Задача 31272 Известна точка пересечения диагоналей.
Условие
Известна точка пересечения диагоналей квадрата К( 1,5; 2,5) и уравнение одной из его сторон х-4у = 0. Найти координаты вершин квадрата и составить уравнения его диагоналей.
Все решения
Уравнение стороны запишем в виде
y=(1/4)x
k=1/4
tg α =1/4
Уравнение диагонали в общем виде:
y=k_(1)x+b
(Диагонали квадрата являются биссектрисами прямых углов квадрата, значит угол между стороной и диагональю квадрата равен 45^(o))
Так как
tg( β – α )=(tg β -tg α )/(1+tg β *tg α )
и
y=(5/3)x+b – уравнение диагонали
Подставим координаты точки К
Диагонали взаимно перпендикулярны.
Значит уравнение второй диагонали
y=(-3/5)x+b
Подставим координаты точки К
2,5=(-3/5)*1,5+b
b=3,4
Координаты одной вершины получим как координаты точки пересечения стороны х-4у=0 и диагонали у=(5/3)х
<х-4у=0
<у=(5/3)х
Координаты второй вершины получим как координаты точки пересечения стороны х-4у+24=0 и диагонали у=(-3/5)х+3,4
<х-4у=0 ⇒ y=(1/4)x
<у=(-3/5)х+3,4
Координаты двух других точек можно найти из симметрии.
Уравнение квадрата в декартовой системе координат.
Проанализируем расположение квадрата на координатной плоскости.
В общем случае уравнение квадрата в декартовой (прямоугольной) системе координат принимает вид:
где точка О`(a;b) – точка пересечения диагоналей квадрата;
d – длина диагонали квадрата.
В частном случае, когда точка О(0;0) – начала координат, является одновременно и точкой пересечения диагоналей квадрата, уравнение квадрата принимает вид:
где d– длина диагонали квадрата.
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
(3) |
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
(4) |
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
(5) |
Из формулы (5) найдем R:
(6) |
или, умножая числитель и знаменатель на , получим:
. | (7) |
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
. | (8) |
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
(9) |
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
(10) |
Так как AD и BC перпендикулярны, то
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
(12) |
Эти реугольники также равнобедренные. Тогда
Из (13) следует, что
(14) |
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
[spoiler title=”источники:”]
http://www.calc.ru/Uravneniye-Kvadrata-V-Dekartovoy-Sisteme-Koordinat.html
http://matworld.ru/geometry/kvadrat.php
[/spoiler]
В математике известно много разных замкнутых кривых – окружность, кардиоида, лемниската Бернулли, улитка Паскаля… И для каждой из них есть своя формула.
А какая формула соответствует квадрату? Ну пусть не точно (потому что у квадрата есть точки разрыва первого рода), но хотя бы с некоторой, сколь угодно высокой, степенью точности?
бонус за лучший ответ (выдан): 10 кредитов
Формула квадрата с центром в начале координат со стороной 1:
| x + y | + | y – x | = 1.
Формула квадрата в общем виде с координатами центра (х₀; у₀) и стороной а.
||x – х₀| + |y- y₀|| + ||y – y₀| – |x – x₀|| = а.
На рисунке построение квадратов графическим калькулятором.
автор вопроса выбрал этот ответ лучшим
Евгений Борисович
[2.2K]
2 года назад
Квадрат с центром в начале координат и со сторонами 2 параллельными осям координат:
(|x| + ||x| − 1|)² + (|y| − 1)² + (|y| + ||y| − 1|)² + (|x| − 1)² = 0.
Может быть можно проще.
Гораздо проще уравнение квадрата со стороной √2 и диагоналями параллельными осям координат:
|x| + |у| = 1.
P.S. Мобудь, я проблемы не вижу?
“квадрат с достаточной точностью”? “у квадрата есть точки разрыва первого рода”?
pozitivnost
[14K]
2 года назад
Что-то нашел про формулы с участием квадрата. К сожалению математика – это точная наука. В математике и геометрии нужно точно доказывать формулы, теоремы. Доказать что-то на 50 процентов не прокатит. Если доказываешь, то доказывай на 100 %. Конечно основатели упростили некоторые открытия и их предкам есть что доказать, используя их знания. На картинках известно что-то и доказано на 100%. Можете воспользоваться конкретными знаниями.
Грустный Роджер
[396K]
2 года назад
Окей, всем спасибо.
