косинусов) d1 = √a2 + b2 – 2ab·cosβ …
- Формулы диагоналей параллелограмма через стороны и косинус угла α (по теореме косинусов) …
- Формула диагонали параллелограмма через две стороны и известную другую диагональ:
Интересные материалы:
Как списать Самортизированные основные средства РК?
Как списать самортизированные основные средства с баланса?
Как списать товары которых нет?
Как списывать расходы будущих периодов?
Как спланировать гардеробную комнату?
Как спорт влияет на похудение?
Как стать гражданкой России?
Как стать резидентом Финляндии?
Как ставить сетки на окна?
Как ставить степень на клавиатуре?