Как найти диагонали параллелограмма заданного векторами

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Векторная алгебра.
  • Высшая математика.
  • Векторная алгебра.
  • Скалярное произведение векторов, свойства. Длина вектора. Угол между векторами.

Скалярное произведение векторов, свойства. Длина векторов. Угол между векторами.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Длина вектора.

Пусть вектор $overline a=(x, y, z)$ представлен своими координатами в прямоугольном базисе. Тогда его длину можно вычислить по формуле $$|overline a|=sqrt.$$

Скалярное произведение векторов.

Если заданы координаты точек $A(x_1, y_1, z_1) $ и $B(x_2, y_2, z_2),$ то координаты вектора $overline$ можно найти по формулам $$overline=(x_2-x_1, y_2-y_1, z_2-z_1).$$ Скалярным произведением ненулевых векторов $a_1$ и $a_2$ называется число $$(a_1, a_2)=|a_1||a_2|cos(widehat).$$

Для скалярного произведения наряду с обозначением $(a_1,a_2)$ используется также обозначение $a_1a_2.$

Геометрические свойства скалярного произведения:

1) $a_1perp a_2Leftrightarrow a_1a_2=0$ (условие перпендикулярности векторов).

2) Если $varphi=(widehat),$ то $$0leqvarphi 0; qquadqquad frac <pi>

Алгебраические свойства скалярного произведения:

2) $(lambda a_1)a_2=lambda (a_1 a_2);$

Если векторы $a_1(X_1, Y_1, Z_1)$ и $a_2(X_2, Y_2, Z_2)$ представлены своими координатами в прямоугольном базисе, то скалярное произведение равно $$a_1a_2=X_1X_2+Y_1Y_2+Z_1Z_2. $$

Из этой формулы, в частности, следует формула для определения косинуса угла между векторами:

Решение.

а) $$a_1^2=(a_1, a_1)=|a_1||a_1|cos(widehat)=|a_1|^2=3^2=9.$$

б) $(3a_1-2a_2)(a_1+2a_2);$

Поскольку скалярное произведение зависит от длин векторов и угла между ними, то заданные векторы можно выбрать произвольно учитывая эти характеристики. Пусть $a_1=(3; 0). $ Тогда вектор $a_2,$ имея длину $|a_2|=4,$ и, образуя угол $frac<2pi><3>$ с положительной полуосью оси $OX,$ имеет координаты $x=|a_2|cosfrac<2pi><3>=-frac<4><2>=-2; $

$3a_1-2a_2=3(3;0)-2(-2;2sqrt 3)=(9;0)-(-4; 4sqrt 3)=(13;-4sqrt 3);$

$a_1+2a_2=(3; 0)+2(-2;2sqrt 3) = (3; 0)+ (-4; 4sqrt 3)= (-1; 4sqrt 3).$

$(3a_1-2a_2)(a_1+2a_2)=(13; -4sqrt 3)(-1; 4sqrt 3) =-13-48=-61.$

в) $(a_1+a_2)^2.$

$a_1+a_2$=$(3; 0)+(-2; 2sqrt 3)=(1; 2sqrt 3).$

$(a_1+a_2)^2=(1; 2sqrt3) (1; 2sqrt 3)=1+12=13.$

Ответ: a) 9; б) -61; в) 13.

2.67. Вычислить длину диагоналей параллелограмма, построенного на векторах $a=p-3q, $ $b=5p+2q,$ если известно, что $|p|=2sqrt<2>, |q|=3, (widehat)=frac<pi><4>.$

Решение.

Способ 1.

Из треугольника $ABC$ имеем $AC=AB+BC=a+b=p-3q+5p+2q=6p-q.$

Зная длину векторов $p$ b $q$ и угол между этими векторами, можно найти длину вектора $AC$ по теореме косинусов:

Из треугольника $ABD$ имеем: $BD=AD-AB=b-a=5p+2q-p+3q=4p+5q.$

По теореме косинусов находим длину вектора $BD:$

$|BD|^2=|4p|^2+|5q|^2-8p5qcos widehat<(6p, q)>=$ $128+225+240=593.$

Пусть $q=(3; 0). $ Тогда вектор $p,$ имея длину $|p|=2sqrt 2,$ и образуя угол $frac<pi><4>$ с положительной полуосью оси $OX$ имеет координаты

Из треугольника $ABC$ имеем

Из треугольника $ABD$ имеем

$BD=AD-AB=b-a=5p+2q-p+3q=4p+5q=$ $=4(2; 2)+5(3;0)=(8; 8)+(15; 0)=(23; 8).$

Ответ: $15, sqrt <593>.$

2.68. Определить угол между векторами $a$ и $b$ если известно, что $(a-b)^2+(a+2b)^2=20$ и $|a|=1, |b|=2.$

Ответ: $2pi/3$

$|a_1|=3; |a_2|=5. $ Определить, при каком значении $alpha$ векторы $a_1+alpha a_2$ и $a_1-alpha a_2$ будут перпендикулярны.

