Как найти диаметр трубопровода по расходу

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Главная»Расчет минимального диаметра трубопровода – калькуляция по формуле

Онлайн-калькулятор расчета диаметра трубопровода по расходу воды, позволяет определить минимальное значение внутреннего диаметра трубы при заданной скорости носителя и пропускной способности трубопровода. Помните, что неправильно подобранное сечение водопровода может привести к падению производительности системы, повышению давления и возникновению чрезвычайных ситуаций. Методика расчета построена на формуле: d = √ (4 × 1000 × Q / V / π), где Q – расход воды в трубопроводе (л/с), V – скорость потока жидкости (м/с), 1000 – поправка на перевод разных единиц измерения. Оптимальная скорость воды в трубе от 0.6 м/с до 1.5 м/с, максимальная – 3 м/с. Чтобы получить результат расчета, нажмите кнопку “Показать результат”

Напишите ваши параметры:

Расход воды в трубе, л/с

Скорость воды в трубе, м/с

Нормативные документы:
СНиП СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения»
СНиП СП 30.13330.2016 «Внутренний водопровод и канализация зданий»
СНиП СП 60.13330.2016 «Отопление, вентиляция и кондиционирование воздуха»

Перейти к каталог трубопроводной арматуры Потеря давления в трубопроводе, кроме прочего, зависит от расхода скорости потока и вязкости среды протекания. Чем больше количество пара, проходящего через трубопровод определённого номинального диаметра, тем выше трение о стенки трубопровода. Иными словами, чем выше скорость пара, тем выше сопротивление или потери давления в трубопроводе.

На сколько высоки могут быть потери давления определяется назначением пара. Если перегретый пар подается через трубопровод к паровой турбине, то потери давления должны быть по возможности минимальными. Такие трубопроводы значительно дороже обычных, причём больший диаметр, в свою очередь, приводит к значительно большим затратам. Инвестиционный расчёт основывается на времени возврата (срок окупаемости) инвестиционного капитала в сравнении с прибылью от работы турбины.

Этот расчёт должен основываться не на средней нагрузке турбины, а исключительно на ее пиковой нагрузке. Если, например, в течении 15 минут набрасывается пиковая нагрузка в 1000 кг пара, то трубопровод должен иметь пропускную способность 60/15x 1000 = 4000 кг/ч.

Расчёт

В главе далее – Работа с конденсатом, поясняется методика расчёт диаметра конденсатопроводов. В расчётах паро- воздухо- и водопроводов действуют примерно те же исходные принципы. В завершении этой темы в этом разделе будут приведены расчеты для определения диаметра паро- воздухо- и водопроводов.

В расчётах диаметров в качестве основной применяется формула:

формула1.jpg

, где:

Q = расход пара, воздуха и воды в м3/с.

D = диаметр трубопровода в м.

v = допустимая скорость потока в м/с.

В практике рекомендуется вести расчет по расходу в м3/ч и по диаметру трубопровода в мм. в этом случае выше приведённая формула расчёта диаметра трубопровода изменяется следующим образом:

формула2.jpg

, где:

D = диаметр конденсатопровода в мм.

Q = расход в м3/ч.

V = допустимая скорость потока в м/с.

Расчет трубопроводов всегда ведется по объёмному расходу (м3/ч), а не по массовому (кг/ч). Если известен только массовый расход, то для пересчёта кг/ч в м3/ч необходимо учитывать удельный объём по таблице пара.

Пример:

Удельный объем насыщенного пара при давлении 11 бар составляет 0,1747 м3/кг. Таким образом, объемный расход от 1000 кг/ч насыщенного пара при 11 бар будет составлять 1000 * 0,1747 = 174,7 м3/ч. Если речь будет идти о таком же количестве перегретого пара при давлении 11 бар и 300 °С, то удельный объём составит 0,2337 м3/кг, а объемный расход 233,7 м3/ч. Таким образом это означает, что один и тот же паропровод не может одинаково подходить для транспорта одного количества насыщенного и перегретого пара.

Также для случая воздуха и других газов расчет необходимо повторить с учетом давления. Производители компрессорного оборудования указывают производительность компрессоров в м3/ч, под которым понимается объем в м3 при температуре 0 °С.

Если производительность компрессора 600 мп3/ч и давление воздуха 6 бар, то объемный расход составляет 600/6 = 100 м3/ч. в этом также заключается основа расчета трубопроводов.

