Как найти дискриминант по графику параболы

Дискриминант

Дискриминантом квадратного трехчлена называют выражение (b^<2>-4ac), где (a, b) и (c) – коэффициенты данного трехчлена.

Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

Дискриминант обозначается буквой (D) и часто используется при решении квадратных уравнений . Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
— если (D) положителен – уравнение будет иметь два корня;
— если (D) равен нулю – только один корень;
— если (D) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, (sqrt) входит в формулу для вычисления корней квадратного уравнения: (x_<1>=) (frac<-b+sqrt><2a>) и (x_<2>=) (frac<-b-sqrt><2a>) . Давайте рассмотрим каждый случай подробнее.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит (x_<1>) и (x_<2>) будут различны по значению, ведь в первой формуле (sqrt) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения (x^2+2x-3=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед (sqrt)

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_<1>=1) и (x_<1>=-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции ).

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: (x_<1>=) (frac<-b+sqrt><2a>) и (x_<2>=) (frac<-b-sqrt><2a>) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения (x^2-4x+4=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения (x^2+x+3=0)
Решение

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Оба корня содержат невычислимое выражение (sqrt<-11>), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Как найти дискриминант квадратного уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, содержащее переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим:

13 = 12 — противоречие.

Значит, х = 5 не является корнем уравнения.

Если же х = 4, то при подстановке в уравнение мы получим:

12 = 12 — верное равенство.

Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.

Такое уравнение можно решить с помощью формулы дискриминанта.

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Как решать квадратные уравнения через дискриминант

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

Определим, чему равны коэффициенты a, b, c.

Вычислим значение дискриминанта по формуле D = b2 − 4ac.

Если дискриминант D 0, то у уравнения две корня, равные

Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.

  1. Определим коэффициенты: a = 3, b = -4, c = 2.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D 2 — 6x + 9 = 0.

  1. Определим коэффициенты: a = 1, b = -6, c = 9.
  2. Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.

D = 0, значит уравнение имеет один корень:

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.

  1. Определим коэффициенты: a = 1, b = -4, c = -5.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.

D > 0, значит уравнение имеет два корня:

Ответ: два корня x1 = 5, x2 = -1.

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Квадратичная функция и ее график

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.

Функция вида , где 0″ title=»a<>0″/> называется квадратичной функцией.

В уравнении квадратичной функции:

aстарший коэффициент

bвторой коэффициент

ссвободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:

Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.

График функции имеет вид:

Для нахождения координат базовых точек составим таблицу:

Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .

Если старший коэффициент a , то ветви параболы напрaвлены вниз .

Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .

В случае квадратичной функции нужно решить квадратное уравнение .

В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит как-то так:

2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит примерно так:

3 . Если 0″ title=»D>0″/>,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:

,

Если 0″ title=»a>0″/>,то график функции выглядит примерно так:

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Следующий важный параметр графика квадратичной функции — координаты вершины параболы:

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции — точка пересечения параболы с осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны на рисунке:

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой .

Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции

1. Направление ветвей параболы.

Так как 0″ title=»a=2>0″/>,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена

0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение:

,

3. Координаты вершины параболы:

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

Кррдинаты вершины параболы

Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:

Нанесем эти точки на координатную плоскость и соединим плавной линией:

2 . Уравнение квадратичной функции имеет вид — в этом уравнении — координаты вершины параболы

или в уравнении квадратичной функции , и второй коэффициент — четное число.

Построим для примера график функции .

Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно

  • сначала построить график функции ,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Теперь рассмотрим построение графика функции . В уравнении этой функции , и второй коэффициент — четное число.

Выделим в уравнении функции полный квадрат:

Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда

2. Координаты вершины параболы:

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на координатную плоскость и построим график:

График квадратичной функции.

Перед вами график квадратичной функции вида .

Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента ,
— сдвига графика функции вдоль оси от значения ,

— сдвига графика функции вдоль оси от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений и :

И.В. Фельдман, репетитор по математике.

источники:

http://skysmart.ru/articles/mathematic/kak-najti-diskriminant-kvadratnogo-uravneniya

http://ege-ok.ru/2012/05/21/kvadratichnaya-funktsiya-i-ee-grafik

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.

Функция вида y=ax^2+bx+c, где a<>0  называется квадратичной функцией.

В уравнении квадратичной функции:

aстарший коэффициент

bвторой коэффициент

с  – свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции y=x^2 имеет вид:

Обратите внимание на точки, обозначенные зелеными кружками – это, так называемые “базовые точки”. Чтобы найти координаты этих точек для функции y=x^2, составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент a=1, то график квадратичной функции имеет ровно такую же форму, как график функции y=x^2 при любых значениях остальных коэффициентов.

