Как найти дискриминант если нет с формула

Голосование за лучший ответ

Schneider

Мыслитель

(9149)


8 лет назад

Бери “С” как +0 и используй стандартную формулу

Ольга Корогод

Мастер

(2113)


8 лет назад

допустим х^2 + 2x=0
выносишь х за скобки, то есть получается х (х+2)=0

выражение равно нулю только когда один из множителей равен нулю

значит либо х = 0

либо х+2 = 0 или х=-2

корня два: 0 и -2

Vercia n

Искусственный Интеллект

(137588)


8 лет назад

ах²+вх=х (ах+в) =а·х·(х+в/а)
если сильно хочешь дискриминант, то просто
D=в²

Неполные квадратные уравнения

теория по математике 📈 уравнения

Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

Неполное квадратное уравнение при b=0: ax 2 +c=0

Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х 2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

Пример №1. Решить уравнение:

Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:

Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:

Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

Неполное квадратное уравнение при с=0: ax 2 +bx=0

Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

Пример №4. Решить уравнение:

Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

Пример №5. Решить уравнение:

Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0

Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

Пример №6. Решить уравнение:

Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:

Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.

Неполные квадратные уравнения

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = – c,
  • разделим обе части на a: x² = – c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение – c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если – c/а 0, то корни уравнения x² = – c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = – c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = – c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при – c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² – 32x = 0

      Вынести х за скобки
  • Это уравнение равносильно х = 0 и 2x – 32 = 0.
  • Решить линейное уравнение:
  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² – 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Дискриминант квадратного уравнения

    Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

    Вид уравнения Формула корней Формула
    дискриминанта
    ax 2 + bx + c = 0 b 2 – 4ac
    ax 2 + 2kx + c = 0 k 2 – ac
    x 2 + px + q = 0
    p 2 – 4q

    Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

    Вид уравнения Формула
    ax 2 + bx + c = 0 , где D = b 2 – 4ac
    ax 2 + 2kx + c = 0 , где D = k 2 – ac
    x 2 + px + q = 0 , где D =
    , где D = p 2 – 4q

    Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

    1. Если дискриминант больше нуля, то уравнение имеет два корня.
    2. Если дискриминант равен нулю, то уравнение имеет один корень.
    3. Если дискриминант меньше нуля, то уравнение не имеет корней.

    Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

    так как она относится к формуле:

    ,

    которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

    Решение квадратных уравнений через дискриминант

    Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

    Пример 1. Решить уравнение:

    Определим, чему равны коэффициенты:

    D = b 2 – 4ac = (-4) 2 – 4 · 3 · 2 = 16 – 24 = -8,

    Определим, чему равны коэффициенты:

    D = b 2 – 4ac = (-6) 2 – 4 · 1 · 9 = 36 – 36 = 0,

    Уравнение имеет всего один корень:

    Определим, чему равны коэффициенты:

    D = b 2 – 4ac = (-4) 2 – 4 · 1 · (-5) = 16 + 20 = 36,

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/nepolnye-kvadratnye-uravneniya

    http://izamorfix.ru/matematika/algebra/diskriminant.html

    [/spoiler]

    Неполные квадратные уравнения

    теория по математике 📈 уравнения

    Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

    Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

    Неполное квадратное уравнение при b=0: ax 2 +c=0

    Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х 2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

    Пример №1. Решить уравнение:

    Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

    Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:

    Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:

    Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

    Неполное квадратное уравнение при с=0: ax 2 +bx=0

    Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

    Пример №4. Решить уравнение:

    Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

    Пример №5. Решить уравнение:

    Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

    Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0

    Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

    Пример №6. Решить уравнение:

    Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:

    Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.

    Неполные квадратные уравнения

    Неполное квадратное уравнение – это уравнение вида

    в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

    ax 2 + bx = 0, если c = 0;
    ax 2 + c = 0, если b = 0;
    ax 2 = 0, если b = 0 и c = 0.

    Решение неполных квадратных уравнений

    Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

    Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

    Чтобы ax + b было равно нулю, нужно, чтобы

    Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

    Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

    Пример 1. Решите уравнение:

    a 2 — 12a = 0
    a(a — 12) = 0
    a1 = 0 a — 12 = 0
    a2 = 12

    Пример 2. Решите уравнение:

    7x 2 = x
    7x 2 — x = 0
    x(7x — 1) = 0

    Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

    ax 2 = —c, следовательно, x 2 = — c .
    a

    В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

    Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

    В этом случае уравнение будет иметь два противоположных корня:

    Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

    Пример 1. Решите уравнение:

    24 = 2y 2
    24 — 2y 2 = 0
    -2y 2 = -24
    y 2 = 12
    y1 = +√ 12 y2 = -√ 12

    Пример 2. Решите уравнение:

    b 2 — 16 = 0
    b 2 = 16
    b1 = 4 b2 = -4

    Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

    Неполные квадратные уравнения

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Основные понятия

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

    Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

    Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

    • если D 0, есть два различных корня.

    Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

    Неполные квадратные уравнения бывают трех видов:

    • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
    • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
    • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

    Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Как мы уже знаем, есть три формулы неполных квадратных уравнений:

    • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
    • ax² + c = 0, при b = 0;
    • ax² + bx = 0, при c = 0.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

    Как решить уравнение ax² = 0

    Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

    Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

    Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

    Пример 1. Решить −5x² = 0.

    1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
    2. По шагам решение выглядит так:

    Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

    Как решить уравнение ax² + с = 0

    Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

    Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

    Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

    • перенесем c в правую часть: ax² = — c,
    • разделим обе части на a: x² = — c/а.

    Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

    Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

    В двух словах

    Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

    • не имеет корней при — c/а 0.

    Пример 1. Найти решение уравнения 9x² + 4 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки
  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:
  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    источники:

    http://izamorfix.ru/matematika/algebra/nepolnye_kv_ur.html

    http://skysmart.ru/articles/mathematic/nepolnye-kvadratnye-uravneniya

    Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады
    Определение

    Квадратным уравнением называется уравнение вида ax2+bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

    Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

    Неполное квадратное уравнение при b=0: ax2+c=0

    Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

    Пример №1. Решить уравнение:

    2–45=0

    Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х2=45; найдем переменную в квадрате, поделив обе части уравнения на 5: х2=9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

    2–45=0

    2=45

    х2=9

    Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым).

    Пример №2. Решить уравнение:

    –6х2–90=0

    Выполним решение уже известным способом: –6х2=90. х2=–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней.

    Пример №3. Решить уравнение:

    х2–100=0

    Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

    Неполное квадратное уравнение при с=0: ax2+bx=0

    Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

    Пример №4. Решить уравнение:

    х2+8х=0

    Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

    Пример №5. Решить уравнение:

    2–12х=0

    Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

    Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax2=0

    Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

    Пример №6. Решить уравнение:

    –14х2=0

    Обе части уравнения делим на (–14) и получаем х2=0, откуда соответственно и единственный корень – нуль.

    Пример №6. Решить уравнение:

    23х2=0

    Также делим обе части на 23 и получаем х2=0. Значит, корень уравнения – нуль.

    Даниил Романович | Просмотров: 8.6k

    Добавить комментарий