Длина волны – это расстояние между двумя последовательными пиками (гребнями) или впадинами. Самое высокое положение волны называется пиком. Самое нижнее положение волны называется впадиной.
Цикл – это полное колебание, например, кривая между двумя гребнями или двумя впадинами. Максимальное расстояние волны от равновесного положения называется амплитудой.
На рисунке показаны основные параметры волны, используемые в физике:
Определение и формула длины волн
Волна – это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества.
Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.
Греческая буква “λ” (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.
Период Т — время завершения полного колебания, единица измерения секунды (с).
Длинная волна соответствует низкой частоте, а короткая – высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.
У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.
Пространственный период волны – это расстояние, которое точка с постоянной фазой «пролетает» за интервал времени, соответствующий периоду колебаний.
Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).
При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).
Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 108 м/с поделить на длину в метрах.
Единицы измерения длины волны λ – нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).
Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.
Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной – красный, который составляет около 700 нм.
Таблица показывает длину волны в зависимости от цвета:
Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания.
Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.
Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:
Примеры расчета длины волны для звуковых, электромагнитных и радиоволн
Задача №1
Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?
Задача №2
Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.
Задача №3
Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.
График волны функции (например, физической величины) y, распространяющейся вдоль оси Оx, построенный в фиксированный момент времени (t = const). Длина волны λ может быть измерена как расстояние между парой соседних максимумов y (x) либо минимумов, либо как удвоенное расстояние между соседними точками, в которых y = 0
Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе[1][2].
Длина́ волны́ (в линии передачи) — расстояние в линии передачи, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π[3].
Длину волны можно также определить:
- как расстояние, измеренное в направлении распространения волны, между двумя точками в пространстве, в которых фаза колебательного процесса отличается на ;
- как путь, который проходит фронт волны за интервал времени, равный периоду колебательного процесса;
- как пространственный период волнового процесса.
Представим себе волны, возникающие в воде от равномерно колеблющегося поплавка, и мысленно остановим время. Тогда длина волны — это расстояние между двумя соседними гребнями волны, измеренное в радиальном направлении. Длина волны — одна из основных характеристик волны наряду с частотой, амплитудой, начальной фазой, направлением распространения и поляризацией. Для обозначения длины волны принято использовать греческую букву , размерность длины волны — метр ([м]).
Как правило, длина волны используется применительно к гармоническому или квазигармоническому (например, затухающему или узкополосному модулированному) волновому процессу в однородной, квазиоднородной или локально однородной среде. Однако формально длину волны можно определить по аналогии и для волнового процесса с негармонической, но периодической пространственно-временной зависимостью, содержащей в спектре набор гармоник. Тогда длина волны будет совпадать с длиной волны основной (наиболее низкочастотной, фундаментальной) гармоники спектра.
Длина волны — пространственный период волнового процесса[править | править код]
Волна — колебательный процесс, развивающийся (распространяющийся) в пространстве и во времени, в связи с этим изменяющаяся в волновом процессе физическая величина является функцией пространственных координат и времени (то есть особого вида пространственно-временной функцией). Волновой процесс в частности может быть периодическим (например, гармоническим). По аналогии с периодом колебаний [с] (интервалом времени, за который периодический колебательный процесс повторяется и размерность которого — секунда), длину волны [м] можно рассматривать как пространственный период волнового процесса. Следует заметить, что круговой частоте колебания [радиан/с], показывающей, на сколько радиан изменится фаза колебания за 1 с в фиксированной точке (в множестве точек если твердое тело), соответствует «пространственная круговая частота» [радиан/м], называемая волновым числом и показывающая, на сколько радиан отличаются фазы колебательного процесса в двух точках пространства, расположенных вдоль направления распространения волны на расстоянии 1 м друг от друга. При этом очевидно, что фазы колебательного процесса в двух таких точках, расположенных друг от друга на расстоянии в [м], отличаются ровно на .
Связь с частотой[править | править код]
Получить соотношение, связывающее длину волны с фазовой скоростью и частотой можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому
Для электромагнитных волн в вакууме скорость в этой формуле равна скорости света (299 792 458 м/с), и длина волны
. Если значение подставить в герцах, то будет выражена в метрах.
Радиоволны делят на диапазоны по значениям длин волн, например, 10…100 м — декаметровые (короткие) волны, 1…10 м — метровые, 0.1…1,0 м — дециметровые и т. п. Механизмы и условия распространения радиоволн, степень проявления эффекта дифракции, отражающие свойства объектов, предельная дальность радиосвязи и радиолокации сильно зависят от длины волны. Как правило, габаритные размеры антенн сравнимы либо (справедливо всегда для антенн направленного действия) превышают рабочую длину волны радиоэлектронного средства. Магнитная антенна средневолнового радиоприёмника имеет габарит на порядки меньше длины волны, и при этом, тем не менее, обладает пространственной селективностью.
