Как найти дисперсию для распределения

Как найти дисперсию?

Лучшее спасибо – порекомендовать эту страницу

Дисперсия – это мера разброса значений случайной величины $X$ относительно ее математического ожидания $M(X)$ (см. как найти математическое ожидание случайной величины). Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около $M(X)$: если дисперсия маленькая – значения сравнительно близки друг к другу, если большая – далеки друг от друга (см. примеры нахождения дисперсии ниже).

Если случайная величина описывает физические объекты с некоторой размерностью (метры, секунды, килограммы и т.п.), то дисперсия будет выражаться в квадратных единицах (метры в квадрате, секунды в квадрате и т.п.). Ясно, что это не совсем удобно для анализа, поэтому часто вычисляют также корень из дисперсии – среднеквадратическое отклонение $sigma(X)=sqrt{D(X)}$, которое имеет ту же размерность, что и исходная величина и также описывает разброс.

Еще одно формальное определение дисперсии звучит так: “Дисперсия – это второй центральный момент случайной величины” (напомним, что первый начальный момент – это как раз математическое ожидание).

Нужна помощь? Решаем теорию вероятностей на отлично

Формула дисперсии случайной величины

Дисперсия случайной величины Х вычисляется по следующей формуле:
$$
D(X)=M(X-M(X))^2,
$$
которую также часто записывают в более удобном для расчетов виде:
$$
D(X)=M(X^2)-(M(X))^2.
$$

Эта универсальная формула для дисперсии может быть расписана более подробно для двух случаев.

Если мы имеем дело с дискретной случайной величиной (которая задана перечнем значений $x_i$ и соответствующих вероятностей $p_i$), то формула принимает вид:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
Если же речь идет о непрерывной случайной величине (заданной плотностью вероятностей $f(x)$ в общем случае), формула дисперсии Х выглядит следующим образом:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$

Пример нахождения дисперсии

Рассмотрим простые примеры, показывающие как найти дисперсию по формулам, введеным выше.

Пример 1. Вычислить и сравнить дисперсию двух законов распределения:
$$
x_i quad 1 quad 2 \
p_i quad 0.5 quad 0.5
$$
и
$$
y_i quad -10 quad 10 \
p_i quad 0.5 quad 0.5
$$

Для убедительности и наглядности расчетов мы взяли простые распределения с двумя значениями и одинаковыми вероятностями. Но в первом случае значения случайной величины расположены рядом (1 и 2), а во втором – дальше друг от друга (-10 и 10). А теперь посмотрим, насколько различаются дисперсии:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2 =\
= 1^2cdot 0.5 + 2^2 cdot 0.5 – (1cdot 0.5 + 2cdot 0.5)^2=2.5-1.5^2=0.25.
$$
$$
D(Y)=sum_{i=1}^{n}{y_i^2 cdot p_i}-left(sum_{i=1}^{n}{y_i cdot p_i} right)^2 =\
= (-10)^2cdot 0.5 + 10^2 cdot 0.5 – (-10cdot 0.5 + 10cdot 0.5)^2=100-0^2=100.
$$
Итак, значения случайных величин различались на 1 и 20 единиц, тогда как дисперсия показывает меру разброса в 0.25 и 100. Если перейти к среднеквадратическому отклонению, получим $sigma(X)=0.5$, $sigma(Y)=10$, то есть вполне ожидаемые величины: в первом случае значения отстоят в обе стороны на 0.5 от среднего 1.5, а во втором – на 10 единиц от среднего 0.

Ясно, что для более сложных распределений, где число значений больше и вероятности не одинаковы, картина будет более сложной, прямой зависимости от значений уже не будет (но будет как раз оценка разброса).

Пример 2. Найти дисперсию случайной величины Х, заданной дискретным рядом распределения:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Снова используем формулу для дисперсии дискретной случайной величины:
$$
D(X)=M(X^2)-(M(X))^2.
$$
В случае, когда значений много, удобно разбить вычисления по шагам. Сначала найдем математическое ожидание:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Потом математическое ожидание квадрата случайной величины:
$$
M(X^2)=sum_{i=1}^{n}{x_i^2 cdot p_i}
= (-1)^2cdot 0.1 + 2^2 cdot 0.2 +5^2cdot 0.3 +10^2cdot 0.3+20^2cdot 0.1=78.4.
$$
А потом подставим все в формулу для дисперсии:
$$
D(X)=M(X^2)-(M(X))^2=78.4-6.8^2=32.16.
$$
Дисперсия равна 32.16 квадратных единиц.