Признаться, когда я писал этот вопрос, решение с модулями, как и вариант повернутого на 45 градусов квадрата? мне в голову не пришли, так что респект.
А то, что я себе представлял, – это было уравнение вида x² ͫ + y² ͫ = 1. При m=1 это банальная окружность, но чем больше m, тем ближе кривая к квадрату. Как и прошено было – со сколь угодно высокой степенью точности:
Если квадрат со стороною √2 единиц развернуть на 90°, как ромб, то его можно описать ‘системой’ уравнений:
x=1-y; x=-1-у; у=1-x; у=-1-x;
Шутка :^)
Знаете ответ?
Сообщения без ответов | Активные темы
Автор | Сообщение | ||
---|---|---|---|
Заголовок сообщения: Уравнение диагоналей квадрата и координаты вершин Добавлено: 07 дек 2014, 19:10 |
|||
|
Помогите пожалуйста, номер 6
|
||
Вернуться к началу |
|
||
Fatallol |
Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин Добавлено: 07 дек 2014, 19:44 |
Уже ничего из аналитической не помню, сейчас на мат. анализе. Можете пожалуйста с решением помочь? Там разберусь, попытаюсь.
|
|
Вернуться к началу |
|
Fatallol |
Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин Добавлено: 07 дек 2014, 19:59 |
Хорошо, буду разбираться. А можете помочь еще с 14 номером? 13 я сделал, а что в 14, вообще не понимаю.
|
|
Вернуться к началу |
|
Fatallol |
Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин Добавлено: 07 дек 2014, 20:48 |
А на 6 вообще запутался. У меня получилось, что координаты точки К равны коорд. точки А …
|
|
Вернуться к началу |
|
Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
---|---|---|---|---|
Комплексные координаты вершин квадрата
в форуме Алгебра |
nick088 |
3 |
73 |
14 апр 2023, 18:16 |
Найти полярные координаты вершин квадрата
в форуме Аналитическая геометрия и Векторная алгебра |
Miracle |
6 |
504 |
26 дек 2016, 15:10 |
Формулы для нахождения вершин,диагоналей в фигурах
в форуме Геометрия |
Fsq |
1 |
5144 |
04 июн 2013, 21:14 |
Координаты вершин ∆ABC
в форуме Аналитическая геометрия и Векторная алгебра |
vermihel |
1 |
126 |
04 дек 2021, 23:11 |
Координаты вершин пирамиды
в форуме Аналитическая геометрия и Векторная алгебра |
Aliona |
1 |
603 |
22 дек 2013, 21:26 |
Координаты вершин пирамиды
в форуме Аналитическая геометрия и Векторная алгебра |
FCJUVENTUS |
1 |
467 |
02 ноя 2013, 12:07 |
Координаты вершин пирамиды
в форуме Аналитическая геометрия и Векторная алгебра |
pest123 |
7 |
612 |
11 ноя 2013, 18:20 |
Даны координаты вершин треугольника ABC
в форуме Аналитическая геометрия и Векторная алгебра |
colomatina |
2 |
1523 |
13 дек 2013, 00:22 |
Даны координаты вершин пирамиды A1 A2 A3 A4
в форуме Аналитическая геометрия и Векторная алгебра |
Ivan73 |
6 |
3510 |
25 ноя 2014, 17:14 |
Даны координаты вершин пирамиды
в форуме Аналитическая геометрия и Векторная алгебра |
alena1994 |
2 |
872 |
12 янв 2014, 19:06 |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9 |
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |
Квадрат | |
---|---|
Квадрат со стороной и диагональю |
|
Рёбра | 4 |
Символ Шлефли | {4} |
Вид симметрии | Диэдрическая группа (D4) |
Площадь | a2 |
Внутренний угол | 90° |
Свойства | |
Выпуклый многоугольник, Изогональная фигура, изотоксальная фигура | |
Медиафайлы на Викискладе |
Квадра́т (от лат. quadratus, четырёхугольный[1]) — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой [2].
Варианты определения[править | править код]
Квадрат может быть однозначно охарактеризован разными способами[3][4].
- Четырёхугольник, диагонали которого равны и взаимно перпендикулярны, причём точка пересечения делит их пополам.
- Четырёхугольник, являющийся одновременно прямоугольником и ромбом.
- Прямоугольник, у которого длины двух смежных сторон равны.
