Как найти диогональ боковой грани

Призма является геометрической объемной фигурой, характеристики и свойства которой изучают в старших классах школ. Как правило, при ее изучении рассматривают такие величины, как объем и площадь поверхности. В данной же статье раскроем несколько иной вопрос: приведем методику определения длины диагоналей призмы на примере четырехугольной фигуры.

Какая фигура называется призмой?

В геометрии дается следующее определение призме: это объемная фигура, ограниченная двумя многоугольными одинаковыми сторонами, которые параллельны друг другу, и некоторым числом параллелограммов. Рисунок ниже показывает пример призмы, соответствующий данному определению.

Наклонная пятиугольная призма

Мы видим, что два красных пятиугольника равны друг другу и находятся в двух параллельных плоскостях. Пять розовых параллелограммов соединяют эти пятиугольники в цельный объект – призму. Два пятиугольника называются основаниями фигуры, а ее параллелограммы – это боковые грани.

Призмы бывают прямые и наклонные, которые также называют прямоугольными и косоугольными. Разница между ними заключается в углах между основанием и боковыми гранями. Для прямоугольной призмы все эти углы равны 90o.

По количеству сторон или вершин многоугольника в основании говорят о призмах треугольных, пятиугольных, четырехугольных и так далее. Причем если этот многоугольник является правильным, а сама призма прямой, то такую фигуру называют правильной.

Приведенная на предыдущем рисунке призма является пятиугольной наклонной. Ниже же изображена пятиугольная прямая призма, которая является правильной.

Правильная пятиугольная призма

Все вычисления, включая методику определения диагоналей призмы, удобно выполнять именно для правильных фигур.

Какие элементы характеризуют призму?

Элементами фигуры называют составные части, которые ее образуют. Конкретно для призмы можно выделить три главных типа элементов:

  • вершины;
  • грани или стороны;
  • ребра.

Гранями считаются основания и боковые плоскости, представляющие параллелограммы в общем случае. В призме всегда каждая сторона относится к одному из двух типов: либо это многоугольник, либо параллелограмм.

Ребра призмы – это те отрезки, которые ограничивают каждую сторону фигуры. Как и грани, ребра также бывают двух типов: принадлежащие основанию и боковой поверхности или относящиеся только к боковой поверхности. Первых всегда в два раза больше, чем вторых, независимо от вида призмы.

Вершины – это точки пересечения трех ребер призмы, два из которых лежат в плоскости основания, а третье – принадлежит двум боковым граням. Все вершины призмы находятся в плоскостях оснований фигуры.

Числа описанных элементов связаны в единое равенство, имеющее следующий вид:

Р = В + С – 2.

Здесь Р – количество ребер, В – вершин, С – сторон. Это равенство называется теоремой Эйлера для полиэдра.

Правильная треугольная призма

На рисунке показана треугольная правильная призма. Каждый может посчитать, что она имеет 6 вершин, 5 сторон и 9 ребер. Эти цифры согласуются с теоремой Эйлера.

Диагонали призмы

После таких свойств, как объем и площадь поверхности, в задачах по геометрии часто встречается информация о длине той или иной диагонали рассматриваемой фигуры, которая либо дана, либо ее нужно найти по другим известным параметрам. Рассмотрим, какие бывают диагонали у призмы.

Все диагонали можно разделить на два типа:

  1. Лежащие в плоскости граней. Они соединяют несоседние вершины либо многоугольника в основании призмы, либо параллелограмма боковой поверхности. Значение длин таких диагоналей определяется, исходя из знания длин соответствующих ребер и углов между ними. Для определения диагоналей параллелограммов всегда используются свойства треугольников.
  2. Лежащие внутри объема призмы. Эти диагонали соединяют неоднотипные вершины двух оснований. Эти диагонали оказываются полностью внутри фигуры. Их длины рассчитать несколько сложнее, чем для предыдущего типа. Методика расчета предполагает учет длин ребер и основания, и параллелограммов. Для прямых и правильных призм расчет является относительно простым, поскольку он осуществляется с использованием теоремы Пифагора и свойств тригонометрических функций.

Далее приведем примеры вычисления различных диагоналей.

Диагонали сторон четырехугольной прямой призмы

Диагонали четырехугольной прямой призмы

На рисунке выше изображены четыре одинаковые прямые призмы, и даны параметры их ребер. На призмах Diagonal A, Diagonal B и Diagonal C штриховой красной линией изображены диагонали трех разных граней. Поскольку призма является прямой с высотой 5 см, а ее основание представлено прямоугольником со сторонами 3 см и 2 см, то отыскать отмеченные диагонали не представляет никакого труда. Для этого необходимо воспользоваться теоремой Пифагора.

Длина диагонали основания призмы (Diagonal A) равна:

DA = √(32+22) = √13 ≈ 3,606 см.

Для боковой грани призмы диагональ равна (см. Diagonal B):

DB = √(32+52) = √34 ≈ 5,831 см.

