Как найти диагонали квадрата по координатам

Задача 31272 Известна точка пересечения диагоналей.

Условие

Известна точка пересечения диагоналей квадрата К( 1,5; 2,5) и уравнение одной из его сторон х-4у = 0. Найти координаты вершин квадрата и составить уравнения его диагоналей.

Все решения

Уравнение стороны запишем в виде
y=(1/4)x
k=1/4
tg α =1/4

Уравнение диагонали в общем виде:
y=k_(1)x+b

(Диагонали квадрата являются биссектрисами прямых углов квадрата, значит угол между стороной и диагональю квадрата равен 45^(o))

Так как
tg( β – α )=(tg β -tg α )/(1+tg β *tg α )
и

y=(5/3)x+b – уравнение диагонали

Подставим координаты точки К

Диагонали взаимно перпендикулярны.
Значит уравнение второй диагонали
y=(-3/5)x+b
Подставим координаты точки К
2,5=(-3/5)*1,5+b
b=3,4

Координаты одной вершины получим как координаты точки пересечения стороны х-4у=0 и диагонали у=(5/3)х
<х-4у=0
<у=(5/3)х

Координаты второй вершины получим как координаты точки пересечения стороны х-4у+24=0 и диагонали у=(-3/5)х+3,4
<х-4у=0 ⇒ y=(1/4)x
<у=(-3/5)х+3,4

Координаты двух других точек можно найти из симметрии.

Уравнение квадрата в декартовой системе координат.

Проанализируем расположение квадрата на координатной плоскости.

В общем случае уравнение квадрата в декартовой (прямоугольной) системе координат принимает вид:

где точка О`(a;b)точка пересечения диагоналей квадрата;

d – длина диагонали квадрата.

В частном случае, когда точка О(0;0) – начала координат, является одновременно и точкой пересечения диагоналей квадрата, уравнение квадрата принимает вид:

где dдлина диагонали квадрата.

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

. (1)

Из равенства (1) найдем d:

. (2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Ответ:

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Ответ:

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Ответ:

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

(5)

Из формулы (5) найдем R:

(6)

или, умножая числитель и знаменатель на , получим:

. (7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Ответ:

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

. (8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:

Ответ:

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

(9)

где − сторона квадрата.

Пример 6. Сторона квадрата равен . Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:

Ответ:

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

(10)

Так как AD и BC перпендикулярны, то

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

(12)

Эти реугольники также равнобедренные. Тогда

Из (13) следует, что

(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).

[spoiler title=”источники:”]

http://www.calc.ru/Uravneniye-Kvadrata-V-Dekartovoy-Sisteme-Koordinat.html

http://matworld.ru/geometry/kvadrat.php

[/spoiler]

В математике известно много разных замкнутых кривых – окружность, кардиоида, лемниската Бернулли, улитка Паскаля… И для каждой из них есть своя формула.

А какая формула соответствует квадрату? Ну пусть не точно (потому что у квадрата есть точки разрыва первого рода), но хотя бы с некоторой, сколь угодно высокой, степенью точности?

бонус за лучший ответ (выдан): 10 кредитов

Формула квадрата с центром в начале координат со стороной 1:

| x + y | + | y – x | = 1.

Формула квадрата в общем виде с координатами центра (х₀; у₀) и стороной а.

||x – х₀| + |y- y₀|| + ||y – y₀| – |x – x₀|| = а.

На рисунке построение квадратов графическим калькулятором.

автор вопроса выбрал этот ответ лучшим

Евген­ий Борис­ович
[2.2K]

2 года назад 

Квадрат с центром в начале координат и со сторонами 2 параллельными осям координат:

(|x| + ||x| − 1|)² + (|y| − 1)² + (|y| + ||y| − 1|)² + (|x| − 1)² = 0.

Может быть можно проще.

Гораздо проще уравнение квадрата со стороной √2 и диагоналями параллельными осям координат:

|x| + |у| = 1.