Допустимая скорость потока

Допустимая скорость потока в системе трубопроводов зависит от многих факторов.

  • стоимость установки: низкая скорость потока приводит к выбору большего диаметра.
  • потеря давления: высокая скорость потока позволяет выбрать меньший диаметр, однако вызывает большую потерю давления.
  • износ: особенно в случае конденсата высокая скорость потока приводит к повышенной эрозии.
  • шум: высокая скорость потока увеличивает шумовую нагрузку, напр. Паровой редукционный клапан.

В ниже приведенной таблице представлены данные норм относительно скорости потока для некоторых сред протекания.

Среда

Назначение

Скорость потока в м/с

пар

До 3 бар

10 – 15

3 – 10 бар

15 – 20

10 – 40 бар

20 – 40

Конденсат

Заполненный конденсатом

2

Конденсато-паровая смесь

6 – 10

Питательная вода

Трубопровод всаса

0,5 – 1

Трубопровод подачи

2

Вода

Питьевого качества

0,6

Охлаждение

2

Воздух

Воздух под давлением

6 – 10

* Трубопровод всаса насоса питательной воды: из-за низкой скорости потока низкая потеря давления, что препятствует образованию пузырьков пара на всасе питательного насоса.

4_1.JPG
Нормы для определения скорости потока

Примеры:

a) Вода

Расчет диаметра трубопровода для воды при 100 м3/ч и скорости потока v = 2 м/с.

D = √ 354*100/2 = 133 мм. Выбранный номинальный диаметр DN 125 или DN 150.

b) Воздух под давлением

расчет диаметра трубопровода для воздуха при 600 м3/ч, давление 5 бар и скорости потока 8 м/с.

Перерасчет с нормального расхода 600 м3/ч на рабочий м3/ч 600/5 = 120 м3/ч.

D = √ 354*120/8 = 72 мм. Выбранный номинальный диаметр DN 65 или DN 80.

В зависимости от назначения воды или воздуха выбирается трубопровод DN 65 или DN 80. Необходимо иметь ввиду, что расчет диаметра трубопровода усреднен и не предусматривает случая наступления пиковой нагрузки.

c) Насыщенный пар

Расчет диаметра трубопровода для насыщенного пара при 1500 кг/ч, давлении 16 бар и скорости потока 15 м/с.

В соответствии с таблицей пара удельный объем насыщенного пара при давлении 16 бар составляет v = 0,1237 м3/кг.

D = √ 354*1500*0,1237/15 = 66 мм.

И здесь должен быть решен вопрос DN 65 или DN 80 в зависимости от возможной пиковой нагрузки. В случае необходимости предусматривается также возможность расширения установки в будущем.

d) Перегретый пар

Если в нашем примере пар перегреет до температуры 300 °С, то его удельный объем изменяется на v = 0,1585 м3/кг.

D = √ 354*1500*0,1585/15 = 75 мм, выбирается DN 80.

Изображение 4.9 в форме номограммы показывает, как можно произвести выбор трубопровода без проведения расчета. На изображении 4-10 этот процесс представлен для случая насыщенного и перегретого пара.

е) Конденсат

Если речь идёт о расчёте трубопровода для конденсата без примеси пара (от разгрузки), тогда расчёт ведётся как для воды.

Горячий конденсат после конденсатоотводчика, попадая в конденсатопровод, разгружается в нём. В главе 6.0 Работа с конденсатом поясняется, как определить долю пара от разгрузки.

Правило к проведению расчёта:

Доля пара от разгрузки = (температура перед конденсатоотводчиком минус температура пара после конденсатоотводчика) х 0,2. При расчёте конденсатопровода необходимо учитывать объём пара от разгрузки.

Объём оставшейся воды в сравнении с объёмом пара от разгрузки настолько мал, что им можно пренебречь.

Расчёт диаметра конденсатопровода на расход 1000 кг/ч сконденсированного пара 11 бар (h1 = 781 кДж/кг) и разгруженного до давления 4 бар (h’ = 604 кДж/кг,v = 0,4622 м3/кг и r – 2133 кДж/кг).

Доля разгруженного пара составляет: 781 – 604/ 100 % = 8,3%

Количество разгруженного пара: 1000 х 0,083 = 83 кг/ч или 83 х 0,4622 -38 м3/ч. Объёмная доля разгруженного пара составляет около 97 %.