- Прямоугольник, у которого диагонали пересекаются под прямым углом.
- Ромб, у которого диагонали равны.
- Ромб, у которого два соседних угла равны.
- Ромб, один из углов которого — прямой (прочие углы, как легко доказать, тогда также прямые).
- Параллелограмм, у которого длины двух смежных сторон равны, а угол между ними — прямой.
- Параллелограмм, у которого диагонали равны, а угол между ними — прямой.
- Дельтоид, все углы которого прямые.
Свойства[править | править код]
Основной источник: [4]
Далее в этом разделе обозначает длину стороны квадрата, — длину диагонали, — радиус описанной окружности, — радиус вписанной окружности.
Стороны и диагонали[править | править код]
Диагонали квадрата равны, взаимно перпендикулярны, делятся точкой пересечения пополам и сами делят углы квадрата пополам (другими словами, являются биссектрисами внутренних углов квадрата). Длина каждой диагонали
Периметр квадрата равен:
- .
Вписанная и описанная окружности[править | править код]
Вписанная и описанная окружности для квадрата
Центр описанной и вписанной окружностей квадрата совпадает с точкой пересечения его диагоналей.
Радиус вписанной окружности квадрата равен половине стороны квадрата:
Радиус описанной окружности квадрата равен половине диагонали квадрата:
Из этих формул следует, что площадь описанной окружности вдвое больше площади вписанной.
Площадь[править | править код]
-
-
Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади
Площадь квадрата равна
- .
Из формулы связывающей сторону квадрата с его площадью, видно, почему возведение числа во вторую степень традиционно называется «возведением в квадрат», а результаты такого возведения называются «квадратными числами» или просто квадратами. Аналогично корень 2-й степени называется квадратным корнем.
Квадрат имеет два замечательных свойства[5].
- Из всех четырёхугольников с заданным периметром квадрат имеет наибольшую площадь.
- Из всех четырёхугольников с заданной площадью квадрат имеет наименьший периметр.
К уравнению квадрата; здесь
Уравнение квадрата[править | править код]
В прямоугольной системе координат уравнение квадрата с центром в точке и диагоналями, параллельными осям координат (см. рисунок), может быть записано в виде[6]:
где — радиус описанной окружности, равный половине длины диагонали квадрата. Сторона квадрата тогда равна его диагональ равна а площадь квадрата равна
Уравнение квадрата с центром в начале координат и сторонами, параллельными осям координат (см. рисунок), может быть представлено в одной из следующих форм:
- (легко получается применением поворота на 45° к предыдущему уравнению)
- (в полярных координатах[7])
Математические проблемы[править | править код]
С квадратами связаны ряд проблем, часть из которых до сих пор не имеет решения.
- Квадратура круга — древняя проблема построения циркулем и линейкой квадрата, равновеликого по площади заданному кругу. В 1882 году Фердинанд Линдеман доказал, что это невозможно.
Пример квадрирования квадрата
- Квадрирование квадрата — задача о разбиении квадрата на конечное число меньших квадратов, без «дырок», причём длины сторон квадратов должны отличаться друг от друга (в идеале должны быть все различны). Найден ряд решений этой задачи.
- Долгое время математики пытались доказать, что непрерывное отображение отрезка прямой в квадрат невозможно, пока Джузеппе Пеано не построил свой контрпример.
- Гипотеза Тёплица: на всякой замкнутой плоской жордановой кривой можно отыскать четыре точки, образующие вершины квадрата. Не доказана и не опровергнута.
- Разбиение квадрата сеткой одинаковых более мелких квадратов также приводит к множеству проблем, используемых, в частности, в теории латинских и греко-латинских квадратов, магических квадратов, в игре судоку.
Симметрия[править | править код]
Квадрат обладает наибольшей осевой симметрией среди всех четырёхугольников. Он имеет:
- одну ось симметрии четвёртого порядка — ось, перпендикулярную плоскости квадрата и проходящую через его центр;
- четыре оси симметрии второго порядка (то есть относительно них квадрат отражается сам в себя), из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.
Применение[править | править код]
В математике[править | править код]
Единичный квадрат используется как эталон единицы измерения площади, а также в определении площади произвольных плоских фигур. Фигуры, у которых можно определить площадь, называются квадрируемыми.
Теорема Пифагора первоначально формулировалась геометрически: площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Квадратами являются грани куба — одного из пяти правильных многогранников.