Ответ: $alpha=pmfrac<3><5>$

В треугольнике $ABC$ $overline=3e_1-4e_2;$ $overline=e_1+5e_2.$ Вычислить длину его высоты $overline,$ если известно, что $e_1$ и $e_2$ взаимно перпендикулярные орты.

Как найти длины диагоналей параллелограмма заданного векторами

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет – тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку “Зарегистрироваться” вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Задача 32233 Определить длины диагоналей.

Условие

Определить длины диагоналей параллелограмма, построенного на векторах [b]a=2m+n[/b] и [b]b=m-2n[/b], где [b]m[/b] и [b]n[/b]-единичные векторы, угол между которыми 60 градусов.

Все решения

=(3vector-vector)^2=9vector*vector-6vectorvector+
vector*vector=9*1*1cos0^(o)-6*1*1*cos60^(o)+1*1*cos0^(o)=
=9-3+1=7
|vector|=sqrt(7)

=(vector+3vector)^2=vector*vector+6vectorvector+
9vector*vector=*1*1cos0^(o)+6*1*1*cos60^(o)+9*1*1*cos0^(o)=
=1+3+9=13
|vector|=sqrt(13)

[spoiler title=”источники:”]

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/najti-ploshhad-i-dliny-diagonalej-parallelogramma-postroennogo-na-vektorah-a-b

http://reshimvse.com/zadacha.php?id=32233

[/spoiler]

Задача 1 Разложить вектор По векторам и .

Пусть , т. е. ;

След., вектор .

Задача 2 Найти длину диагонали параллелограмма, построенного на векторах , если

Рассм. диагонали параллелограмма ;

Вычислим ;

;

Задача 3 Показать, что точки Являются вершинами параллелограмма и найти проекцию одной из диагоналей на большую сторону параллелограмма.

Рассм.

, след. – параллелограмм (так как две противоположные стороны параллельны и равны);

Рассм. Рассм. ; ,

След. – большая сторона параллелограмма ; рассм. диагональ ;

Вычислим Вычислим ;

.

Задача 4 Длина гипотенузы прямоугольного треугольника равна . Вычислить

Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы

1) , где ; ;

;

2) ;

Направл. косинусы вектора : ; ; .

Задача 6 Треугольник построен на векторах Найти длину высоты , если векторы взаимно перпендикулярны и по модулю равны

Рассм. векторы рассм. ;

;

;

;

Задача 7 Найти координаты вершины тетраэдра, если известно, что она лежит на оси , объём тетраэдра равен , .

Пусть искомая вершина тетраэдра (т. к. т. );

Рассм. в-ры: ;

Рассм. смешанное произв-е:

Рассм. объём тетраэдра : ; ; ;

; ; ; след., возможные положения искомой т.: ; .

Задача 8 В треугольнике известны координаты двух вершин: И точки пересечения медиан . Составить уравнение высоты треугольника, проведённой из вершины .

1) Определим координаты точки Как середины отрезка :;

2) Определим координаты вершины , используя равенство , где ;

Рассм.

;

3) составим ур-е высоты : рассм. в-р ;

Рассм. т. И рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. .

Задача 9 В параллелограмме известны уравнения сторон и координаты точки пересечения диагоналей Составить уравнения двух других сторон и диагоналей параллелограмма.

1) определим координаты точки как точки пересечения прямых :

;

2) определим координаты точки из условия, что т. – середина отрезка :

;

3) составим уравнение диагонали как прямой, проходящей через точки : ;

4) составим уравнение стороны как прямой, проходящей через точку параллельно

Прямой ;

5) составим уравнение стороны как прямой, проходящей через точку Параллельно

Прямой ;

6) определим координаты точки как точки пересечения прямых :

;

7) составим уравнение диагонали как прямой, проходящей через точки : .

Задача 10 Составить уравнение плоскости, проходящей через точки

Пусть – искомая плоскость; рассм. векторы ;

Рассм. норм. вектор ;

Рассм. произв. т. и рассм. вектор ;

, т. е. ;

Задача 11 Составить уравнение прямой , которая, проходит через точку и пересекает две прямые и .

Рассм. направл. векторы прямых ;

Рассм. т.; рассм. векторы ;

Пусть – плоскость, в которой лежат прямые ; пусть – плоскость, в которой лежат прямые ; тогда искомая прямая есть линия пересечения плоскостей ;

;

;

В качестве направл. вектора прямой можно взять вектор ; выберем ;

Запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно

Вектору : ; параметрические ур-я прямой :

Задача 12 Составить уравнение геометрического места всех прямых, проходящих через точку перпендикулярно прямой .