Диаметр трубопровода для смеси при скорости потока 8 м/с:

D = √ 354*1000*0,083*0,4622/8 = 40 мм.

Для сети атмосферного конденсата (v“ = 1,694 м3/кг) доля разгруженного пара составляет:

781 – 418/2258*100 % = 16 % или 160 кг/ч.

В этом случае диаметр трубопровода:

D = √ 354*1000*0,16*1,694/8 = 110 мм.

Источник: “Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010”

Для более верного выбора оборудования можно обратиться на эл. почту: info@nomitech.ru

Наиболее экономичной
скоростью воды в трубопроводе является
скорость от 1-3 м/с. На крупных системах
большая скорость, на малых системах
меньшая. Принимаем среднюю скорость
движения воды равной 1 м/с. Задаваясь
скоростью равной 1 м/с, определяем диаметр
трубопровода по формуле. В данном случае
диаметр трубопровода по участкам
расчетный.

,
(2)

где dр
расчетный
диаметр по участкам (м,
мм
);

Qp

расчетный
расход по участкам (м3);

–число ПИ,
соответствующее 3,14;

V
средняя
скорость движения воды равная 1 м/с.

Единицу измерения
расчетного диаметра переводим из м
в мм.
Используя таблицу 2, округляем полученные
результаты диаметров до стандартных
предпочтительно в большую сторону.

Таблица 2

Удельные сопротивления
Акв
26)
труб из различных материалов в зависимости
от условного прохода d

d,
мм

Трубы

Стальные
электросварные ГОСТ 10704-76

Чугунные
ГОСТ 9583-75

Полиэтиленовые
типа Г ГОСТ 1899-73

50

3686

11540

6051

60

2292

2431

75

929

80

454

953

927

100

173

312

324

125

76,4

96,7

93

150

30,7

37,1

45,9

175

20,8

200

6,96

8,09

5,07

250

2,19

2,53

1,31

300

0,85

0,95

0,71

350

0,373

0,437

400

0,186

0,219

450

0,099

0,199

500

0,058

0,0678

5.4 Определение скорости движения воды в трубопроводе

По известным
значениям расхода Qi
и
диаметра di
определяется средняя скорость потока
на каждом участке по формуле

,
(3)

где Vi
– скорость потока на каждом участке
(м/c);

Qi
– расчетный расход по участкам (м3);

–число Пи (отношение
длины окружности к радиусу), соответствующее
3,14;

di
расчетный
диаметр по участкам (м).

Максимально
допустимые скорости в магистральных
трубопроводах не должны превышать 6
м/с, в распределительной сети 2-3 м/с.

5.5 Расчет потерь напора по участкам сети по преобразованной формуле д. Бернулли

Для водопроводных
систем характерен сравнительно узкий
интервал применяемых средних скоростей
потоков (0,6…3,0 м/с). Поэтому в уравнении
Д. Бернулли можно пренебречь удельной
кинетической энергией в сечении потока
(она не превышает 0,46 м), а для ускорения
расчета потерь напора на участках
трубопровода использовать упрощенную
зависимость, полученную путем
преобразования формулы Дарси–Вейсбаха:

,
(4)

где h
– потери напора (м);

kм
– коэффициент, учитывающий влияние
местных сопротивлений, которые составляют
от 5 – 10% от сопротивления по длине
[kм=1,05–1,1];

Акв
– удельное
сопротивление трубы в квадратичной
области, с26;


поправочный коэффициент, учитывающий
неквадратичность области сопротивления;

L
– расчетная длина участка трубопровода,
м;

Qр
– расчетный расход на участке трубопровода,
м³/с.

Соответствующие
величины Акв
и
,
которые представляются в уравнении (4)
для вычисления потерь напора находятся
по таблицам 2 и 3.

Таблица 3

Поправочный
коэффициентна степень турбулентности потока в
зависимости от скоростиV
движения воды

Скорость,
м/с

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

Трубы
стальные и чугунные

1,2

1,11

1,06

1,03

1,0

1,0

1,0

1,0

1,0

1,0

Трубы
полиэтиленовые

1,23

1,12

1,05

1,0

0,96

0,93

0,9

0,88

0,86

0,84

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий