Как найти дифференциал второго порядка функции онлайн

Дифференциалом функции

называется главная (линейная по
) часть приращения функции. Чтобы понять данное определение, рассмотрим следующий рисунок.

График для объяснения понятия дифференциала функции

На рисунке изображён график функции

и
касательной
к ней в точке
.
Дадим аргументу функции

некоторое приращение
,
тогда функция

также получит некоторое приращение
.
Величина

называется

дифференциалом функции

.
При этом, из графика следует, что

равно приращению ординаты касательной, проведённой в точке

к функции
.
Именно поэтому дифференциалом называют линейную часть приращения функции, т.е. приращение ординаты касательной.

Из рисунка следует, что угол наклона касательной
,
который она образует с положительным направлением оси
и

– равны. Кроме того, тангенс угла наклона касательной равен значению производной функции в точке касания:

Из треугольника

следует, что:

Таким образом, дифференциал функции выражается следующей формулой:

Рассмотрим ещё такой момент: из рисунка следует, что
, причем

. Причем, чем меньше
, тем меньший вклад в величину

вносит значение
. Т.е. при достаточно малых значениях
, можно считать, что
. Данное соотношение позволяет вычислять приближенное значение функции в точке
, если известно её значение в точке
.

Дифференциал высшего порядка (например порядка
) определяется как дифференциал от дифференциала
-ого порядка:

Например, дифференциал второго порядка вычисляется следующим образом:

Аналогичным образом получаем формулу для вычисления дифференциала
-ого порядка:

где


-ая производная функции

по переменной
.

Пару слов стоит сказать о вычислении дифференциала функции многих переменных, который в этом случае называется
полным дифференциалом. Полный дифференциал функции, зависящей от
-переменных

определяется по формуле:

Выражения для дифференциалов высших порядков функции многих переменных можно получить исходя из общей формулы:

В общем случае, для возведения суммы в
-ую степень необходимо воспользоваться формулой бинома Ньютона. Рассмотрим процесс получения формулы полного дифференциала второго порядка функции двух переменных:

Наш онлайн калькулятор способен вычислить дифференциалы разных порядков для любых функций одной или нескольких переменных с описанием подробного решения на русском языке.

Дифференциал функции

dy=f′(x)dx

Как видим, для нахождения дифференциала нужно умножить производную на dx. Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.

Полный дифференциал для функции двух переменных: Дифференциал функции

Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Примеры

x^2/(x+2)

cos2(2x+π)(cos(2*x+pi))^2

x+(x-1)^(2/3)

см. также Вычисление приближенно с помощью дифференциала

Определение. Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.

Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x0).

Пусть f(x) дифференцируема в точке x0 и f ‘(x0)≠0, тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x0)∆x.

то есть ∆y~f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x

dy=f′(x)∆x. (1)

Полагают dx=∆x, тогда

dy=f′(x)dx. (2)

Пример. Найти производные и дифференциалы данных функций.

а) y=4tg2x

Решение:



дифференциал:

б)

Решение:



дифференциал:

в) y=arcsin2(lnx)

Решение:



дифференциал:

г)

Решение:

=

дифференциал:

Пример. Для функции y=x3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.

Решение. ∆y = (x+∆x)3 – x3 = x3 + 3x2∆x +3x∆x2 + ∆x3 – x3 = 3x2∆x+3x∆x2+∆x3; dy=3x2∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x2 + ∆x3.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • y”+3y’=0

  • y”-y=0, y(0)=2, y(1)=e+frac{1}{e}

  • y”+6y=0

  • 4y”-6y’+7y=0

  • y”-4y’-12y=3e^{5x}

  • Показать больше

Описание

Пошаговое решение дифференциальных уравнений второго порядка

second-order-differential-equation-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Advanced Math Solutions – Ordinary Differential Equations Calculator, Bernoulli ODE

    Last post, we learned about separable differential equations. In this post, we will learn about Bernoulli differential…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Дифференциальные уравнения по-шагам