График  функции y=-x^2 имеет вид:

Для нахождения координат базовых точек составим таблицу:

Обратите внимание, что график функции y=-x^2 симметричен графику функции y=x^2 относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.

Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.

Второй параметр для построения графика  функции – значения х, в которых функция равна нулю, или нули функции. На графике нули функции f(x) – это точки пересечения графика функции y=f(x) с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты  точек  пересечения графика функции y=f(x) с осью ОХ, нужно решить уравнение f(x)=0.

В случае квадратичной функции y=ax^2+bx+c нужно решить квадратное уравнение .

Теперь внимание!

В процессе решения квадратного уравнения мы находим дискриминант: D=b^2-4ac, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если D<0 ,то уравнение ax^2+bx+c=0 не имеет решений, и, следовательно, квадратичная парабола y=ax^2+bx+c не имеет точек пересечения с осью ОХ. Если a>0 ,то график функции выглядит как-то так:

2. Если D=0 ,то уравнение ax^2+bx+c=0  имеет одно решение, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет одну точку пересечения с осью ОХ. Если a>0 ,то график функции выглядит примерно так:

3.  Если D>0 ,то уравнение ax^2+bx+c=0  имеет два решения, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет две точки пересечения с осью ОХ:

x_1={-b+sqrt{D}}/{2a},  x_2={-b-sqrt{D}}/{2a}

Если a>0 ,то график функции выглядит примерно так:

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Следующий важный параметр графика квадратичной функции – координаты вершины параболы:

x_0=-{b/{2a}}

y_0=-{D/{4a}}=y(x_0)

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции – точка пересечения параболы y=ax^2+bx+c с осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы y=ax^2+bx+c с осью OY, нужно в уравнение параболы вместо х подставить ноль: y(0)=c.

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны  на рисунке:

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой y=ax^2+bx+c.

Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции y=2x^2+3x-5

1. Направление ветвей параболы.

Так как a=2>0 ,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена 2x^2+3x-5

D=b^2-4ac=9-4*2*(-5)=49>0  sqrt{D}=7

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение: 2x^2+3x-5=0

x_1={-3+7}/4=1,  x_1={-3-7}/4=-2,5

3.   Координаты  вершины параболы:

x_0=-{b/{2a}}=-3/4 =-0,75

y_0=-{D/{4a}}=-49/8=-6,125

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

y=2x^2+3x-5

Кррдинаты вершины параболы

x_0=-{b/{2a}}=-3/4 =-0,75

y_0=-{D/{4a}}=-49/8=-6,125

Ближайшие к вершине точки, расположенные  слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы  соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их  в таблицу:

Нанесем эти точки на координатную плоскость и соединим плавной линией:

2.  Уравнение квадратичной функции имеет вид y=a(x-x_0)^2+y_0 – в этом уравнении x_0;y_0 – координаты вершины параболы

или в уравнении квадратичной функции y=ax^2+bx+c a=1, и второй коэффициент – четное число.

Построим для примера график функции y=2(x-1)^2+4.

Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно

  • сначала построить график функции y=x^2,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Теперь рассмотрим построение  графика функции y=x^2+4x+5. В уравнении этой функции a=1, и второй коэффициент – четное число.

Выделим в уравнении функции полный квадрат: x^2+4x+5=x^2+4x+4-4+5=(x^2+4x+4)+1=(x+2)^2+1

Следовательно,  координаты вершины параболы: x_0=-2, y_0=1. Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

3.  Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции – точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда x_1=2; x_2=-1

2. Координаты вершины параболы: x_0={x_1+x_2}/2={2-1}/2=1/2

y_0=y(-1)=({1/2}-2)({1/2}+1)=-9/4=-2,25

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на  координатную плоскость и построим график:

График квадратичной функции.

Перед вами график квадратичной функции вида Подготовка к ГИА и ЕГЭ.

Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
– ширины графика функции Подготовка к ГИА и ЕГЭ от значения коэффициента Подготовка к ГИА и ЕГЭ,
– сдвига графика функции Подготовка к ГИА и ЕГЭ вдоль оси Подготовка к ГИА и ЕГЭ от значения  Подготовка к ГИА и ЕГЭ,

– сдвига графика функции Подготовка к ГИА и ЕГЭ вдоль оси Подготовка к ГИА и ЕГЭ от значения  Подготовка к ГИА и ЕГЭ
– направления ветвей параболы от знака коэффициента Подготовка к ГИА и ЕГЭ
– координат вершины параболы Подготовка к ГИА и ЕГЭ от значений Подготовка к ГИА и ЕГЭ и Подготовка к ГИА и ЕГЭ:

Скачать таблицу квадратичная функция

И.В. Фельдман, репетитор по математике.