P.S. Мобудь, я проблемы не вижу?

“квадрат с достаточной точностью”? “у квадрата есть точки разрыва первого рода”?

pozit­ivnos­t
[14K]

2 года назад 

Что-то нашел про формулы с участием квадрата. К сожалению математика – это точная наука. В математике и геометрии нужно точно доказывать формулы, теоремы. Доказать что-то на 50 процентов не прокатит. Если доказываешь, то доказывай на 100 %. Конечно основатели упростили некоторые открытия и их предкам есть что доказать, используя их знания. На картинках известно что-то и доказано на 100%. Можете воспользоваться конкретными знаниями.

Груст­ный Родже­р
[396K]

2 года назад 

Окей, всем спасибо.

Признаться, когда я писал этот вопрос, решение с модулями, как и вариант повернутого на 45 градусов квадрата? мне в голову не пришли, так что респект.

А то, что я себе представлял, – это было уравнение вида x² ͫ + y² ͫ = 1. При m=1 это банальная окружность, но чем больше m, тем ближе кривая к квадрату. Как и прошено было – со сколь угодно высокой степенью точности:

Если квадрат со стороною √2 единиц развернуть на 90°, как ромб, то его можно описать ‘системой’ уравнений:

x=1-y; x=-1-у; у=1-x; у=-1-x;

Шутка :^)

Знаете ответ?

Сообщения без ответов | Активные темы

Автор Сообщение

Заголовок сообщения: Уравнение диагоналей квадрата и координаты вершин

СообщениеДобавлено: 07 дек 2014, 19:10 

Не в сети
Начинающий


Зарегистрирован:
07 дек 2014, 19:07
Сообщений: 6
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации

Помогите пожалуйста, номер 6
Изображение

Вернуться к началу

Профиль  

Cпасибо сказано 

Fatallol

Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин

СообщениеДобавлено: 07 дек 2014, 19:44 

Уже ничего из аналитической не помню, сейчас на мат. анализе. Можете пожалуйста с решением помочь? Там разберусь, попытаюсь.

Вернуться к началу

Профиль  

Cпасибо сказано 

Fatallol

Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин

СообщениеДобавлено: 07 дек 2014, 19:59 

Хорошо, буду разбираться. А можете помочь еще с 14 номером? 13 я сделал, а что в 14, вообще не понимаю.
Изображение

Вернуться к началу

Профиль  

Cпасибо сказано 

Fatallol

Заголовок сообщения: Re: Уравнение диагоналей квадрата и координаты вершин

СообщениеДобавлено: 07 дек 2014, 20:48 

А на 6 вообще запутался. У меня получилось, что координаты точки К равны коорд. точки А …

Вернуться к началу

Профиль  

Cпасибо сказано 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Комплексные координаты вершин квадрата