Запишем канонич. уравнения прямой в виде: ; её направл. вектор ;

Рассм. произв. прямую , удовлетв. условию задачи; рассм. произв. точку и её направл. вектор ; , т. е. ;

Плоскость и есть искомое геометрическое место.

Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением

Определителя по первой строке.

1) Непосредственное вычисление:

2) Разложение по 1-й строке:

Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы:

Запишем данную систему уравнений в матричной форме: , (1) , где ; ; ;

Рассм. опред-ль матрицы : ,

След., матр. – невырожденная и можно применять формулы Крамера и вычислять обратную матр. ;

1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ;

;

;

; , , ;

реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;

2) получим реш–е с–мы ур–й (1) с помощью обратной матр. :

, след., матр.– невырожденная и существует обратная матр. ;

Умножим рав-во (1) слева на матрицу : , ; вычислим обратную матр. :

Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :

Транспонируем м-цу и получим «присоединённую» м-цу

Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :

Находим теперь вектор-решение :

Задача 15 Установить, являются ли векторы линейно зависимыми.

Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:

ранг матрицы , след. данная система векторов линейно независима.

Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.

Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:

имеем ;

Так как , то по теореме Кронекера – Капелли данная система уравнений совместна, а так как , то система имеет бесконечное множество решений; объявим свободной переменной и выпишем общее решение системы в координатной форме:

общее решение системы имеет вид:

Задача 17 Найти матрицу преобразования, выражающего Через , если

Запишем данные преобразования в матричной форме: , где матрицы и

Вектор – столбцы имеют вид:

Рассм. ;

Вычислим матрицу .

Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей

1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :

Рассм.

– собств. значения (действ.) лин. преобр-я ;

2) находим собств. векторы линейного преобразования , соотв. собств. значениям :

А) рассм.

Рассм. Пусть , тогда вектор ;

Б) рассм.

Рассм.

Пусть , тогда , вектор ;

Пусть , тогда , вектор ;

След. собств. векторы линейного преобразования суть:

; ; .

< Предыдущая

Примеры решения задач

Задача 1.
Определить длины диагоналей параллелограмма,
построенного на векторах

и

,
где

таковы, что

.

Решение.
Диагонали параллелограмма есть векторы

и

.
Вычислим длину вектора

:

.

Аналогично
вычисляется длина вектора

.

Задача 2.
Найдите вектор

,
коллинеарный вектору

и удовлетворяющий условию

.

Решение.
Обозначим вектор

,
тогда из условий задачи

или

,

тогда

.
Итак:

.

Задача 3.
Найти проекцию вектора

на направление вектора

.

Решение.

.
По формуле проекции вектора на ось будет
иметь место равенство


.

Задача 4.
Даны векторы:

.

П
роверить,
есть ли среди них коллинеарные. Найти

.

Решение.
Условие коллинеарности имеет вид

.
Этому условию удовлетворяют векторы

.
Следовательно, они коллинеарны. Найдем
длины

векторов

:


.

Угол между векторами
определяется по формуле

.

Т

огда

,


.

Используя формулу


,
получим

.

Задача 5.
На материальную точку действуют силы

.
Найти работу равнодействующей этих сил

при перемещении точки из положения

в положение

.

Решение.
Найдем силу

и вектор перемещения

.


,
тогда искомая работа

.

Задачи

1. Векторы

взаимно перпендикулярны, а вектор

образует с ними углы

.
Зная, что

,
найти: 1)

;
2)

.

2. Вычислить длину
диагоналей параллелограмма, построенного
на векторах

,
если известно, что

.

3. Доказать, что
вектор

перпендикулярен к вектору

.

4. Зная, что

,
определить, при каком значении коэффициента

векторы

окажутся перпендикулярными.

5. Даны вершины
четырехугольника:

.
Доказать, что его диагонали взаимно
перпендикулярны.

6. Найти острый
угол между диагоналями параллелограмма,
построенного на векторах

.

7. Даны силы

.
Найти работу их равнодействующей при
перемещении точки из начала координат
в точку

.

8. Даны вершины
треугольника:

.
Найти проекцию вектора

на вектор

.

9. Найти вектор

,
перпендикулярный векторам

,
если известно, что его проекция на вектор

равна единице.

10. Сила, определяемая
вектором

,
разложена по трем направлениям, одно
из которых задано вектором

.
Найти составляющую силы

в направлении вектора

.

11. Даны вершины
треугольника:

.
Найти его внутренний угол при вершине
А и внешний угол при вершине В.

12. Даны три
последовательные вершины параллелограмма:


.
Найти его четвертую вершину D
и угол между векторами

.

13. На оси

найти точку, равноудаленную от точек

.