Наконец, длина еще одной боковой диагонали равна (см. Diagonal C):

DС = √(22+52) = √29 ≈ 5,385 см.

Длина внутренней диагонали

Теперь рассчитаем длину диагонали четырехугольной призмы, которая изображена на предыдущем рисунке (Diagonal D). Сделать это не так сложно, если заметить, что она является гипотенузой треугольника, в котором катетами будут высота призмы (5 см) и диагональ DA , изображенная на рисунке вверху слева (Diagonal A). Тогда получаем:

DD = √(DA2+52) = √(2 2+32+52) = √38 ≈ 6,164 см.

Правильная призма четырехугольная

Правильная четырехугольная призма

Диагональ правильной призмы, основанием которой является квадрат, рассчитывается аналогичным образом, как и в приведенном выше примере. Соответствующая формула имеет вид:

D = √(2*a2+c2).

Где a и c – длины стороны основания и бокового ребра, соответственно.

Заметим, что при вычислениях мы использовали только теорему Пифагора. Для определения длин диагоналей правильных призм с большим числом вершин (пятиугольные, шестиугольные и так далее) уже необходимо применять тригонометрические функции.

Зная стороны оснований треугольной призмы и боковые ребра, можно вычислить все необходимые параметры треугольной призмы. Равносторонний треугольник в основании позволяет найти высоту основания, равную ребру основания, деленному на корень из двух. Радиусы окружностей, которые могут быть вписаны и описаны около оснований треугольной призмы, также можно найти по формулам для равностороннего треугольника.
h=a/√2
r=a/(2√3)
R=a/√3

Чтобы найти диагональ боковой грани призмы, нужно знать не только сторону ее основания, но и боковое ребро, тогда диагональ станет гипотенузой в прямоугольном треугольнике из бокового ребра и ребра основания.
d=√(a^2+b^2 )

Периметр треугольной призмы складывается из шести сторон оснований, по три на каждое, и трех боковых ребер. Площадь основания треугольной призмы равна площади равностороннего треугольника, а площадь боковой поверхности – трем площадям прямоугольников со сторонами ребром основаниям и боковым ребром. Чтобы посчитать площадь полной поверхности треугольной призмы, нужно сложить две площади основания и площадь боковой поверхности.
P=3(2a+b)
S_(осн.)=(√3 a^2)/4
S_(б.п.)=3ab
S_(п.п.)=3ab+(√3 a^2)/2

Чтобы вычислить объем треугольной призмы, как и любого другого объемного тела с двумя основаниями, необходимо площадь основания умножить на высоту тела/боковое ребро призмы.
V=S_(осн.) b=(√3 a^2 b)/4

Вокруг любой треугольной призмы можно описать сферу, ее радиус будет равен квадратному корню из суммы квадрата радиуса описанной вокруг основания окружности и квадрата половины бокового ребра призмы, которые путем алгебраических преобразований приводят к квадратному корню из пяти шестых, умноженному на сторону основания.
R_1=√(5/6) a

В треугольную призму можно вписать сферу тогда и только тогда, когда половина ее высоты равна радиусу вписанной в основание окружности, в таком случае радиус вписанной в треугольную призму сферы будет равен радиусу вписанной в основание окружности (половине бокового ребра).
r_1=r

Напомним,
что призмой называется многогранник, у которого две грани – равные -угольники,
лежащие в параллельных плоскостях (эти грани называются основаниями
призмы), а остальные  граней
– параллелограммы.

Эти
параллелограммы называются боковыми гранями, а их стороны, не лежащие на
основаниях призмы, называются боковыми рёбрами призмы.

Боковые
рёбра призмы параллельны и равны.

Высотой
призмы называется расстояние между основаниями.

Площадью
боковой поверхности
призмы называется сумма площадей её
боковых граней.

Площадью
полной поверхности
призмы – сумма площадей её боковых граней
и двух площадей оснований.

Объём
призмы равен произведению площади основания на высоту.

Призма,
в зависимости от того, какой многоугольник лежит в основании, имеет своё
название.

Рассмотрим
наклонную призму. Здесь основания – равные многоугольники,
лежащие в параллельных плоскостях. Боковые грани – параллелограммы. Высота
призмы – перпендикуляр, опущенный из любой точки верхнего основания на
плоскость нижнего. Боковые рёбра призмы равны и параллельны. Диагональ
призмы соединяет две вершины, не лежащие в одной грани. Диагональное сечение
проходит через два боковых ребра, не лежащих в одной грани, и является
параллелограммом. Площадь боковой поверхности призмы равна сумме
площадей боковых граней. Площадь полной поверхности равна сумме площади
боковой поверхности и двух площадей оснований.

Рассмотрим
прямую призму. Здесь боковые рёбра перпендикулярны основаниям. Боковые
грани
– прямоугольники. Высота равна боковому ребру. Площадь
боковой
поверхности прямой призмы равна произведению периметра основания на
высоту (на боковое ребро).