На чтение 7 мин. Просмотров 7.7k.

Важная характеристика квадратных уравнений – их дискриминант. По значению этой величины определяют, сколько корней у данного уравнения и есть ли они.

В 8 классе по алгебре начинают изучать квадратные уравнения и самый популярный способ их решения –  через дискриминант. Формула вычисления дискриминанта известна

    [D=b^2-4ac]

Дискриминант в математике используется чтобы определить сколько корней в уравнении — 1 корень, 2 корня или действительных корней нет. В этой статье определим, что такое дискриминант и выведем формулу дискриминанта.

Определение

Определим что такое дискриминант и зачем он нужен в математике, а также как его рассчитать.

Дискриминантом называют число, описывающее свойство коэффициентов квадратного многочлена. Хотя есть дискриминанты и кубических многочленов.

По этому числу определяют характер корней уравнения, полученному если многочлен приравнять к нулю. Так, если дискриминант больше нуля, то уравнение будет иметь два корня, равен нулю, то 1 корень, а если будет меньше нуля, то корней не будет.

Дискриминант (определение) помогает определить наличие или отсутствие корней квадратного уравнения, не решая его.

Обозначается дискриминант квадратного уравнения буквой D или знаком Δ. И находится по формуле:

D=b^2-4ac , где

b, a и c — коэффициенты уравнения:

ax^2+bx+c=0

Корни через дискриминант определяются по формулам:

displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}

Пример вычисления дискриминанта:

Вычислим дискриминант в уравнении 6x^2+4x+2=0 .

По формуле находим:

D=b^2-4ac=4^2-4cdot 6 cdot 2=16-48=-32

Мы получили отрицательный дискриминант, значит, данное уравнение не имеет действительных корней. Действительно, так как корни квадратного уравнения находят по формулам:

displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}

Подставим значения для исходного уравнения:

displaystyle x_1=frac{-4-sqrt{-32}}{12} и displaystyle x_2=frac{-4+sqrt{-32}}{12}

Как видим, мы никак не сможем посчитать корни — у нас отрицательное число под знаком радикала. И, действительно, если вы построите график функции f (x)=6x^2+4x+2 — он нигде не пересечет ось Ox, то есть ни при каком x мы не получим ноль.

график функции

График функции 6x^2+4x+2

Геометрический смысл дискриминанта

Что означает дискриминант на графике, каков его геометрический смысл? Графически дискриминант квадратного уравнения характеризует расстояние по оси абсцисс между точкой — вершиной параболы (парабола — график квадратичной функции) и точкой пересечения графика с осью абсцисс. Посмотрите на рисунок. На нем видно:

  1. Если дискриминант равен нулю (D=0), это значит, что вершина параболы и является точкой пересечения с осью абсцисс — расстояние между точкой пересечения и вершиной параболы равно нулю.
  2. Когда D>0, то справа и слева от точки абсцисс вершины параболы на одинаковом расстоянии displaystyle frac{sqrt{D}}{2a} будут находиться точки пересечения параболы ax^2+bx+c=y, которые являются корнями уравнения ax^2+bx+c=0.
  3. Когда D<0 — это означает, что точек действительных отметить на оси абсцисс нельзя, то есть от вершины отложить расстояние до точек пересечения графика с осью абсцисс невозможно, то есть этих точек пересечения нет. График не пересекает ось абсцисс и корней уравнения [katex]ax^2+bx+c=0[/katex] нет.

Значение дискриминанта геометрический смысл

Значение дискриминанта и его геометрический смысл

Корни квадратного уравнения через дискриминант.

Полное квадратное уравнение

Пусть нам дано уравнение вида ax^2+bx+c=0. Вычисляем дискриминант по известной формуле. Затем определяем корни уравнения.

  1. Если D>0 получаем два вещественных корня displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.
  2. Если D=0 корни будут совпадать: displaystyle x_1=x_2=frac{-b}{2a}
  3. Если D<0, вещественных корней нет, но есть мнимые корни или так называемые комплексные корни (обычно изучаются в курсе математического анализа в ВУЗах, хотя иногда и встречаются в алгебре 9-11 классов).

Неполное квадратное уравнение

Неполным называется такое квадратное уравнение, когда один из коэффициентов такого уравнения равен нулю.