В математической физике символ квадрата может означать «оператор Д’Аламбера» (даламбериан) — дифференциальный оператор второго порядка:
Из теоремы Бойяи — Гервина следует, что любой многоугольник равносоставлен квадрату, то есть его можно разрезать на конечное число частей, из которых составляется квадрат (и обратно)[8].
Графы:
K4 полный граф часто изображается как квадрат с шестью рёбрами.
Орнаменты и паркеты[править | править код]
- Мозаики, включающие квадраты
-
-
-
Мозаики, орнаменты и паркеты, содержащие квадраты, широко распространены.
Другие применения[править | править код]
Шахматная доска имеет форму квадрата и поделена на 64 квадрата двух цветов. Квадратная доска для международных шашек поделена на 100 квадратов двух цветов. Квадратную форму имеет боксёрский ринг, площадка для игры в квадрат.
Квадратный флаг Лима поделён на два чёрных и два жёлтых квадрата, будучи поднятым на корабле в гавани, означает, что корабль находится на карантине.
Графика[править | править код]
Символы со сходным начертанием: ロ · ⼝ · ⼞
Ряд символов имеют форму квадрата.
- Символы Юникода U+25A0 — U+25CF
- U+20DE ◌⃞ COMBINING ENCLOSING SQUARE
- ロ (Японский иероглиф «Ро» (катакана))
- 口 (Китайский иероглиф «рот»)
- 囗 (Китайский иероглиф «ограда»)
В Latex для вставки символа квадрата служат конструкции Box
или square
.
В HTML, чтобы заключить произвольный текст в квадрат или прямоугольник, можно использовать конструкцию:
- <span style=”border-style: solid; border-width: 1.5px 1.5px 1.5px 1.5px; padding-left: 4px; padding-right: 4px;”>text</span>; результат: text.
Вариации и обобщения[править | править код]
Многомерное пространство[править | править код]
Квадрат можно рассматривать как двумерный гиперкуб.
Неевклидова геометрия[править | править код]
В неевклидовой геометрии квадрат (в более широком смысле) — многоугольник с четырьмя равными сторонами и равными углами. По величине этих углов можно судить о кривизне плоскости — в евклидовой геометрии и только в ней углы прямые, в сферической геометрии углы сферического квадрата больше прямого, в геометрии Лобачевского — меньше.
Построение квадрата с использованием циркуля и линейки
Складывание квадрата из произвольного куска бумаги
См. также[править | править код]
- Алгоритм «движущиеся квадраты»
- Квадрат Полибия
- Квадратная матрица
- Квадратриса
- Первая теорема Тебо
- Площадь произвольного четырёхугольника
Примечания[править | править код]
- ↑ Квадрат // Советский энциклопедический словарь. — 2-е изд.. — М.: Советская энциклопедия, 1982. — С. 561. — 1600 с.
- ↑ Квадрат // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 776. — 1184 с.
- ↑ Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
- ↑ 1 2 Каплун, 2014, с. 171—173.
- ↑ Понарин Я. П. Элементарная геометрия: В 2 т. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — С. 117, 119. — 312 с. — ISBN 5-94057-171-9.
- ↑ Уравнение квадрата в декартовой системе координат. Дата обращения: 9 ноября 2021. Архивировано 9 ноября 2021 года.
- ↑ What is the polar equation for a square, if any?
- ↑ Болтянский В. Г. Третья проблема Гильберта. — М.: Наука, 1977. — 208 с. Архивировано 28 июня 2021 года.
Литература[править | править код]
- Каплун А. И. Математика, Учебно-практический справочник. — Ростов н/Д.: ООО “Феникс”, 2014. — 240 с. — ISBN 978-5-222-20926-3.
Ссылки[править | править код]
- Квадрат, геометрическая фигура // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Внимательно прочитаем задание и определим данные, которые нам понадобятся в процессе решения. Нам дан квадрат с вписанной в него окружностью и дан ее радиус. Значит нужно вспомнить свойства данных фигур и их взаимосвязь с друг другом.
Первый способ решения
Первый способ нахождения ответа основывается на формуле диагонали квадрата:
Зная эту формулу алгоритм наших действий, следующий:
-
-найти сторону квадрата;
-
– подставить найденное значение в формулу;
-
– вычислить;
-
– записать ответ.
А можно ли решить данную задачу иначе? Да, конечно! Для этого рассмотрим другой способ.