Как найти диэлектрическую проницаемость масла

lengenghing234

lengenghing234

Вопрос по физике:

“Определить абсолютную диэлектрическую проницаемость трансформаторного масла если два одинаковых заряда в вакууме на расстоянии 20 см взаимодействуют с той же силой что и в масле на расстоянии 0,14 м считая силу взаимодействия в вакууме равной 90н определить заряды”

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1

ltesecqu

ltesecqu

Сила, действующая в вакууме и сила в масле


2.08e-5 Кл = 20,8 мкКл

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Диэлектрическая постоянная масла

Диэлектрическая постоянная маслаОдним из главных показателей технических масел является ɛ − диэлектрическая постоянная масла (диэлектрическая проницаемость масла), характеризующая ее диэлектрические свойства.

Свежие технические масла являются неплохими диэлектриками, среди которых особо высокими диэлектрическими свойствами обладают электроизоляционные масла – трансформаторные, кабельные, конденсаторные. В целом же, диэлектрическая постоянная масел находится в пределах 2,3- 2,6.

В ходе эксплуатации масло постепенно изменяет свой химический состав за счет загрязнения водой, металлическими продуктами износа, технологическими жидкостями, продуктами истощения присадок, продуктами неполного сгорания топлива, сажей и др. Изменение физико-химического состава масла приводит к увеличению его диэлектрической постоянной, причем величина приращения диэлектрической постоянной масла напрямую связана со степенью загрязнения масла инородными примесями.

В связи с тем, что диэлектрическая проницаемость масла изменяется под действием целого ряда загрязнений, то точно выявить причину приращения диэлектрической постоянной не представляется возможным, однако по результатам практических исследований, установлены коэффициенты корреляции между диэлектрической проницаемостью и показателями моторных масел.

Рис.1 − Значение коэффициентов корреляции между диэлектрической проницаемостью и показателями моторных масел

В практике сервисных служб промышленных предприятий знание точного количественного значения ɛ является не столь важным, в то время как вся диагностическая информация о текущем состоянии масла сосредоточена в характере изменения диэлектрической постоянной масла ɛ с течением времени эксплуатации. Контролируя это изменение через построение трендов, и дополняя их контролем других показателей масла, вы всегда можете прогнозировать приближение состояния масла к пороговому значению и своевременно провести его замену – не ранее и не позднее необходимого срока.

Для периодического контроля диэлектрической постоянной ɛ непосредственно по месту установки оборудования очень важно выполнение следующих условий:

  • проведение измерений собственным обслуживающим персоналом, без привлечения сторонних специалистов,
  • проведение контроля без использования специальных реактивов и громоздкого оборудования,
  • обеспечение высокой скорости проведения измерений.

Всем этим требованиям соответствует портативный анализатор BALTECH OA-5000, принцип действия которого основан на сравнении диэлектрической постоянного свежего и эксплуатируемого масла.

Процедура измерений исключительно проста и включает:

  1. Калибровку прибора по капле свежего масла с сохранением измеренного значения ɛ в памяти прибора.
  2. Очистку камеры анализа от капли свежего масла.
  3. Тестирование эксплуатируемого масла нанесением его капли в камеру анализа.
  4. Получение результатов измерений по цветовой шкале анализатора:
  • индикатор в «зеленом» секторе дисплея – удовлетворительное состояние масла, допускающее его дальнейшую эксплуатацию;
  • индикатор в «красном » секторе дисплея – неудовлетворительное состояние масла, требующее его замену.

Несмотря на высокую достоверность результатов измерений анализатором, во многих случаях контроль лишь диэлектрической проницаемости масла ɛ является недостаточным, поэтому для получения количественных значений основных показателей масла (вязкость, ОКЧ, ОЩЧ, содержание загрязнений и продуктов износа и др.) и диагностической информации о состоянии оборудования, компания MVR рекомендует к приобретению одну из наших минилабораторий. С функциональными возможностями каждой модели вы можете ознакомиться на нашем сайте.

Если же по финансовым или иным соображениям приобретение наших систем для маслоанализа не представляется для вас возможным, то специалисты отдела выездного обслуживания и энергосервиса (ОВОЭ) компании MVR не только проведут всесторонний анализ ваших масел, но, и по вашему желанию, проведут весь комплекс работ по тепловизионному обследованию, вибродиагностике и виброналадке вашего оборудования.