  1. Пусть коэффициент a=0, тогда уравнение сводится к линейному уравнению вида kx+b=0 и уже не будет считаться неполным.
  2. Если равны нулю два коэффициента: b=0 и c=0, тогда ax^2=0. Решением такого уравнения будет: x=0.
  3. Если равен нулю коэффициент b, то имеем D=-4ac и displaystyle x_1= frac{sqrt{D}}{2a} и displaystyle x_2= -frac{sqrt{D}}{2a}.
  4. При равенстве нулю свободного члена c=0 имеем D=b^2 и displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.

Приведенное квадратное уравнение

Приведенным квадратным уравнением называется такое уравнение вида ax^2+bx+c=0, в котором старший коэффициент равен a=1. Оно решается обычно по теореме Виета.

Дискриминант находится по формуле: D=b^2-4c.

Если второй коэффициент кратен 2

Если коэффициент b можно разделить на 2 (с четным вторым коэффициентом), то тогда вычисляется не полный дискриминант, а displaystyle frac{D}{4} по формуле:

displaystyle frac{D}{4}=left ( frac{b}{2} right)^2-ac,

а корни: displaystyle x_1=frac{-frac{b}{2}-sqrt{frac{D}{4}}}{a} и второй корень displaystyle x_2=frac{-frac{b}{2}+sqrt{frac{D}{4}}}{a}.

Примеры нахождения корней уравнения с помощью дискриминанта

Пример 1

Решим уравнение: 4x^2+5x-5=0

Находим дискриминант: D=25-4 cdot 4 cdot (-5)=25+80=105

Корни: displaystyle x_1=frac{-5-sqrt{105}}{2cdot 4}, displaystyle x_2=frac{-5+sqrt{105}}{2cdot 4}
или

displaystyle x_1=frac{-5-sqrt{105}}{8}, displaystyle x_2=frac{-5+sqrt{105}}{8}

Пример 2

Сколько корней в данном уравнении 2x^2-3x+6=0?

Для ответа на этот вопрос необходимо найти дискриминант:

D=3^2-4 cdot 2 cdot 6=9-48=-39
D<0[/katex] — действительных корней нет.</p> <h3>Пример 3</h3> <p>[katex]x^2-6x-72=0 — найти корень.
D=b^2-4ac=(-6)^2-4 cdot (-72)=36+288=324

Так как D>0, имеем два корня:

displaystyle x_1=frac{6-sqrt{324}}{2},      x_2=frac{6+sqrt{324}}{2}
displaystyle x_1=frac{6-18}{2}=-6,      x_2=frac{6+18}{2}=12   

Пример 4

Решить неполное уравнение

x^2-4=0

Способ 1

Разложим левую часть по формуле разность квадратов:

(x-2)(x+2)=0

Тогда корни:

x_1=-2,  x_2=2

Способ 2

Решим задачу с помощью дискриминанта: D=0^2-4(-4)=16, тогда displaystyle x_1=sqrt{D}/2=sqrt{16}/2=4/2=2,

displaystyle x_2=-sqrt{D}/2=-sqrt{16}/2=-4/2=-2

Пример 5

Придумайте такое квадратное уравнение, в котором будет нулевой дискриминант.

Решение:

Так как формула дискриминанта: D=b^2-4ac, то выберем любые коэффициенты a и b, а c найдем, если приравняем D=b^2-4ac к нулю.

Пусть a=7, a b=4, тогда displaystyle D=4^2-4cdot 7cdot c=0
4^2-4cdot 7cdot c=0
16-28c=0
-28c=-16 Разделим левую и правую части на -4.

7c=4
displaystyle c=frac{4}{7}

И, получаем: displaystyle 7x^2+4x+frac{4}{7}=0

Ответ: displaystyle 7x^2+4x+frac{4}{7}=0

Выводы

Самое важное, что надо запомнить, это формулу:

D=b^2-4ac

и как определяются корни квадратного уравнения:

displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}

Можно забыть, как определяются корни в разных видах квадратных уравнений, неполных, приведенных, но если вы знаете главное — как определяется дискриминант и корни в полном квадратном уравнении, то вы сможете решить любое уравнение второй степени.

Описание презентации по отдельным слайдам:

  • Алгоритм 
нахождения  значения коэффициентов a, b, c 
 по графику квадратично...

    1 слайд

    Алгоритм
    нахождения значения коэффициентов a, b, c
    по графику квадратичной функции
    y= ax2 +bx+c.

  • Нахождение коэффициента  a 
1) по графику параболы  определяем координаты вер...