И
рассмотрим ещё правильную призму. Здесь в основании лежит
правильный многоугольник. Боковые рёбра перпендикулярны основанию. Боковые
грани
– равные прямоугольники.

Основные
моменты мы с вами повторили, а теперь давайте перейдём к практической части
занятия.

Задача
первая
. В основании прямой четырёхугольной призмы лежит
четырёхугольник со сторонами  см,
 см,
 см
и  см.
Высота призмы равна  см.
Найдите площадь боковой поверхности призмы.

Решение.

Задача
вторая
. Дана шестиугольная наклонная призма с боковым ребром
 см.
Периметр сечения призмы плоскостью, перпендикулярной боковому ребру, равен  см.
Найдите площадь боковой поверхности призмы.

Решение.

Задача
третья
. Дана прямая пятиугольная призма, в основание которой
вписана окружность с радиусом  см.
Площадь основания призмы равна  см2,
боковое ребро призмы равно  см.
Найдите площадь боковой поверхности призмы.

Решение.

Задача
четвёртая
. Дана прямая четырёхугольная призма  В
основании призмы лежит прямоугольная трапеция с основаниями  см,
 см
и ,
в которую можно вписать окружность. Диагональное сечение   призмы
является квадратом. Найдите площадь полной поверхности призмы.

Решение.

Задача
пятая
. Диагональ правильной четырёхугольной призмы равна ,
диагональ боковой грани равна .
Найдите площадь полной поверхности призмы.

Решение.

Задача
шестая
. Площадь боковой поверхности правильной
четырёхугольной призмы равна  см2.
Диагональ боковой грани равна  см.
Найдите наибольший возможный объём призмы, задаваемой этими условиями.

Решение.

Диагональ прямоугольного параллелепипеда

Диагональ

Параллелепипедом является призма, основанием которой служит многогранник, чаще всего — параллелограмм. У него имеются грани, вершины, ребра. Параллелепипеды могут быть прямыми и наклонными. Гранями прямоугольного параллелепипеда являются прямоугольники. Две грани, не имеющие общего ребра, называются противоположными, а грани с общим ребром — смежными. Противоположные грани попарно параллельны, имеют равные измерения. Вершины параллелепипеда, не относящиеся к одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Четыре его диагонали в точке пересечения делятся пополам. Три ребра прямоугольного параллелепипеда с общей вершиной являются его измерениями. Все диагонали прямоугольного параллелепипеда равны. Квадрат его диагонали равен сумме квадратов трех его измерений:

D2 = a2 + b2 + с2

где D — диагональ, a, b, c — длины трех измерений прямоугольного параллелепипеда (ребер).

Диагональ прямоугольного параллелепипеда равна корню квадратному из суммы квадратов трех его измерений.

Диагональ прямоугольного параллелепипеда

где d — диагональ прямоугольного параллелепипеда, a, b, c — длины трех его измерений (ребер).

Если известна диагональ и длина двух измерений (ребер) прямоугольного параллелепипеда, можно найти длину третьего измерения (ребра) по формуле:

a = √D2 — b2 + с2

Зная длину ребер прямоугольного параллелепипеда, можно вычислить все диагонали его боковых граней, воспользовавшись теоремой Пифагора. Диагональ боковой стороны (грани) прямоугольного параллелепипеда делит ее на два одинаковых прямоугольных треугольника, у которых гипотенузой будет искомая нами диагональ, а катетами — ребра параллелепипеда. Тогда, диагональ, как гипотенуза прямоугольного треугольника, будет равна корню квадратному из суммы квадратов катетов (двух ребер параллелепипеда):

d2 = a2 + b2

d = √a2 + b2

где d — диагональ грани, а, b — длина и ширина (величина двух смежных ребер).

Рассчитать диагональ прямоугольного параллелепипеда зная длину ребер

Учеба и наука


Вопрос задан анонимно


апрель 18, 2023 г.

Сообщить о нарушении

  • Всего ответов: 1

  • Михаил Александров - аватарка

    Михаил Александров


    1-й в Учебе и науке


    4.9
    593 отзыва

    апрель 18, 2023 г.

Похожие вопросы

при окислении 3-гексанона образовались 4 кислоты назовите их. по правилу попова определите какие кислоты преимущественно образуются


май 17, 2023 г.


Учеба и наука

1 ответов

В шар вписан цилиндр. Найти высоту цилиндра, если радиус шара 5 см, а радиус основания цилиндра 4 см.


май 14, 2023 г.


Учеба и наука

1 ответов

Площадь боковой поверхности конуса равна 360π см^2. Найти объем этого конуса, если его радиус равен 12см.


май 2, 2023 г.


Учеба и наука

1 ответов


Решено

задачка


май 2, 2023 г.


Учеба и наука

1 ответов

Алгебра, срочно! (таблица, ОДЗ)


апрель 28, 2023 г.


Учеба и наука

1 ответов

Добавить комментарий