Длина волны в среде[править | править код]
В оптически более плотной среде (слой выделен тёмным цветом) длина электромагнитной волны сокращается. Синяя линия — распределение мгновенного (t = const) значения напряжённости поля волны вдоль направления распространения. Изменение амплитуды напряжённости поля, обусловленное отражением от границ раздела и интерференцией падающей и отражённых волн, на рисунке условно не показано.
Длина электромагнитной волны в среде короче, чем в вакууме:
- где — показатель преломления среды;
- — относительная диэлектрическая проницаемость среды;
- — относительная магнитная проницаемость среды.
Величины , и могут существенно зависеть от частоты (явление дисперсии). Поскольку для большинства сред в радиочастотном диапазоне (для диэлектриков , для ферромагнетиков с ростом частоты ), то в инженерной практике используют величину , которую называют коэффициентом укорочения. Она равна отношению длины волны в среде к длине волны в вакууме. Например, для полиэтилена (используется в радиочастотном диапазоне как изоляционный материал с малыми потерями) = 2,56, и коэффициент укорочения = 1/1,6 = 0,625.
Напротив, длина электромагнитной волны (поперечномагнитной, поперечноэлектрической) в волноводах может быть не только больше, чем в среде с тем же значением , но и больше, чем вакууме, поскольку фазовая скорость электромагнитной волны в волноводе превышает скорость электромагнитной волны в среде с тем же .
Волны де Бройля[править | править код]
Волнам де Бройля также соответствует определённая длина волны. Частице с энергией и импульсом , соответствуют:
- частота:
- длина волны:
- где — постоянная Планка.
Примеры[править | править код]
Приближённо, с погрешностью около 0,07 % рассчитать длину радиоволны в свободном пространстве можно так: 300 000 делим на частоту в килогерцах, получаем длину волны в метрах. Другой способ — запомнить какую-нибудь удобную пару ↔ , например, частоте 100 МГц соответствует длина волны 3 м; тогда оценив, во сколько раз требуемая частота выше или ниже 100 МГц, можно определить длину волны. Например, 1 МГц ниже 100 МГц в 100 раз, значит 1 МГц ↔ 3 м × 100 = 300 м
Примеры характерных частот и длин волн: частоте 50 Гц (частота тока в электросети) соответствует длина радиоволны 6000 км; частоте 100 МГц (радиовещательный FM-диапазон) — 3 м; 900 (1800) МГц (мобильные телефоны) —
33,3 (16,7) см; 2,4 ГГц (Wi-Fi) — 12,5 см; 10 ГГц (бортовые радиолокационные станции системы управления вооружением современных самолётов-истребителей) — 3 см. Видимый свет представляет собой электромагнитное излучение c длинами волн от 380 до 780 нм[4].
Примечания[править | править код]
- ↑ Колебания и волны // Физика : Учебник для 11 класса общеобразовательных учреждений / Г. Я. Мякишев, Б. Б. Буховцев. — 12-е изд. — М. : Просвещение, 2004. — С. 121. — 336 с. — 50 000 экз. — ISBN 5-09-013165-1.
- ↑ Определение не вполне корректно, поскольку (1) в одинаковой фазе колебания происходят и на фронте волны, и расстояние между точками на фронте может быть произвольным, в том числе и нулевым; (2) чтобы расстояние между двумя точками равнялось длине волны, колебание должно происходить не в одинаковой фазе, а со сдвигом фаз в , и расположены точки должны быть вдоль линии распространения
- ↑ ГОСТ 18238-72. Линии передачи сверхвысоких частот. Термины и определения.
- ↑ ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин Архивная копия от 23 марта 2013 на Wayback Machine
Литература[править | править код]
- Волны де Бройля / В. И. Григорьев // Вешин — Газли. — М. : Советская энциклопедия, 1971. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 5).
- Длина волны // Дебитор — Евкалипт. — М. : Советская энциклопедия, 1972. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 8).
Где применяют ультракороткие радиоволны? Укажите диапазон их длин волн (см. табл. в задании 1962).
таблица из задания 1962
Диапазон радиоволн | Длина волны, м | Частота, Гц | Применение |
---|---|---|---|
Длинные |
10 4 − 10 3 |
? | Радиосвязь, радионавигация |
Средние | ? | 3 ∗ 10 5 − 10 6 |
? |
Короткие |
10 2 − |
? | ? |
Ультракороткие | ? | 3 ∗ 10 7 − 10 10 |
? |
reshalka.com
ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Электромагнитное поле. Электромагнитные волны. Конденсатор. Колебательный контур. Принципы радиосвязи и телевидения. Номер №1965
Решение
Дано:
ν
=
3
∗
10
7
−
3
∗
10
10
Гц;
с
=
3
∗
10
8
м/с.
Найти:
λ − ?
Решение:
Найдем длину волны:
с = νλ;
λ
=
с
ν
;
λ
1
=
3
∗
10
8
3
∗
10
7
=
10
м;
λ
2
=
3
∗
10
8
3
∗
10
10
=
10
−
2
м.
Ответ: от 10 м до
10
−
2
м.
Область применения: радиотелеграфная, радиотелефонная и радиолюбительская связи, космическая радиосвязь, радиовещание.
Введите данные в какое-либо поле, остальные параметры будут расчитаны автоматически.Если в какой-либо области изменения данных, другие автоматически пересчитываются. В качестве десятичной запятой можно использовать как запятую, так и точку.
Обнаруженны NaN, проверьте, что вы ввели в поле корректные данные, то есть без букв и других символов.
Коэффициент укорочения
Для расчета петель симметризационных и окурки коаксиального кабеля должны быть приняты во внимание коэффициент укорочения k. Для коаксиальный кабель с пеной диэлектрика k = 0,81 и для кабеля с полиэтиленовым диэлектриком составляет k = 0,66. Коэффициент укорочения не может быть равен нулю. Если вы не понимаете антенная технологии, оставить укорочение фактора всегда 1.
[custom_ads_shortcode1]
Точность расчета
Расчет зависит от скорости распространения электромагнитных волн = скорость света. Для иллюстративных целей, расчет подсчитывает только округленное значение (в вакууме) c = 300 000 000 m/s Для точных расчетов распространения в вакууме должны ввести: c = 299 792 458 m/s Скорость распространения электромагнитных волн различных материалов ниже.
[custom_ads_shortcode2]
Формулы
Длина волны (лямбда) | λ = | 300 / f | [m] |
Частота | f = | 300 / λ | [MHz] |
λ … длина одной волныT … время
[custom_ads_shortcode3]
Длина волны и частота
Дополнительная информация для расчета длины волны и частоты. можно найти в Википедии в соответствующих паролей (см ссылки ниже).
[custom_ads_shortcode1]
Расчет длины волны онлайн
[custom_ads_shortcode2]
Ссылки
- Википедия – Длина волны
- Википедия – Частота
В физике звуковая энергия передается посредством волн, которые имеют уникальную способность распространяться в абсолютно любой среде. Разнообразие и огромное количество волновых процессов не позволяют ученым выделить основные свойства волн, так как среди них есть и простые типы, уделяющие внимание энергии. Они уникальны тем, что могут простираться сквозь абсолютную пустоту.
Рисунок 1. Длина волны. Автор24 — интернет-биржа студенческих работОпределение 1Длина волны — это определенное расстояние между двумя близко расположенными волнами сигнала.
Чтобы точно определить полную длину волновых процессов, необходимо изначально измерить расстояние между двумя соседними точками двух волн. Зачастую физики определяют эту величину с помощью промежутка между пиками волн, которые находятся на близком расстоянии друг к другу.
Длина волны имеет прямое отношение с частотой потока, исходящего от сигнала. Чем больше постоянство данного элемента, тем меньше будет в итоге длина волнового процесса. Такая подвластность обусловлена стремительным увеличением общего количества повторений волны сигнала в течение определенного периода времени с уменьшением нестабильной длины волны.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателямДля волн Де Бройля этот показатель можно рассчитать таким образом: $LARGE lambda =frac{h}{p }$А если вам необходимо определить более точную формулу переменного элемента электромагнитном поле или воздухе, то можно воспользоваться такой теорией, где $LARGE lambda =frac{c}{nu }=frac{299792458}{nu }$Здесь используется:
- $lambda$ — длина самой волны;
- $upsilon$ — постоянная скорость волны;
- $T$ — определенный период волны;
- $nu$ — частота общих колебаний;
- $h$ — стабильная планка;
- $p$ — импульс элемента;
- $c$ — скорость света.
Стоит отметить, что раздел физики, который занимается изучением звуковых волн, называется акустикой. Для людей, звук выступает в роли главного источника получения важной информации. Определение 2Звук — это конкретный период волны, имеющий механическое происхождение и распространяющийся в газообразном и твердом пространстве. Их невозможно увидеть, однако они очень восприимчивы для человеческого уха.
[custom_ads_shortcode3]
Скорость волны в физике
Рисунок 2. Скорость и длина волны. Автор24 — интернет-биржа студенческих работЛюбой волновой процесс распространяется с определенной скоростью. Под быстротой волны считают общий показатель распространения противодействия. Например, удар по торцу металлического стержня образует в нем местное прочное сжатие, которое затем будет двигаться вдоль выколотки со скоростью примерно 10 км/с.
Скорость волны можно определить свойствами окружающей среды, в которой этот процесс происходит. При трансформации волны из одного пространства в другое ее скорость кардинально изменяется. В физике под длиной волны подразумевают расстояние, на которое может распространиться волна за время, равное общему периоду колебаний в ней.
None Таким образом, чтобы измерить длину волны, надо скорость волнового процесса умножить на фазу его колебаний в ней: где $v$ — скорость конкретной волны, $T$ — период общих колебаний в волне, $lambda$ — длина самой волны.
Указанная формула определяет связь длины волны с ее скоростью и фазой. Учитывая, что промежуток колебаний в волновых процессах всегда пропорционален частоте, можно утверждать, что что скорость волны равна созданию длины на стабильную частоту колебаний в ней.
Замечание 1Волны способны передавать силу и энергию, а также обладают конкретикой, что способствует одному волновому процессу не влиять на колебания другого. В результате, эти две гранитизации могут легко проходить параллельно и не мешать друг другу.
[custom_ads_shortcode1]
Виды волн
Волны с точки зрения физики передают общую звуковую энергию, которая легко может существовать в любой среде. Благодаря разнообразию существующих волновых процессов, их невозможно точно определить и выделить основные характеристики, присущи только этому явлению.
Волновой процесс имеет многогранную природу в физике, сюда относят:
- химическую;
- механическую;
- электромагнитную;
- спиновую волны;
- гравитационную;
- плотность вероятности.
Американские ученые два года назад получили Нобелевскую премию за изобретение уникального детектора, которые способен с точностью измерить указанные показатели. Устройство в лазерной гравитационно-волновой обсерватории в первый раз зафиксировало гравитационную волну. Чтобы указанный вид волн долететь до нашей планеты, ему понадобилось более одного миллиарда лет. Далеко за видимым горизонтом галактики произошло мощное столкновение двух черных дыр, после чего прошло уже полтора миллиарда лет.
Звуковыми волнами принято считать волны, которые легко воспринимаются человеческим ухом. Диапазон этих частот находятся в границах примерно от 20 Гц до 20 кГц, а волновые процессы с частотой менее указанных показателей называются инфразвуком, а с частотой более 20 кГц – ультразвуком. Волны звукового диапазона могут находится не только в газе, но и в жидкости, и в других состояниях. Однако волны в газообразном пространстве – среде нашего обитания – представляют собой особый интерес.
[custom_ads_shortcode2]
Типы волн
Все звуковые колебания оснащены постоянной амплитудой, фазой и частотой. Звуки могут проходить абсолютно разные расстояния, а затем передаваться в пространстве в виде неких механических колебаний молекул конкретного вещества. Они распространяются постепенно, а с определенной скоростью, а после мгновенно исчезают. Их скорость непосредственно зависит от среды, в которой они расположены: в жидких и твердых состояниях звуковой процесс простирается лучше и быстрее, чем в воздухе.
Типы волн бывают следующими:
- бегущая – обуславливается периодом, скоростью и длиной, а также характеризуется распространением фаз в пространственном времени, зависящим от частоты и среды;
- стоячая – подразумевает суммарность двух волн: отраженной и падающей, для образования которых необходима одинаковая интенсивность волновых процессов;
- звуковая – характеризуется важным фактором, так как только благодаря этому типу волны люди могут общаться и получать необходимую информацию.
В целом, можно сделать вывод, что причиной всех звуковых процессов являются вибрации, для стабильного распространения звука требуется определенное пространство, источником данного явления выступает тело, имеющее свойство колебаться и вибрировать с правильной, постоянной частотой.
Однако не каждые физические тела, которые перемещаются, могут быть источниками звука. Интересным фактом из истории считается то, что расширение инфразвука на огромные расстояния дает возможность более точно предсказывать стихийные бедствия. А морские животные, такие как раки или медузы, крайне чувствительны к указанным процессам, поэтому способны еще за несколько дней до наступления шторма предвидеть его и спрятаться в безопасное место. Звуки также представляют собой частоту гармонических и абсолютных колебаний.
Длина волны λ может быть измерена между любыми двумя точками волны с одинаковой фазой, максимумами, минимумами или узлами волны.
Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой .[1] По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина , обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.
Получить соотношение, связывающее длину волны с фазовой скоростью () и частотой () можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний , поэтомуВолнам де Бройля также соответствует определенная длина волны. Частице с энергией Е и импульсом p, соответствуют:
- частота:
- длина волны:
где h — постоянная Планка.
[custom_ads_shortcode3]
Примеры
None Точная формула для расчёта длины волны электромагнитного излучения в вакууме выглядит так:
где — скорость света, равная в Международной системе единиц (СИ) 299 792 458 м/с точно.
Для определения длины волны электромагнитного излучения в какой-либо среде следует использовать формулу:
где — показатель преломления среды для излучения с данной частотой.
[custom_ads_shortcode1]
Примечания
- Мякишев Г. Я., Буховцев Б. Б. Колебания и волны // Физика. Учебник для 11 класса общеобразовательных учреждений. — 12-е изд. — М.: Просвещение, 2004. — С. 121. — 336 с. — 50 000 экз. — ISBN 5-09-013165-1
Расстояние между соседними волновыми фронтаминазывается длиной волны λ. Длина волныесть расстояние между частицами, колеблющимися с одинаковой фазой. Длина волны не зависит от координат и времени.
Длина волныЕсли
с. |
фазовая скорость, или скорость распространения волны,. |
метр/секунда. |
f. |
частота, с которой колеблется каждая частица в волне,. |
Герц. |
T=1/f. |
период, продолжительность полного колебания частицы,. |
Секунда. |
λ. |
длина волны, расстояние между частицами, колеблющимися с одинаковой фазой,. |
Метр. то в соответствии с формулой равномерного поступательного движенияФормула 1 справедлива для всех волн, в том числе и электромагнитных. |
ФОТОПРОВОДИМОСТЬ(фоторезистивный эффект) – изменение электропроводности среды, обусловленное действием электромагнитногоизлучения. Ярко выражена в полупроводниках и диэлектриках. Фотопроводимость. возникает из-за изменения либо концентрации носителейзаряда(концентрационная фотопроводимость.), либо их подвижности под действием излучения (см.Подвижность носителей заряда). В зависимости от механизма поглощения излучения различают Фотопроводимость собственную, примесную и внутризонную.
Собственная и примесная фотопроводимости. В основе собств. и примесной Ф. лежит внутр.фотоэффект, т. е. либо оптическая генерация пар электрон – дырка (при собственной Ф.), либо фотоотрыв носителя заряда от заряженного примесного центра (при примесной фотопроводимости). Генерируемые при внутреннем фотоэффекте свободные носители заряда наз. фотоносителями. Изменение удельной электропроводности однородногополупроводникапод действием излучения равно где Δn, Δp- изменения концентраций электронов проводимости (п) и дырок (p), μn, μp-их подвижности. Величины Δn, Δp определяютсяквантовым выходом Yвнутреннего фотоэффекта, т. е. числом генерируемых электронно-дырочных пар (при собственной фотопроводимости) или числом генерируемых носителей (при примесной фотопроводимости) в расчёте на один поглощённый фотон, а также временем жизни фотоносителей (до их рекомбинации или захвата примесными центрами). Если фотопроводимость (собственная) определяется подвижными фотоносителями обоих знаков, её называют биполярной. В тех случаях, когда хотя и генерируются фотоносители обоих знаков, но фотоносители одного типа имеют ничтожные подвижность и время жизни, а также при примесной фотопроводимости, когда генерируются фотоносители только одного знака, фотопроводимость называется монополярной.
Так как импульс фотона, как правило, пренебрежимо мал по сравнению с импульсом электрона, требование одновременного выполнения законов сохранения энергии и импульса приводит к тому, что переходы электронов с участием только одного фотона оказываются возможными лишь между состояниями, в которых импульс электрона практически один и тот же (“прямые”, или “вертикальные”, переходы). Однако этот запрет может нарушаться за счёт взаимодействия электронов или дырок с фононами. Последнее приводит к “непрямым” переходам с изменением как энергии, так и импульса электрона и испусканием или поглощением фонона. Исследования зависимости фотопроводимости от энергии фотоновhν позволяют по их минимальной энергии, ещё вызывающей фотопроводимость, определять энергетические щели между уровнями или зонами.
•11•Чему равен характерный размер длины волны рентгеновского спектра?
Рентгеновское излучение — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 до 10 Å (от 10 до 10 м). Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов – эквивалентны. Терминологическое различие лежит в способе возникновения – рентгеновские лучи испускаются при участии электронов (либо связанных в атомах, либо свободных), в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100эВ до 250 кэВ, что соответствует излучению с частотой от 3·10 до 6·10 Гц и длиной волны 0,005 – 10 нм(общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкое рентгеновское излучение характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткое рентгеновское излучение обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткое рентгеновское излучение используется преимущественно в промышленных целях. Можно написать пример применения, например медицина – рентгеновский снимок.
• Какое излучение приводит к запаху озона, образованию сильных ожогов и ослеплению?
Ультрафиолетовое излучение приводит к запаху озона при горении кварцевых ламп в физиотерапевтическом кабинете, образованию сильных ожогов при продолжительном нахождении под солнцем, также к ослеплению, например если смотреть долго на электрическую дугу без специальных темных очков. Ультрафиолетовое излучение (ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400нм (7,5·1014—3·1016 Гц). Термин происходит от лат.ultra — сверх, за пределами и фиолетовый. В разговорной речи может использоваться также наименование «ультрафиолет». После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.
Действие на кожу Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи,меланомукожи и преждевременное старение.
Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).
•13•В каком диапазоне частот находится видимый свет? Какому цвету соответствует наибольшая длина волны?
Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555нм, в зелёной части спектра. Обычно в качестве коротковолновой границы принимают участок 380 – 400 нм (750 – 790 ТГц), а в качестве длинноволновой 760 -780 нм (385 – 395 ТГц). Диапазон длин волн видимого свет равен 380 – 780 нм. В частотном диапазоне, видимый свет занимает следующий диапазон частот (385 – 790 ТГц). Самая длинная волна видимого света принадлежит красному цвету625 – 740 нм (385 – 480 ТГц). Следующим принято называть оранжевый цвет, диапазон длин волн которого равен 590 – 625 нм (480 – 510 ТГц). Далее, будут указаны цвета, с уменьшением длин волн и увеличением частоты. Желтый цвет 565 – 590 нм (510 – 530 ТГц). Зеленый 500 – 565 нм (530 – 600 ТГц). Голубой 485 – 500 нм (600 – 620 ТГц). Синий 440 – 485 нм (620 – 680 ТГц). Фиолетовый 380 – 440 нм (680 – 790 ТГц). КАЖДЫЙ ОХОТНИК ЖЕЛАЕТ ЗНАТЬ ГДЕ СИДИТ ФАЗАН.
•14•Свет какого цвета обладает наименьшим показателем преломления при переходе из воздуха в стекло? Показатель преломления кремния, арсенида галлия, двуокись кремния.
Показатель преломления стекла, из которого сделана призма, зависит от длины волны света и уменьшается с ростом длины волны от 380 нм до 780 нм, поэтому призма по-разному отклоняет свет разных длин волн.
По закону преломления Снеллиуса синус угла преломления равен синусу угла падения, деленному на показатель преломления. И чем больше показатель преломления, тем меньше угол преломления, таким образом, больше всего отклоняются фиолетовые лучи, меньше всего – красные. Если n=и νк<νф, следовательно, nф > nк. Именно поэтому призма разлагает свет. Скорость распространения фиолетового цвета быстрее, чем красного, именно поэтому наименьший показатель преломления при переходе из воздуха в стекло наблюдается у красного цвета. Абсолютный показатель преломления (АПП) является одной из важнейших характеристик среды распространения электромагнитной волны и может быть представлен в виде где λ0— длина волны в вакууме; λ — длина волны в диэлектрике; ε— относительные диэлектрическая и μ – магнитная проницаемость диэлектрика. Существенной особенностью АПП является его зависимость от длины волны. Для беспримесной двуокиси кремния (SiO2) используемой для изготовления стекловолокон, указанная зависимость имеет вид, показанный на рис. справа. Показатель преломления для кремния равен 3,44 Показатель преломления для арсенида галлия = 3,62•15•Какое явление лежит в основе просветления оптики?
Явление интерференции лежит в основе просветления оптики. Просветление оптики — это нанесение на поверхность линз, граничащих своздухом, тончайшейплёнкиили нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропусканияоптической системы.
Показатель преломлениятаких плёнок меньше показателя преломления стёкол линз(не всегда).