    2 слайд

    Нахождение коэффициента a

    1) по графику параболы определяем координаты вершины (m,n)
    2) по графику параболы определяем координаты любой точки А (х1;у1)
    3) подставляем эти значения в формулу квадратичной функции, заданной в другом виде:
    4) решаем полученное уравнение.

  • Нахождение коэффициента b1) Сначала находим значение коэффициента a 
      (ш...

    3 слайд

    Нахождение коэффициента b
    1) Сначала находим значение коэффициента a
    (шаг I, смотри выше)

    2)В формулу для абсциссы параболы m= -b/2a подставляем значения
    m и a

    3) Вычисляем значение коэффициента b.

  • Нахождение коэффициента с:1)Находим координату у точки пересечения графика...

    4 слайд

    Нахождение коэффициента с:

    1)Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;с)-точка пересечения графика параболы с осью Оу.
    2)Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II (находим коэффициенты a,b)
    3)Подставляем найденные значения a, b , А(х1 ;у1) в уравнение
    у=ax2 +bx+c и находим с.

  • По графику функции найдите значения коэффициентов a, b, c

    5 слайд

    По графику функции найдите значения коэффициентов a, b, c

Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

Дискриминант обозначается буквой (D) и часто используется при решении квадратных уравнений. Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
         – если (D) положителен – уравнение будет иметь два корня;
         – если (D) равен нулю – только один корень;
         – если (D) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, (sqrt{D}) входит в формулу для вычисления корней квадратного уравнения: (x_{1}=)(frac{-b+sqrt{D}}{2a}) и (x_{2}=)(frac{-b-sqrt{D}}{2a}). Давайте рассмотрим каждый случай подробнее.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит (x_{1}) и (x_{2}) будут различны по значению, ведь в первой формуле (sqrt{D}) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения (x^2+2x-3=0)
Решение:

(x^2+2x-3=0)

                              

Выписываем коэффициенты:

(a=1;)      (b=2;)      (c=-3;)

 

Вычисляем дискриминант по формуле (D=b^2-4ac)

(D=2^2-4cdot1cdot(-3)=)
(=4+12=16)

 

Найдем корни уравнения

(x_{1}=)(frac{-2+sqrt{16}}{2cdot1})(=)(frac{2}{2})(=1)

(x_{2}=)(frac{-2-sqrt{16}}{2cdot1})(=)(frac{-6}{2})(=-3)

Получили два различных корня из-за разных знаков перед (sqrt{D})

Ответ: (x_{1}=1);    (x_{2}=-3)

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения.  И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_{1}=1) и (x_{1}=-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции). 

график параболы при положительном дискриминанте.png

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: (x_{1}=)(frac{-b+sqrt{D}}{2a}) и (x_{2}=)(frac{-b-sqrt{D}}{2a}).  И если дискриминант – ноль, то и корень из него тоже ноль.  Тогда получается:

(x_{1}=)(frac{-b+sqrt{D}}{2a})(=)(frac{-b+sqrt{0}}{2a})(=)(frac{-b+0}{2a})(=)(frac{-b}{2a})

(x_{2}=)(frac{-b-sqrt{D}}{2a})(=)(frac{-b-sqrt{0}}{2a})(=)(frac{-b-0}{2a})(=)(frac{-b}{2a})

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения (x^2-4x+4=0)
Решение:

(x^2-4x+4=0)

                              

Выписываем коэффициенты:

(a=1;)      (b=-4;)      (c=4;)

 

Вычисляем дискриминант по формуле (D=b^2-4ac)

(D=(-4)^2-4cdot1cdot4=)
(=16-16=0)

 

Находим корни уравнения

(x_{1}=)(frac{-(-4)+sqrt{0}}{2cdot1})(=)(frac{4}{2})(=2)

(x_{2}=)(frac{-(-4)-sqrt{0}}{2cdot1})(=)(frac{4}{2})(=2)

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

Ответ: (x=2)

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс.  Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

график параболы при дискриминанте равном нулю.png

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения (x^2+x+3=0)
Решение

(x^2+x+3=0)

                              

Выписываем коэффициенты:

(a=1;)      (b=1;)      (c=3;)

 

Вычисляем дискриминант по формуле (D=b^2-4ac)

(D=1^2-4cdot1cdot3=)
(=1-12=-11)

 

Находим корни уравнения

(x_{1}=)(frac{-1+sqrt{-11}}{2cdot1})(=…)

(x_{2}=)(frac{-1-sqrt{-11}}{2cdot1})(=…)

Оба корня содержат невычислимое выражение (sqrt{-11}), значит, и сами не вычислимы

Ответ: нет корней.

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

график параболы при отрицательном дискриминанте.png

Добавить комментарий