в форуме Алгебра

nick088

3

73

14 апр 2023, 18:16

Найти полярные координаты вершин квадрата

в форуме Аналитическая геометрия и Векторная алгебра

Miracle

6

504

26 дек 2016, 15:10

Формулы для нахождения вершин,диагоналей в фигурах

в форуме Геометрия

Fsq

1

5144

04 июн 2013, 21:14

Координаты вершин ∆ABC

в форуме Аналитическая геометрия и Векторная алгебра

vermihel

1

126

04 дек 2021, 23:11

Координаты вершин пирамиды

в форуме Аналитическая геометрия и Векторная алгебра

Aliona

1

603

22 дек 2013, 21:26

Координаты вершин пирамиды

в форуме Аналитическая геометрия и Векторная алгебра

FCJUVENTUS

1

467

02 ноя 2013, 12:07

Координаты вершин пирамиды

в форуме Аналитическая геометрия и Векторная алгебра

pest123

7

612

11 ноя 2013, 18:20

Даны координаты вершин треугольника ABC

в форуме Аналитическая геометрия и Векторная алгебра

colomatina

2

1523

13 дек 2013, 00:22

Даны координаты вершин пирамиды A1 A2 A3 A4

в форуме Аналитическая геометрия и Векторная алгебра

Ivan73

6

3510

25 ноя 2014, 17:14

Даны координаты вершин пирамиды

в форуме Аналитическая геометрия и Векторная алгебра

alena1994

2

872

12 янв 2014, 19:06

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Квадрат
Квадрат со стороной '"`UNIQ--postMath-00000001-QINU`"' и диагональю '"`UNIQ--postMath-00000002-QINU`"'
Квадрат со стороной a и диагональю d
Рёбра 4
Символ Шлефли {4}
Вид симметрии Диэдрическая группа (D4)
Площадь a2
Внутренний угол 90°
Свойства
Выпуклый многоугольник, Изогональная фигура, изотоксальная фигура
Логотип Викисклада Медиафайлы на Викискладе

Квадра́т (от лат. quadratus, четырёхугольный[1]) — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой {displaystyle (90^{circ })}[2].

Варианты определения[править | править код]

Квадрат может быть однозначно охарактеризован разными способами[3][4].

  • Четырёхугольник, диагонали которого равны и взаимно перпендикулярны, причём точка пересечения делит их пополам.
  • Четырёхугольник, являющийся одновременно прямоугольником и ромбом.
  • Прямоугольник, у которого длины двух смежных сторон равны.
  • Прямоугольник, у которого диагонали пересекаются под прямым углом.
  • Ромб, у которого диагонали равны.
  • Ромб, у которого два соседних угла равны.
  • Ромб, один из углов которого — прямой (прочие углы, как легко доказать, тогда также прямые).
  • Параллелограмм, у которого длины двух смежных сторон равны, а угол между ними — прямой.
  • Параллелограмм, у которого диагонали равны, а угол между ними — прямой.
  • Дельтоид, все углы которого прямые.

Свойства[править | править код]

Основной источник: [4]

Далее в этом разделе a обозначает длину стороны квадрата, d — длину диагонали, R — радиус описанной окружности, r — радиус вписанной окружности.

Стороны и диагонали[править | править код]

Диагонали квадрата равны, взаимно перпендикулярны, делятся точкой пересечения пополам и сами делят углы квадрата пополам (другими словами, являются биссектрисами внутренних углов квадрата). Длина каждой диагонали {displaystyle d=a{sqrt {2}}.}

Периметр квадрата P равен:

{displaystyle P=4a=4{sqrt {2}}R=8r}.

Вписанная и описанная окружности[править | править код]

Вписанная и описанная окружности для квадрата

Центр описанной и вписанной окружностей квадрата совпадает с точкой пересечения его диагоналей.

Радиус вписанной окружности квадрата равен половине стороны квадрата:

{displaystyle r={frac {a}{2}}.}

Радиус описанной окружности квадрата равен половине диагонали квадрата:

{displaystyle R={frac {sqrt {2}}{2}}a.}

Из этих формул следует, что площадь описанной окружности вдвое больше площади вписанной.

Площадь[править | править код]

  • Площадь квадрата

  • Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади

    Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади

Площадь S квадрата равна

{displaystyle S=a^{2}=2R^{2}=4r^{2}={1 over 2}d^{2}}.

Из формулы {displaystyle S=a^{2},} связывающей сторону квадрата с его площадью, видно, почему возведение числа во вторую степень традиционно называется «возведением в квадрат», а результаты такого возведения называются «квадратными числами» или просто квадратами. Аналогично корень 2-й степени называется квадратным корнем.

Квадрат имеет два замечательных свойства[5].

  1. Из всех четырёхугольников с заданным периметром квадрат имеет наибольшую площадь.
  2. Из всех четырёхугольников с заданной площадью квадрат имеет наименьший периметр.

К уравнению квадрата; здесь {displaystyle R=2,x_{0}=y_{0}=0}

Уравнение квадрата[править | править код]

В прямоугольной системе координат уравнение квадрата с центром в точке {displaystyle {x_{0},y_{0}}} и диагоналями, параллельными осям координат (см. рисунок), может быть записано в виде[6]:

{displaystyle |x-x_{0}|+|y-y_{0}|=R,}

где R — радиус описанной окружности, равный половине длины диагонали квадрата. Сторона квадрата тогда равна {displaystyle R{sqrt {2}},} его диагональ равна {displaystyle 2R,} а площадь квадрата равна {displaystyle 2R^{2}.}

Уравнение квадрата с центром в начале координат и сторонами, параллельными осям координат (см. рисунок), может быть представлено в одной из следующих форм:

  1. {displaystyle |x-y|+|x+y|=a} (легко получается применением поворота на 45° к предыдущему уравнению)
  2. {displaystyle max(x^{2},y^{2})=r^{2}}
  3. (в полярных координатах[7]) {displaystyle quad r(varphi )=min left({frac {r}{|cos varphi |}},{frac {r}{|sin varphi |}}right)}

Математические проблемы[править | править код]

С квадратами связаны ряд проблем, часть из которых до сих пор не имеет решения.

  • Квадратура круга — древняя проблема построения циркулем и линейкой квадрата, равновеликого по площади заданному кругу. В 1882 году Фердинанд Линдеман доказал, что это невозможно.

Пример квадрирования квадрата {displaystyle 112times 112}

  • Квадрирование квадрата — задача о разбиении квадрата на конечное число меньших квадратов, без «дырок», причём длины сторон квадратов должны отличаться друг от друга (в идеале должны быть все различны). Найден ряд решений этой задачи.
  • Долгое время математики пытались доказать, что непрерывное отображение отрезка прямой в квадрат невозможно, пока Джузеппе Пеано не построил свой контрпример.
  • Гипотеза Тёплица: на всякой замкнутой плоской жордановой кривой можно отыскать четыре точки, образующие вершины квадрата. Не доказана и не опровергнута.
  • Разбиение квадрата сеткой одинаковых более мелких квадратов также приводит к множеству проблем, используемых, в частности, в теории латинских и греко-латинских квадратов, магических квадратов, в игре судоку.

Симметрия[править | править код]

Квадрат обладает наибольшей осевой симметрией среди всех четырёхугольников. Он имеет:

  • одну ось симметрии четвёртого порядка — ось, перпендикулярную плоскости квадрата и проходящую через его центр;
  • четыре оси симметрии второго порядка (то есть относительно них квадрат отражается сам в себя), из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.

Применение[править | править код]

В математике[править | править код]

Единичный квадрат используется как эталон единицы измерения площади, а также в определении площади произвольных плоских фигур. Фигуры, у которых можно определить площадь, называются квадрируемыми.

Теорема Пифагора первоначально формулировалась геометрически: площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Квадратами являются грани куба — одного из пяти правильных многогранников.

В математической физике символ квадрата может означать «оператор Д’Аламбера» (даламбериан) — дифференциальный оператор второго порядка:

{displaystyle square u:={frac {partial ^{2}u}{partial x^{2}}}+{frac {partial ^{2}u}{partial y^{2}}}+{frac {partial ^{2}u}{partial z^{2}}}-{frac {1}{c^{2}}}{frac {partial ^{2}u}{partial t^{2}}}}

Из теоремы Бойяи — Гервина следует, что любой многоугольник равносоставлен квадрату, то есть его можно разрезать на конечное число частей, из которых составляется квадрат (и обратно)[8].

Графы:
K4 полный граф часто изображается как квадрат с шестью рёбрами.

Орнаменты и паркеты[править | править код]

  • Мозаики, включающие квадраты
  • «Пифагорова мозаика»

  • Bond brick hexagonal tiling.png

  • Square rhombic tiling.png

Мозаики, орнаменты и паркеты, содержащие квадраты, широко распространены.

Другие применения[править | править код]

Шахматная доска имеет форму квадрата и поделена на 64 квадрата двух цветов. Квадратная доска для международных шашек поделена на 100 квадратов двух цветов. Квадратную форму имеет боксёрский ринг, площадка для игры в квадрат.

Квадратный флаг Лима поделён на два чёрных и два жёлтых квадрата, будучи поднятым на корабле в гавани, означает, что корабль находится на карантине.

Графика[править | править код]

Символы со сходным начертанием:  ·  ·

Ряд символов имеют форму квадрата.

  • Символы Юникода U+25A0 — U+25CF
  • U+20DE ◌⃞ COMBINING ENCLOSING SQUARE
  • ロ (Японский иероглиф «Ро» (катакана))
  • 口 (Китайский иероглиф «рот»)
  • 囗 (Китайский иероглиф «ограда»)

В Latex для вставки символа квадрата служат конструкции Box или square.

В HTML, чтобы заключить произвольный текст в квадрат или прямоугольник, можно использовать конструкцию:

  • <span style=”border-style: solid; border-width: 1.5px 1.5px 1.5px 1.5px; padding-left: 4px; padding-right: 4px;”>text</span>; результат: text.

Вариации и обобщения[править | править код]

Многомерное пространство[править | править код]

Квадрат можно рассматривать как двумерный гиперкуб.

Неевклидова геометрия[править | править код]

В неевклидовой геометрии квадрат (в более широком смысле) — многоугольник с четырьмя равными сторонами и равными углами. По величине этих углов можно судить о кривизне плоскости — в евклидовой геометрии и только в ней углы прямые, в сферической геометрии углы сферического квадрата больше прямого, в геометрии Лобачевского — меньше.

Построение квадрата с использованием циркуля и линейки

Складывание квадрата из произвольного куска бумаги

См. также[править | править код]

  • Алгоритм «движущиеся квадраты»
  • Квадрат Полибия
  • Квадратная матрица
  • Квадратриса
  • Первая теорема Тебо
  • Площадь произвольного четырёхугольника

Примечания[править | править код]

  1. Квадрат // Советский энциклопедический словарь. — 2-е изд.. — М.: Советская энциклопедия, 1982. — С. 561. — 1600 с.
  2. Квадрат // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 776. — 1184 с.
  3. Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
  4. 1 2 Каплун, 2014, с. 171—173.
  5. Понарин Я. П. Элементарная геометрия: В 2 т. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — С. 117, 119. — 312 с. — ISBN 5-94057-171-9.
  6. Уравнение квадрата в декартовой системе координат. Дата обращения: 9 ноября 2021. Архивировано 9 ноября 2021 года.
  7. What is the polar equation for a square, if any?
  8. Болтянский В. Г. Третья проблема Гильберта. — М.: Наука, 1977. — 208 с. Архивировано 28 июня 2021 года.

Литература[править | править код]

  • Каплун А. И. Математика, Учебно-практический справочник. — Ростов н/Д.: ООО “Феникс”, 2014. — 240 с. — ISBN 978-5-222-20926-3.

Ссылки[править | править код]

  • Квадрат, геометрическая фигура // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

           Внимательно прочитаем задание и определим данные, которые нам понадобятся в процессе решения. Нам дан квадрат с вписанной в него окружностью и дан ее радиус. Значит нужно вспомнить  свойства данных фигур и их взаимосвязь с друг другом.

Первый способ решения

   Первый способ нахождения ответа основывается на формуле диагонали квадрата:

     Зная эту формулу алгоритм наших действий, следующий:

  • -найти сторону квадрата;

  • – подставить найденное значение в формулу;

  • – вычислить;

  • – записать ответ. 

А можно ли решить данную задачу иначе? Да, конечно! Для этого рассмотрим другой способ.

Добавить комментарий