    Примеры дифференциальных уравнений

    • Простейшие дифференциальные уравнения 1-порядка
    • y' + y = 0
    • y' - 5*y = 0
    • x*y' - 3 = 0
    • Дифференциальные уравнения с разделяющимися переменными
    • (x-1)*y' + 2*x*y = 0
    • tan(y)*y' = sin(x)
    • Линейные неоднородные дифференциальные уравнения 1-го порядка
    • y' + 7*y = sin(x)
    • Линейные однородные дифференциальные уравнения 2-го порядка
    • 3*y'' - 2*y' + 11y = 0
    • Уравнения в полных дифференциалах
    • dx*(x^2 - y^2) - 2*dy*x*y = 0
    • Решение дифференциального уравнения заменой
    • x^2*y' - y^2 = x^2
    • Смена y(x) на x в уравнении
    • x^2*y' - y^2 = x^2
    • Линейные дифференциальные уравнения 3-го порядка
    • y''' + 3*y'' + y' + 3y = 0
    • y''' + 2*y'' + y' = exp(-x)
    • y''' + 3*y'' + y' + 3y = sin(x) + 2
    • Другие
    • -6*y - 5*y'' + y' + y''' + y'''' = x*cos(x) + sin(x)

    Что умеет калькулятор дифференциальных уравнений?

    • Детальное решение для:
      • Обыкновенное дифференциальное уравнение
      • Разделяемые переменные
      • Уравнение Бернулли
      • Уравнение в полных дифференциалах
      • Дифференциальное уравнение первого порядка
      • Дифференциальное уравнение второго порядка
      • Дифференциальное уравнение третьего порядка
      • Однородное дифференциальное уравнение
      • Неоднородное дифференциальное уравнение
      • Дифференциальные уравнения с заменой
      • Система обыкновенных дифференциальных уравнений
    • Строит графики множества решений
    • Решает задачу Коши
    • Классификация дифференциальных уравнений
    • Примеры численных решений

    Подробнее про Дифференциальные уравнения.

    Указанные выше примеры содержат также:

    • модуль или абсолютное значение: absolute(x) или |x|
    • квадратные корни sqrt(x),
      кубические корни cbrt(x)
    • тригонометрические функции:
      синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
    • показательные функции и экспоненты exp(x)
    • обратные тригонометрические функции:
      арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
      арккотангенс acot(x)
    • натуральные логарифмы ln(x),
      десятичные логарифмы log(x)
    • гиперболические функции:
      гиперболический синус sh(x), гиперболический косинус ch(x),
      гиперболический тангенс и котангенс tanh(x), ctanh(x)
    • обратные гиперболические функции:
      гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
      гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
    • другие тригонометрические и гиперболические функции:
      секанс sec(x), косеканс csc(x), арксеканс asec(x),
      арккосеканс acsc(x), гиперболический секанс sech(x),
      гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
      гиперболический арккосеканс acsch(x)
    • функции округления:
      в меньшую сторону floor(x), в большую сторону ceiling(x)
    • знак числа:
      sign(x)
    • для теории вероятности:
      функция ошибок erf(x) (интеграл вероятности),
      функция Лапласа laplace(x)
    • Факториал от x:
      x! или factorial(x)
    • Гамма-функция gamma(x)
    • Функция Ламберта LambertW(x)
    • Тригонометрические интегралы: Si(x),
      Ci(x),
      Shi(x),
      Chi(x)

    Правила ввода

    Можно делать следующие операции

    2*x
    – умножение
    3/x
    – деление
    x^2
    – возведение в квадрат
    x^3
    – возведение в куб
    x^5
    – возведение в степень
    x + 7
    – сложение
    x – 6
    – вычитание
    Действительные числа
    вводить в виде 7.5, не 7,5

    Постоянные

    pi
    – число Пи
    e
    – основание натурального логарифма
    i
    – комплексное число
    oo
    – символ бесконечности

    Step-by-Step Examples

    Calculus

    Derivative Calculator

    Step 1:

    Enter the function you want to find the derivative of in the editor.

    The Derivative Calculator supports solving first, second…., fourth derivatives, as well as implicit differentiation and finding the zeros/roots. You can also get a better visual and understanding of the function by using our graphing tool.

    Chain Rule: ddx[f(g(x))]=f'(g(x))g'(x)

    Step 2:

    Click the blue arrow to submit. Choose “Find the Derivative” from the topic selector and click to see the result!

    Добавить комментарий