“Определить абсолютную диэлектрическую проницаемость трансформаторного масла если два одинаковых заряда в вакууме на расстоянии 20 см взаимодействуют с той же силой что и в масле на расстоянии 0, 14 м считая силу взаимодействия в вакууме равной 90н определить заряды”.

На этой странице сайта вы найдете ответы на вопрос “Определить абсолютную диэлектрическую проницаемость трансформаторного масла если два одинаковых заряда в вакууме на расстоянии 20 см взаимодействуют с той же силой что и в масле на расстоянии 0, 14 м?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 10 – 11 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

АННОТАЦИЯ

В данной статье представлены диэлектрические проницаемости и тангенс угла диэлектрических потерь масел, полученных из местного сырья. В лаборатории были изучены зависимости реальные и мнимые части диэлектрической проницаемости от частоты при комнатной температуре и определены соответствие стандарту по физико-химическим характеристикам масла на основе результатов анализа.

ABSTRACT

This article presents the dielectric constant and the tangent of the dielectric loss angle of oils obtained from local raw materials. The laboratory studied the dependences of the real and imaginary parts of the dielectric constant on frequency at room temperature and determined compliance with the standard for the physicochemical characteristics of the oil based on the results of the analysis.

Ключевые слова: диэлектрик, диэлектрические потери, время, переменный ток, масло, тангенс угла.

Keywords: dielectric, dielectric loss, time, alternating current, oil, angle tangent.

Поведение диэлектриков в переменном электрическом поле характеризуется диэлектрической проницаемостью и диэлектрическими потерями. Диэлектрическая проницаемость характеризует увеличение емкости, по отношению с предыдущей C0 при введении диэлектрика в конденсатор.

Диэлектрические потери характеризуют энергию, потерянную при переходе электрического тока через конденсатор с диэлектриком. Если переменное электрическое поле  с частотой ƒ приложится в конденсатор с диэлектрикой, , где , то заряд на пластинах конденсатора , ток текущий через конденсатор

здесь Ip – реактивный ток (ток сдвига). Как мы видим, Ip опережает силу тока на , то есть на 900.

Потребление энергии приводит к переориентации диполей (что эквивалентно возникновению острой изменчивости) и к поверхности компонента Ia зависимого от напряжения активного тока из-за наличия диэлектрической проводимости. На рисунке 1 ниже показаны векторные диаграммы напряжения и тока. Результирующий ток In = Ia + Ip опережает вектор напряжения U на угол . К этому углу добавляется дополнительный угол , который называется углом диэлектрической проницаемости, где = 900. Потеря энергии при прохождении тока через образец конденсатора C:

                                                              (3)

где Jp = UωC.

Таким образом, диэлектрические потери пропорциональны тангенсу угла диэлектрических потерь.

tgδ=Ja/Jp                                                                                       (4)

Диэлектрическая проницаемость может быть выражена комплексным термином состоящим из действительной  и мнимой  частей.

                                                                       (5)

Где J = . В этом случае ток проходящий через конденсатор будет равен следующему:

 

Рисунок 1. Диаграмма компонентов комплекной диэлектрической проницаемости напряжений, токов, резисторов и их эквивалентная схема

Организатор активного ингредиента тока определяется по формуле J= ωCU, организатор реактивного тока по Jp = jωC0 U. Диэлектрические потери можно рассчитать по следующей формуле.

                                                                         (7)

Конденсатор с диэлектриком внутри имеющий диэлектрические потери может быть представлен в виде схемы эквивалентного конденсатора с такой же емкостью не имеющего диэлектрические потери и параллельным резистором R, как показано на рисунке 1.

Таким образом, параметрами, характеризующими масляные диэлектрики в переменном электрическом поле, являются и или  и tgδ [1]. Для подробного изучения состояния масляных диэлектриков в переменном электрическом поле исследуются отношения   и  (  и  tgδ ) к температурам и частотам в данном интервале. После получения этих связей можно охарактеризовать подвижность молекул в масле, функцию распределения времени высвобождения диполей.

Таким образом, диэлектрическая проницаемость  является относительной диэлектрической проницаемостью.

Абсолютная диэлектрическая проницаемость  (в системе СИ) является величиной. Здесь –  электрическую постоянную (8,85 10-12 Ф/м) иногда называют диэлектрической проницаемостью вакуума. В диэлектриках  значения  и tgδ измеряются частотой колеблющейся в широком диапазоне 10-5 -1010 Гц.