Просветляющие плёнки уменьшают отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие плёнки загрязнений (жир, масло) на поверхности просветляющего покрытия нарушают его работу и резко увеличивают отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем разрушают просветляющее покрытие.
По методике нанесения и составу просветляющего покрытия просветление бывает физическим (напыление в вакууме) и химическим (травление). Травление применяли на заре эпохи просветления.
Показатель преломления n и толщина пленки h подбираются так, чтобы суммарная интенсивность светового потока, отраженного от поверхности пленки и стекла вследствие интерференции света, была равна нулю. При просветлении оптики применяются многослойные пленки, рассчитанные на то, чтобы уничтожить отражение большей части света и впустить в оптическую систему лучи, к которым человеческий глаз особенно чувствителен. Вне этого условия остается, главным образом, фиолетовая часть спектра, почему входные линзы просветленных оптических приборов в отраженном свете и кажутся фиолетовыми.
•16•Перечислите фотовольтаические эффекты и объясните их суть.
Источники:
- dlina-volny.wikina.ru
- spravochnick.ru
- dic.academic.ru
- studfiles.net
Что такое длина волны
Волна — изменение характеристик физического поля или среды, способное удаляться от места возникновения или колебаться внутри ограниченной области пространства.
Длина волны — расстояние между точками, которое волна проходит за одно колебание.
Если точки отстоят на расстояние (lambda) друг от друга, их смещения из положений равновесия будут одинаковы, и колебания в них будут происходить в одинаковой фазе.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В системе СИ длина волны измеряется в метрах.
Чем меньше длина волны, тем легче сконцентрировать ее энергию в заданном направлении. Поэтому, например, в эхолокации используют ультразвук. Поскольку ультразвуковые волны в воде затухают гораздо слабее, чем в воздухе, эхолокацию особенно широко используют в гидроакустике.
Физические характеристики волны
Два главных параметра волны — частота колебаний f (число полных циклов колебаний в секунду) и длина волны (lambda) — зависят друг от друга.
Зная эти параметры, можно произвести вычисления, чтобы выяснить период повторения колебаний Т и скорость распространения волны v.
Интенсивность волны описывается такими параметрами, как:
- амплитуда;
- плотность энергии;
- плотность потока мощности.
Геометрически волна состоит из гребней и ложбин.
Для продольных волн чаще используют понятия точек максимального сжатия и максимального растяжения.
Для стоячих волн — понятия пучности и узла, характеризующие участки с максимальной и минимальной амплитудой колебаний.
Виды волн, какие бывают
Продольные волны
Продольные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.
Они возникают при сопротивлении среды изменению ее объема, их причина — деформация сжатия/растяжения (в твердой среде) или уплотнения/разрежения (в газах и жидкостях).
Продольная волна заставляет частицы среды колебаться у своих положений равновесия, и этот процесс перемещается параллельно направлению распространения волны. Частицы сдвигаются строго по одной линии.
Чтобы узнать длину волны, нужно измерить расстояние между ближайшими точками сжатия или растяжения. Продольные волны могут распространяться в любой среде: твердой, жидкой, газообразной. Во время этого процесса непрерывно изменяется давление в каждой точке среды.
Примечание
В твердых телах продольные волны распространяются быстрее, чем поперечные. Для сравнения: продольная волна движется в стали со скоростью около 5900 м/с, поперечная — примерно 3250 м/с.
Поперечные волны
Поперечные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.
Они возникают при сдвиге слоев среды относительно друг друга. В поперечной волне колебания элементов происходят в направлениях, перпендикулярных направлению распространения волны. Среда стремится вернуть деформированные частицы на место, при этом на несмещенные частицы рядом со смещенными воздействуют силы упругости и отклоняют их от положения равновесия. Жидкости и газы не сопротивляются изменению формы, поэтому поперечные волны возможны только в твердых средах.
Длина поперечной волны — расстояние между двумя ближайшими ее впадинами или горбами.
Примечание
И продольные, и поперечные волны относятся к упругим — возникающим только в упругой среде, обладающей свойством после деформации возвращаться к прежней форме.
Стоячие волны
Стоячие волны — волновые процессы в распределенных колебательных системах с устойчивым в пространстве расположением участков с максимальной и минимальной амплитудой.
Самую простую одномерную стоячую волну можно возбудить, запустив колебательный процесс с одного конца стержня или гибкой струны. Добравшись до конца стержня или струны, волна отразится, что вызовет наложение.
