Как найти диаметр в сопромате

Пример решения задачи по подбору минимального диаметра балки круглого поперечного сечения, обеспечивающего её прочность.

Задача

Для заданной стальной балки рассчитать диаметр поперечного сечения по условию прочности.

Балка круглого сечения

Полученный размер принять согласно ГОСТ 6636. Допустимые напряжения [σ]=160МПа.

Другие примеры решений >
Помощь с решением задач >

Решение

Предыдущие пункты решения задачи:

  1. Определение опорных реакций
  2. Построение эпюр внутренних поперечных сил и изгибающих моментов.
  3. Расчет момента сопротивления сечения балки по условию прочности.

В предыдущем пункте была рассчитана величина минимально необходимого момента сопротивления сечения балки

Необходимый момент сопротивления сечения балки

С другой стороны момент сопротивления круглого сечения определяется по формуле

Формула момента сопротивления для круглого сечения

таким образом

откуда, расчетный диаметр

Расчет диаметра балки

Отметим что полученный размер это минимально необходимый диаметр балки, обеспечивающий ее прочность.

Если нет дополнительных условий, то полученный размер можно округлить до целого значения в миллиметрах – 145мм. Округление выполняется исключительно в большую сторону.

По ГОСТ 6636 ближайшее значение в сторону увеличения также составляет 145 мм, его и принимаем за окончательный диаметр балки, т.е. D=145мм.

Оценка экономичности сечений >
Другие примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Решение задач и лекции по технической механике, теормеху и сопромату

Определить диаметры валов сплошного и полого с отношением внутреннего диаметра к наружного. Установить разницу в расходе материала, проверить жесткость валов.

Определить диаметры валов сплошного и полого с отношением внутреннего диаметра к наружного clip_image002. Установить разницу в расходе материала, проверить жесткость валов. Построить эпюру углов закручивания clip_image004 для рационального сечения, эпюру касательных напряжений clip_image006 для сечений, удовлетворяющих условиям прочности и жесткости.

Дано: n = 500 об/мин, Р1 = 90 кВт, Р2 = 80 кВт, Р3 = 60 кВт, Р4 = 50 кВт,

а = 0,1 м, с = 0,3 м, clip_image008, clip_image010, clip_image012.

clip_image002[1]= 0,75, clip_image0142.

Решение

clip_image016

1. Определим величины внешних вращающих моментов по формуле:

М = clip_image018

clip_image020 кНм,

clip_image022 кНм, аналогично

М3 = 1,15 кНм, М4 = 0,96 кНм.

При равномерном вращении вала алгебраическая сумма внешних моментов равна нулю: М2 + М3 – М1 – М5 – М4 = 0, тогда М5 = 0.

По этим значениям строим эпюру крутящих моментов Мкр. (см. чертеж).

2. Определим диаметр круглого вала из условий прочности при кручении:

clip_image02490 МПа, где

clip_image026 – полярный момент сопротивления поперечного сечения вала (круга). Тогда clip_image028. Отсюда найдем диаметр вала: clip_image030 м = 46 мм.

Принимаем по ГОСТ 2590-71 d = 46 мм.

Кольцевого поперечного сечения: clip_image032, где clip_image0340,75, тогда clip_image036 м = 52 мм.

Принимаем по ГОСТ 2590-71 dн = 53 мм, тогда dв = clip_image03840 мм.

3. Определим диаметр круглого вала из условий жесткости при кручении.

Условие жесткости при кручении имеет вид:

clip_image040 где

clip_image042 – угол закручивания на один погонный метр,

clip_image044 – максимальный крутящий момент,

clip_image046 – жёсткость при кручении (clip_image008[1]),

clip_image048 – допускаемый угол закручивания на 1 п.м., clip_image012[1].

Для сплошного вала: clip_image050,

Тогда найдем диаметр вала из условия жёсткости: clip_image052

отсюда clip_image054 м = 71 мм.

Принимаем по ГОСТ 2590-71 d = 75 мм.

Для пустотелого вала: clip_image056. Найдем диаметр вала из условия жёсткости: clip_image058 отсюда

clip_image060 м = 78 мм.

Принимаем по ГОСТ 2590-71 dн = 80 мм, тогда dв = clip_image038[1]60 мм.

Для обеспечения прочности и жесткости вала принимаем сечения большего диаметра: d = 75 мм. Для пустотелого вала: dн = 80 мм, dв = 60 мм. Площади поперечного сечения данных валов будут равны соответственно:

clip_image062 мм2,

clip_image064 мм2.

Окончательно принимаем вал кольцевого поперечного сечения с минимальной площадью, что выгоднее с точки зрения расхода материала при одинаковой нагрузке.

4. Построим эпюру углов закручивания. Для этого определим углы поворота сечений относительно начало отсчета, за которое примем крайнюю левую точку вала – А.

Жесткость вала: clip_image046[1]= clip_image066 Нм2

Угол поворота сечения В относительно сечения А равен

clip_image068 рад;

clip_image070 рад;

clip_image072 рад,

clip_image074 рад.

По полученным данным строим эпюру углов закручивания φ (см. чертеж).

5. Построим эпюры распределения касательных напряжений для сечений, удовлетворяющим условиям прочности и жесткости.

Круглое поперечное сечение: d = 75 мм.

clip_image026[1]= clip_image076(75clip_image078м)3 = 0,084clip_image078[1] м3

clip_image081 МПа.

Кольцевое поперечное сечение: dн = 80 мм, clip_image0830,75

clip_image085clip_image087(80clip_image078[2]м)3clip_image089= 0,070clip_image078[3] м3

clip_image091 МПа.

clip_image093(80clip_image078[4]м)4clip_image089[1]= 2,8clip_image095 м3

clip_image097 МПа.

clip_image099

Рисунок. Эпюры распределения касательных напряжений

Обычно в инженерной
практике проверку прочности балок
производят по нормальным наибольшим и
касательным напряжениям [2]. Нормальные
напряжения σ зависят от величины
изгибавшего момента, а касательные
τ – от величины поперечной силы.
Касательные напряжения в сечениях балки
обычно не играют существенной роли,
поэтому размеры сечения балок определяют
из условия прочности по нормальным
максимальным напряжениям:

,

где Мmax

наибольший (по абсолютной величине)
изгибающий момент, известный из эпюры
изгибающих моментов ().

Сечение балки
подбирается по моменту сопротивления
относитель­но нейтральной оси:

.
(3.10)

Для балки
прямоугольного сечения

.

Числовые значения
моментов сопротивления стандартных
профилей проката указаны в соответствующих
государственных стандартах на прокат,
а на балки двутавровые приведены в
таблицах приложения Г. Следует подбирать
номер профиля, имеющий большее стандартное
ближайшее значение. Допустимо принимать
и меньшее ближайшее значение WхСТ,
однако оно должно удовлетворять условию:

.

Момент сопротивления
при изгибе

Подходит швеллер
№ 8 (
Wx=22,4
см
3,
площадь сечения А=8,98 см
2).

Определим
прямоугольное сечение (рисунок 3.10) при

Рисунок 3.10 –
Сечение швеллера и прямоугольное сечение

Площадь
прямоугольного сечения

A=bh=16,27
см
2

в 2 раза больше площади швеллера.

3.4 Совместное действие изгиба и кручения

Сочетание деформаций
изгиба и кручения испытывает большинство
валов, которые обычно представляют
собой прямые брусья круглого или
кольцевого сечения.

Возникающие от
изгиба нормальные напряжения достигают
максимального значения в волокнах,
наиболее удаленных от нейтральной оси:

,

где М – максимальный
изгибающий момент, Нм;

W
– осевой момент сопротивления сечения,
м3.

Для вала круглого
сечения

Максимальные
касательные напряжения при кручении
возникают в точках контура поперечного
сечения:

где Wp
– полярный момент сопротивления сечения
(Wp=2W),
м3;
Т
– крутящий момент, Нм.

Таким образом, при
сочетании изгиба и кручения опасными
будут точки (для конкретного поперечного
сечения), наиболее удаленные от нейтральной
оси.

Применив третью
теорию прочности, получим

.

Расчетная формула
для круглых валов принимает вид:

,

где М
экв.
– эквивалентный момент, Нм;

[σ]
– допускаемое
напряжение на растяжение для материала
вала, Па.

Если величина и
направление нагрузки во время работы
вращающегося вала остаются неизменными,
то напряжения изгиба в теле вала будут
изменяться во времени по симметричному
циклу – I циклу
нагружения (рисунок 3.11).

Рисунок 3.11 – График
изменения во времени напряжения изгиба
I
цикл

При действии на
вал нагрузок в разных плоскостях силы
раскладывают на две взаимно перпендикулярные
плоскости, за одну из которых выбирают
плоскость действия одной из сил.

Суммарный изгибающий
момент определится как геометрическая
сумма моментов, действующих во взаимно
перпендикулярных плоскостях
рассматриваемого сечения:

где Мiв
и Мiгор
– изгибающие
моменты в i
– м сечении,
действующие в вертикальной и в
горизонтальной плоскостях соответственно.

Эквивалентный
момент определится по формуле:

,

Диаметр вала в
опасном сечении
рассчитывается из условия прочности:

.

Примечание –
При решении задач все необходимые
вычисления следует сначала проделать
в общем виде, обозначая все данные и
искомые величины буквами, после чего
вместо буквенных обозначений подставить
их числовые значения и найти результат.
На расчетных эскизах размеры должны
быть проставлены теми же буквами, какие
имеются в расчетных формулах.

Пример 4.
Построить
эпюры изгибающих, крутящего, суммарного
изгибающего моментов и определить
диаметр вала (рисунок 3.12) в опасном
сечении.

Т = 0,2 кНм, F
= 2 кН,
q
= 4 кН/м,
a
= 0,2м,
b
=1,2а = 0,24м,

с = 0,8а = 0,16м, [σ]
= 110МПа
.

Решение:

Плоскость yz:

Плоскость хz:

Из условия прочности
наиболее нагруженного сечения А определим
диаметр вала.

Рисунок 3.12 –
Расчетная
схема и эпюры вала

ПРИЛОЖЕНИЕ А

ЗАДАЧА 1

Расчет бруса на
осевое растяжение (сжатие)

Сечение бруса
квадратное. Материал – сталь. Допускаемое
напряжение [σ]
= 100 МПа. Модуль продольной упругости Е
= 2·105
МПа. Исходные данные к расчету см. в
таблице + рисунок.

ИСХОДНЫЕ ДАННЫЕ

Вариант

F1

F2

F3

l1

l2

l3

кН

м

1

32

18

24

0,7

0,4

0,8

2

28

16

12

0,6

0,5

0,7

3

22

8

26

0,5

0,6

0,9

4

19

24

15

0,8

0,6

0,5

5

30

12

16

0,4

0,9

0,6

6

27

15

10

0,6

0,7

0,8

7

24

14

8

0,3

0,8

0,7

8

26

16

11

0,7

0,9

0,4

9

25

12

18

0,5

0,5

0,9

10

31

26

14

0,7

0,3

0,5

11

18

15

12

0,6

0,6

0,8

12

23

25

12

0,8

0,4

0,7

13

16

8

12

0,4

0,7

0,9

14

18

10

14

0,6

0,5

0,8

15

22

12

14

0,5

0,6

0,7

16

20

9

12

0,7

0,4

0,8

17

24

16

12

0,9

0,3

0,6

18

18

10

14

0,8

0,2

0,7

19

25

18

14

0,7

0,6

0,9

20

19

11

10

0,8

0,5

0,6

21

30

13

10

0,4

0,8

0,5

22

27

15

12

0,6

0,9

0,4

23

22

11

10

0,7

0,7

0,6

24

20

9

10

0,5

0,9

0,7

25

24

12

14

0,7

0,4

0,9

26

19

10

11

0,8

0,3

0,6

27

25

13

13

0,4

0,7

0,8

28

21

16

12

0,5

0,5

0,7

29

22

20

10

0,8

0,6

0,8

30

23

15

11

0,7

0,3

0,9

Расчетные схемы

ПРИЛОЖЕНИЕ Б

ЗАДАЧА 2 РАСЧЕТ
ВАЛА НА КРУЧЕНИЕ

Сечение вала
круглое, сплошное и кольцевое. Допускаемое
напряжение кручения [τ]=25
МПа. Модуль сдвига G=8∙104
МПа

Вариант

Т1,
Нм

Т2,
Нм

Т3,
Нм

Т4,
Нм

l1,
м

l2,
м

l3,
м

l4,
м

l5,
м

1

2

3

4

5

6

7

8

9

10

1

200

300

400

0,8

0,7

0,4

0,6

0,3

2

300

500

500

0,7

0,6

0,5

0,8

0,4

3

400

400

300

0,9

0,5

0,6

0,3

0,2

4

100

200

300

0,5

0,8

0,9

0,4

0,3

5

300

400

100

0,6

0,4

0,6

0,5

0,4

6

100

100

500

0,8

0,6

0,7

0,3

0,2

7

300

200

200

0,7

0,3

0,8

0,4

0,3

8

500

600

500

0,4

0,7

0,9

0,5

0,4

9

600

800

700

0,9

0,5

0,5

0,3

0,2

10

400

200

300

0,5

0,7

0,8

0,2

0,3

11

300

500

600

0,8

0,6

0,6

0,4

0,3

12

100

200

200

0,7

0,8

0,4

0,3

0,4

13

700

500

200

0,9

0,4

0,7

0,2

0,3

14

800

400

300

0,8

0,6

0,5

0,3

0,3

15

900

600

400

0,7

0,5

0,6

0,4

0,4

16

100

200

300

0,8

0,7

0,4

0,2

0,5

17

200

800

100

0,6

0,9

0,3

0,3

0,6

18

300

800

100

0,7

0,8

0,2

0,4

0,7

19

400

500

300

200

0,9

0,7

0,6

0,2

20

500

500

200

300

0,6

0,8

0,5

0,3

21

600

900

400

100

0,5

0,4

0,8

0,4

22

700

800

300

200

0,4

0,6

0,9

0,2

23

800

700

100

400

0,6

0,7

0,7

0,3

24

900

600

200

300

0,7

0,5

0,9

0,4

25

100

500

300

200

0,9

0,7

0,4

0,2

26

200

300

500

300

0,6

0,8

0,3

0,4

27

300

300

400

200

0,8

0,4

0,7

0,3

28

400

200

600

100

0,7

0,5

0,5

0,2

29

500

100

700

200

0,8

0,8

0,6

0,3

30

600

200

800

300

0,9

0,7

0,3

0,4

Расчетные схемы

ПРИЛОЖЕНИЕ В

ЗАДАЧА 3
РАСЧЕТ НА ПРОЧНОСТЬ ДВУХОПОРНОЙ БАЛКИ
ПРИ ИЗГИБЕ

Для данной балки подобрать сечения
двутавра и прямоугольника (h/b=2).
Допускаемое напряжения изгиба [σ]=160
МПа

Вариант

М,K
Н.м

F,
кН

q,
кН/м

l1,
м

l2,
м

l3,
м

l4,
м

l5,
м

1

2

3

4

5

6

7

8

9

1

18

26

14

2

2

5

1

1

2

24

18

10

2

3

2

3

2

3

16

34

12

2

3

3

2

2

4

30

24

16

2

4

4

1

2

5

20

12

8

1,8

2,2

1

5

1

6

22

16

10

1,6

1

1,4

6

2

7

18

22

14

2,2

2

1,8

5

1

8

16

24

12

2,5

1

1,5

5

2

9

16

24

12

2,5

1

1,5

5

2

10

14

15

8

1,6

2

1,4

4

3

11

10

23

12

2

2

2

4

2

12

18

17

10

1,8

3

1,2

5

1

13

16

25

15

2

2

4

2

2

14

24

16

10

2

3

4

2

1

15

1

22

12

1,6

2,4

3,5

2,5

2

16

20

18

14

1,8

2,2

4,5

2,5

2

17

22

24

8

2

2

4

3

1

18

16

26

6

2

2

3,5

3,5

1

19

18

20

10

1,5

2,5

4,2

1,8

8

20

28

18

16

1,8

2,2

4,5

2,5

3

21

17

25

12

2

2

1

5

2

22

15

30

10

1,5

2,5

2

4

1

23

26

22

8

2

2

2

3

2

24

30

18

14

1,6

3,0

2

4

1

25

24

26

15

1,5

2,5

6

1

1

26

22

13

2,5

1,5

5

2

2

27

20

12

2,0

1,5

5,5

3

2

28

18

28

10

2,0

1,5

4,5

2

2

29

30

20

8

1,8

3,2

1

2

1

30

28

18

15

2

2,5

1,5

5

2

Расчетные схемы
задачи 3

ПРИЛОЖЕНИЕ Г

Сталь прокатная
– балки двутавровые (ГОСТ 8239-83)

h
– высота профиля;

b
– ширина;

d
– толщина;

t
– средняя толщина;

R
и r
– внутренний и наружный радиусы
скруглений;

J
– момент инерции;

W
– момент сопротивления;

i
– радиус инерции;

S
– статический момент полусечения

Номер

профиля

Масса

длины,
кг

Размеры,
мм

Площадь

сечения,
см2

Jx,

см4

Wx,

см3

ix,

см

Sx,

см3

Jy,

см4

Wy,

см3

iy,

см

h

b

d

t

R

r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10

9,46

100

55

4,5

7,2

7

2,5

12

198

39,7

4,06

23

17,9

6,49

1,22

12

11,45

120

64

4,8

7,3

7,5

3

14,7

350

58,4

4,88

33,7

27,9

8,72

1,38

14

13,7

140

73

4,9

7,5

8

3

17,4

572

81,7

5,73

46,8

41,9

11,5

1,55

16

15,9

160

81

5,0

7,8

8,5

3,5

20,2

873

109,0

6,57

62,3

58,6

14,5

1,7

18

18,4

180

90

5,1

8,1

9,0

3,5

23,4

1290

143,0

7,42

81,4

82,6

18,4

1,88

18а

19,9

180

100

5,1

8,3

9,0

3,5

25,4

1430

159,0

7,51

89,8

114,0

22,8

2,12

20

21,0

200

100

5,2

8,4

9,5

4,0

26,8

1840

184,0

8,28

104,0

115,0

23,1

2,07

20а

22,7

200

110

5,2

8,6

9,5

4,0

28,9

2030

203,0

8,37

114,0

155,0

28,2

2,32

22

24,0

220

110

5,4

8,7

10,0

4,0

30,6

2550

232,0

9,13

131,0

157,0

28,6

2,27

22а

25,8

220

120

5,4

8,9

10,0

4,0

32,6

2790

254,0

9,22

143,0

106,0

34,3

2,5

24

27,3

240

115

5,6

9,5

10,5

4,0

34,8

3460

289

9,97

163

198

34,5

2,37

24а

29,4

240

125

5,6

9,8

20,5

4,0

37,5

3800

317

10,1

178

260

41,6

2,63

27

31,5

270

125

6,0

9,8

11,0

4,5

40,2

5010

371

11,2

210

260

41,5

2,54

27а

33,9

270

135

6,0

10,2

11,0

4,5

43,2

5500

407

11,3

229

337

50,0

2,8

30

36,5

300

135

6,5

10,2

12,0

5

46,5

7080

472

12,3

268

337

49,9

2,69

30а

39,2

300

145

6,5

10,7

12,0

5

49,9

7780

518

12,5

292

436

60,1

2,95

33

42,2

330

140

7,0

11,2

13,0

5

53,8

9840

597

13,5

339

419

59,1

3,79

36

48,6

360

145

7,5

12,3

14,0

6

61,9

13380

743

14,7

423

516

71,1

2,89

40

57,0

400

155

8,3

13,0

15,0

6

72,6

19062

953

16,2

545

667

86,1

3,08

45

66,5

450

160

9,0

14,2

16,0

7

84,7

27696

1231

18,1

708

808

101,0

3,09

50

78,5

500

170

10,0

15,2

17,0

7

100

39727

1589

19,9

919

1043

123,0

3,23

60

108,0

600

190

12,0

17,8

20,0

8

138

76806

2560

23,6

1491

1725

182,0

3,54

60б

120,0

650

200

12,0

19,2

22,0

9

153

101400

3120

25,8

1800

2170

217,0

3,77

70

138,0

700

210

13,0

20,8

24,0

10

176

134600

3840

27,7

2230

2730

260,0

3,94

70а

168,0

700

210

15,0

24,0

24,0

10

202

152700

4360

27,5

2550

3240

309,0

4,01

70б

184,0

700

210

17,5

28,2

24,0

10

234

175770

5010

27,4

2940

3910

373,0

4,09

ПРИЛОЖЕНИЕ Д

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти ядро сечения в сопромате

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения. Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р, чтобы нейтральная ось проходила все время через одну и ту же точку В (,) — вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н1О1. Имеем:

Таким образом, границы ядра по оси Оу будут отстоять от центра сечения на 1/6 величины b (Рис.4, точки 1 и 3); по оси Oz границы ядра определятся расстояниями (точки 2 и 4).

Для получения очертания ядра целиком изобразим положения нейтральной оси и , соответствующие граничным точкам 1 и 2.

При перемещении силы из точки 1 в точку 2 по границе ядра нейтральная ось должна перейти из положения в положение , все время касаясь сечения, т. е. поворачиваясь вокруг точки D.

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 — 2. Точно так же можно доказать, что остальными границами ядра будут линии 2—3, 3—4 и 4—1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения (точка О) одинаково и равно и что сила Р не имеет эксцентриситета по второй главной оси.

Для круглого сечения радиуса r очертание ядра будет по симметрии кругом радиуса . Возьмем какое-либо положение нейтральной оси, касательное к контуру. Ось Оу расположим перпендикулярно к этой касательной. Тогда

Рис.6. Ядро сечения для двутавра — а) и швеллера — б)

Таким образом, ядро представляет собой круг с радиусом, вчетверо меньшим, чем радиус сечения.

Для двутавра нейтральная ось при обходе контура не будет пересекать площади поперечного сечения, если будет касаться прямоугольного контура ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD.

Источник

Голосование за лучший ответ

А.УМАРОВ

Оракул

(70014)


9 лет назад

Этого недостаточно для расчета. Нет схемы нагружения, из которой можно судить о моменте и характере нагрузки (изгиб, кручение, сжатие или растяжение)

ВК

Просветленный

(32923)


9 лет назад

F/A=сигма<10 -условие прочности, отсюда находите площадь А, потом диаметр. Только внимательно с размерностями, все перевести в СИ.

Добавить комментарий