Непрерывные измерения частоты обычно выполняются в научных целях, но на практике некоторые измерения производятся на некоторых стандартных частотах для контроля и оценки диэлектрических материалов, т.е. измерения при 10-2-10-4 Гц или менее в очень небольшом диапазоне частот в основном выполняются для получения информации о поведении молекул, ответственных за деформацию при длительных напряжениях, процессе генерации зарядов напряжения и поляризации в постоянном электрическом поле. На таких частотах для определения и методы моста не подходят, так как стабилизация моста занимает много времени. Поэтому удобно определять заряд образца конденсатора, измеряя разрядные токи и связи токов в и  преобразовывая в формулы Фурье [2].

При измерении зарядного и разрядного токов конденсаторов, электроды помещая в сосуды с поверхностью C и толщиной от 0,002 до 15 мм устанавливают в измерительную коробку, и электроды подключаются к электрометрическому усилителю и источнику постоянного напряжения.

Выход электрометрического усилителя подключен к монитору. Образцу дается мгновенное (каскадное) напряжение с характерной зависимостью от времени током. Сначала токи быстро растут, а затем со временем замедляются.

После измерения тока в течении времени  напряжение отключается и ток регистрируется путем подключения заземления к электроду выше.

Зарядный ток является суммой токов полярности и проводимости и определяется электрическим сопротивлением тока, которое является постоянным во времени. Проводимость может компенсировать поляризованные токи, где и  могут привести к неточным результатам. Чтобы избежать этого, ток проводимости должен быть отключен от номинального тока разряда.

Обычно ток разряда почти равен току полярности, имеет противоположное направление. Поляризованная часть тока заряда вводится в макроскопический ток ионов ip, который может быть необратимым и отличаться от тока разряда ip. Ток проводимости может быть определен путем вычитания тока разряда от тока заряда. Ток можно найти, поместив компонент полярности i(t) (или ток разряда) в ряд Фурье.

i(t)=a/2+acosωt+acos2ωt+…acosnωt+bsinωt+bsin2ωt+…bsinnωt                  (9)

здесь a, a,… aимеют значения (ω), (2ω),… (nω) и b, b, b,bимеют значения (ω), (2ω),… (nω). Для каждого ω значения и  определяются по формуле Фурье.

                                                              (10)

                                                              (11)

Частота определяется по формуле:

                                                                   (12)

Где ƒ – частота, t – время, измеренное от начала заряда. Диэлектрическая потеря определяется нахождением обоих величин.

На рисунке 3 ниже показано соединение действительной и мнимой частей диэлектрического проницаемости к частоте при комнатной температуре.

Рисунок 3. Соединение действительной и мнимой частей диэлектрического проницаемости к частоте при комнатной температуре

По-видимому, диэлектрические потери практически не изменяются в диапазоне частот 101–103 Гц. Его значение составляет tgδ≈1,7. Это указывает на то, что новый образец трансформаторного масла TRM-AA соответствует диэлектрическим потерям обычных стандартных трансформаторных масел.

Список литературы:
1. Блайт. Э.Р, Блур Д. Электрические свойства полимеров. Пер. с англ. –М.:Физматлит, 2008.‐376 с.
2. Сажин Б.И. и др. Электрические свойства полимеров. Л., Химия, 1970.
3. Лущейкин Г.А. Методы исследования электрических свойств полимеров. М., Химия, 1988, 160с.
4. Н.Н.Трофимов, М.З.Канович, Э.М.Карташов, В.И.Натрусов, А.Т. Пономаренко, В.Г.Шевченко, В.И.Соколов, И.Д.Симонов‐Емельянов. Физика композиционных материалов. М.: Мир, 2005, т.1,2.

RavenGun – 2 апреля, 2009 – 16:30

Два одинаковых заряженных шарика, подвешенные на нитях одинаковой длины, разошлись на некоторый угол. После того, как шарики погрузили в масло плотностью 800 кг/м3, этот угол не изменился. Плотность материала шариков 1600 кг/м3. Найти диэлектрическую проницаемость масла.

Задача из вузовского сборника задач: электричество, магнетизм. Авторы: Коваленко, Лавровская, Литвинова и др.

Теги:

  • электростатика
  • сила Архимеда
  • закон Кулона
  • задачи с подсказками
  • версия для печати
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Добавить комментарий