Бегущие волны
Бегущие волны — процессы последовательного изменения (с определенным запаздыванием) состояния взаимодействующих тел, когда они друг за другом приходят в движение.
Ее можно запустить, например, в системе из косточек домино, выстроенных строго друг за другом на ровной поверхности. Если осторожно толкнуть первую, она, падая, уронит вторую, та — следующую, и в результате такого последовательного падения по ряду побежит волна.
Формулы длины волны
Длина стоячей и бегущей волны
(lambda_{};=;v;times;T;=;frac vf;=;frac{2mathrm{πv}}omega)
v здесь — фазовая скорость волны, Т — период колебаний, f — частота, (omega) — круговая частота.
Длина стоячей волны — это расстояние между двумя пучностями или двумя узлами, которое можно рассчитать с помощью формулы:
(lambda_{ст};=;fraclambda2.)
Длина стоячей волны равна половине длины соответствующей бегущей волны, так как возникает при наложении двух волн, падающей и отраженной, и сумма их амплитуд равна нулю.
Длина электромагнитной волны
Электромагнитная волна — это электрическое и магнитное поля, взаимно превращающиеся друг в друга.
В случае электромагнитных волн колебания совершают векторы электрического и магнитного полей. Механического колебания не происходит, но электромагнитные волны, например, световые, принято относить к поперечным.
Частоты и длины электромагнитных волн изменяются в очень широких пределах: от нескольких колебаний в секунду до (10^{27}), от размеров, сопоставимых с размерами атомов, до миллионов километров в безвоздушном пространстве. Поэтому электромагнитные излучения принято делить на частотные диапазоны в порядке возрастания длины волны, от гамма-лучей к радиоволнам. Границы между выделенными диапазонами условны.
Длина электромагнитной волны обратно пропорциональна частоте и вычисляется через скорость света:
(nutimeslambda;=;с.)
Скорость распространения излучения, она же скорость света, равна:
(3;times;10^8;frac мс.)
Длина звуковой волны
Колебания частотой от 16 до 20 000 Гц воспринимаются ухом человека. Колебания источников звуковых волн, например, струн или голосовых связок, создают в среде последовательно сменяющие друг друга сжатия и разрежения.
Когда периодические изменения давления достигают барабанной перепонки, она совершает вынужденные колебания. Эти колебания анализирует по амплитуде и частоте внутреннее ухо, имеющее форму улитки, рецепторы которого настроены на различные звуковые частоты. Затем колебания передаются в мозг по слуховому нерву и воспринимаются как слышимые звуки.
Длину звуковой волны вычисляют по общей формуле:
(lambda;=;v;times;T;.)
Расчет длины волны через энергию фотона
Электромагнитное излучение испускается не непрерывно, а отдельными порциями, которые называют квантами или фотонами. Их энергия пропорциональна частоте и высчитывается по формуле:
(E;=;htimesnu)
Где h — постоянная Планка, равная (6,6;times;10^{-34};Джtimes с.)
Очевидно, что наибольшую энергию несут кванты коротковолнового излучения. За единицу измерения энергии фотонов обычно принимают электронвольт, его обозначение — эВ. Это энергия, которую приобретает свободный электрон, ускоренный электрическим полем с разностью потенциалов в 1 вольт.
1 электронвольт равен (1,6;times;10^{-19};Дж.)
Кванты видимого излучения обладают энергиями 2–3 эВ и занимают лишь небольшую область исследуемого в астрофизике электромагнитного спектра, который простирается от значений энергии порядка миллионных долей электронвольта для метровых радиоволн до миллионов электронвольт для гамма-излучения.
Так как частота равна скорости распространения излучения, деленной на длину волны, длину волны можно вычислить, зная энергию фотона и частоту.
(lambda;=frac{;htimes;c;}E)
Примеры решения задач
Задача № 1
Найдите длину волны при звучании ноты «ля», если известно, что частота ее колебаний равна 440 Гц, а скорость распространения звука в воздухе — 340 м/с.
Решение:
(lambda;=;v;times;T;)
Для нахождения периода Т воспользуемся формулой (Т;=frac{;1;}f.)
Следовательно, (lambda;=;frac{v;}f.)
Подставив известные данные, получим (lambda;=;frac{340;}{440};=;0,78;м.)
Ответ: 78 см.
Задача № 2
Найдите длину волны, если известно, что ее скорость 8 м/с, а период — 1 час.
Решение:
(lambda;=;v;times;T;)
1 час = 3600 секунд
Подставив известные данные, получим (lambda;=;8;times;3600;=;28800;м.)
Ответ: 28800 м.