14. Доказать, что
треугольник с вершинами

прямоугольный.

Домашнее задание

1. Вычислить
скалярное произведение двух векторов


,
зная их разложение по трем единичным
взаимно перпендикулярным векторам


;


.

2. Найти длину
вектора

,
зная, что

– взаимно перпендику-

лярные орты.

3. Векторы

попарно образуют друг с другом углы,
каждый из которых равен

.
Зная, что

,
определить модуль вектора

.

4. Доказать, что
вектор

перпендикулярен к вектору

.

5. Даны векторы

,
совпадающие со сторонами треугольника
АВС. Найти разложение вектора, приложенного
к вершине В этого треугольника и
совпадающего с его высотой BD
по базису

.

6. Вычислить угол
между векторами

,
где


единичные взаимно перпендикулярные
векторы.

7. Даны силы

,
приложенные к одной точке. Вычислить,
какую работу производит равнодействующая
этих сил, когда ее точка приложения,
двигаясь прямолинейно, перемещается
из положения

в положение

.

8. Даны вершины
треугольника

.
Определить его внутренний угол при
вершине В.

9. Вычислив
внутренние углы треугольника с вершинами

,

,
убедиться, что этот треугольник
равнобедренный.

10. Найти вектор

,
зная, что он перпендикулярен векторам

и

.

11. Найти вектор

,
коллинеарный вектору

и удовлетворяющий условию

,
где

.

12. Вычислить
проекцию вектора

на ось вектора

.

13. Даны векторы


.
Вычислить

.

14. Даны точки

.
Вычислить проекцию вектора

на ось вектора

.

Ответы к задачам

1) -7, 13. 2) 15,

.
4)

.
6)

.
7) 2. 8) -1/3.

9)

.
10)

.
11)

.

12)

.
13)

.

Ответы к домашнему
заданию

1) 9. 2) 5. 3) 10. 5)

.
6)

.
7) 13. 8)

.

10)

.
12) 6. 13) 5. 14) 3.

Занятие 3

Векторое
произведения векторов. Смешанное
произведение векторов

Определение1.
Тройка
некомпланарных векторов

называется правой (левой) если, находясь
внутри телесного угла, образованного
приведенными к общему началу векторами

и от него к

,
човершающимся против часовой стрелки
(по часовой стрелке)

Тройка правая
Тройка левая

Определение
2.
Векторным
произведением вектора

на вектор

называется вектор

,
длина и направление которого определяются
условиями:

1.

,
где

– угол между

.

2.

.

3.

– правая тройка векторов.

Свойства
векторного произведения

1.

(свойство антиперестановочности
сомножителей);

2.

(распределительное относительно суммы
векторов);

3.

(сочетательное относиельно числового
множителя);

4.

(равенство нулю векторного произведения
означает коллинеарность векторов);

5.

,
т. е. момент сил равен векторному
произведению силы на плечо.

Если вектор

,
то

.

Определение
3.
Смешанным
произведением

трех векторов называется число,
определяемое следующим образом:

.
Если векторы заданы своими координатами:

,
то

~

.

Свойства
смешанного произведения

1. Необходимым и
достаточным условием компланарности
векторов

является равенство

= 0.

2. Объем
параллелепипеда, построенного на
векторах


:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Рассмотрение решение задачи 3. 3. 24 из сборника задач по высшей математике Подготовила Самойлова

Рассмотрение решение задачи 3. 3. 24 из сборника задач по высшей математике Подготовила Самойлова Мария

Найдите длины диагоналей и площадь параллелограмма, построенного на векторах a= k – j, b=

Найдите длины диагоналей и площадь параллелограмма, построенного на векторах a= k – j, b= i + j +k Найдем координаты векторов a= k – j= (0; -1; 1) b= i + j +k = (1; 1; 1) Найдем сумму и разность векторов: a + b= (1; 0; 2) a – b=(-1; -2; 0) aa a+b aa a-b

 Найдем длины диагоналей: По определению векторного произведения двух векторов модуль векторного произведения равен

Найдем длины диагоналей: По определению векторного произведения двух векторов модуль векторного произведения равен площади параллелограмма, построенного на этих векторах. Поэтому для решения задачи найдем сначала векторное произведение , а потом его модуль. Согласно имеем

а модуль Искомая площадь параллелограмма S= √ 6 Ответ: √ 5, √ 6

а модуль Искомая площадь параллелограмма S= √ 6 Ответ: √ 5, √ 6

Дополнительное задание Доказать, что площадь параллелограмма, вычисленная через диагонали в 2 раза больше площади

Дополнительное задание Доказать, что площадь параллелограмма, вычисленная через диагонали в 2 раза больше площади вычисленной с помощью модуля векторного произведения: 2 Sп Действительно,

Добавить комментарий