Пример 3. Найти дисперсию по заданному непрерывному закону распределения случайной величины Х, заданному плотностью $f(x)=x/18$ при $x in(0,6)$ и $f(x)=0$ в остальных точках.

Используем для расчета формулу дисперсии непрерывной случайной величины:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Вычислим сначала математическое ожидание:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{6} frac{x}{18} cdot x dx = int_{0}^{6} frac{x^2}{18} dx =
left.frac{x^3}{54} right|_0^6=frac{6^3}{54} = 4.
$$
Теперь вычислим
$$
M(X^2)=int_{-infty}^{+infty} f(x) cdot x^2 dx = int_{0}^{6} frac{x}{18} cdot x^2 dx = int_{0}^{6} frac{x^3}{18} dx = left.frac{x^4}{72} right|_0^6=frac{6^4}{72} = 18.
$$
Подставляем:
$$
D(X)=M(X^2)-(M(X))^2=18-4^2=2.
$$
Дисперсия равна 2.

Другие задачи с решениями по ТВ

Подробно решим ваши задачи на вычисление дисперсии

Вычисление дисперсии онлайн

Как найти дисперсию онлайн для дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$ и затем искомое значение дисперсии $D(X)$.

Видео. Полезные ссылки

Видеоролики: что такое дисперсия и как найти дисперсию

Если вам нужно более подробное объяснение того, что такое дисперсия, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Лучшее спасибо – порекомендовать эту страницу

Полезные ссылки

Не забывайте сначала прочитать том, как найти математическое ожидание. А тут можно вычислить также СКО: Калькулятор математического ожидания, дисперсии и среднего квадратического отклонения.

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по ТВ. Для закрепления материала – еще примеры решений задач по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 января 2023 года; проверки требуют 2 правки.

У этого термина существуют и другие значения, см. Дисперсия.

Диспе́рсия случа́йной величины́ — мера разброса значений случайной величины относительно её математического ожидания. Обозначается D[X] в русской литературе и operatorname {Var}(X) (англ. variance) в зарубежной. В статистике часто употребляется обозначение sigma _{X}^{2} или displaystyle sigma ^{2}.

Квадратный корень из дисперсии, равный displaystyle sigma , называется среднеквадратическим отклонением, стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что вероятность того, что значения случайной величины отстоят от математического ожидания этой случайной величины более чем на k стандартных отклонений, составляет менее 1/k^{2}. В специальных случаях оценка может быть усилена. Так, например, как минимум в 95 % случаев значения случайной величины, имеющей нормальное распределение, удалены от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % — не более чем на три.

Определение[править | править код]

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

Пусть X — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется

{displaystyle D[X]=mathbb {E} left[{big (}X-mathbb {E} [X]{big )}^{2}right],}

где символ {mathbb  {E}} обозначает математическое ожидание[1][2].

Замечания[править | править код]

где x_{i} — i-ое значение случайной величины, {displaystyle p_{i}=P(X=x_{i})} — вероятность того, что случайная величина принимает значение x_{i}, n — количество значений, которые принимает случайная величина.

Доказательство 2-й формулы

где f(x) — плотность вероятности случайной величины.

Для получения несмещённой оценки дисперсии случайной величины значение {displaystyle {overline {S}}^{2}} необходимо умножить на {frac  {n}{n-1}}. Несмещённая оценка имеет вид:
{displaystyle {widetilde {S}}^{2}={frac {1}{n-1}}sum limits _{i=1}^{n}(X_{i}-{bar {X}})^{2}}

Свойства[править | править код]

Условная дисперсия[править | править код]

Наряду с условным математическим ожиданием {displaystyle mathbb {E} [X|Y]} в теории случайных процессов используется условная дисперсия случайных величин {displaystyle D[X|Y]}.

Условной дисперсией случайной величины X относительно случайной величины Y называется случайная величина:

{displaystyle D[X|Y]=mathbb {E} [(X-mathbb {E} [X|Y])^{2}|Y]=mathbb {E} [X^{2}|Y]-mathbb {E} [X|Y]^{2}}.

Её свойства:

откуда, в частности, следует, что дисперсия условного математического ожидания {displaystyle mathbb {E} [X|Y]} всегда меньше или равна дисперсии исходной случайной величины X.

Пример[править | править код]

Пусть случайная величина displaystyle X имеет стандартное непрерывное равномерное распределение на {displaystyle displaystyle [0,1]}, то есть её плотность вероятности задана равенством

f_{X}(x)=left{{begin{matrix}1,&xin [0,1]\0,&xnot in [0,1].end{matrix}}right.

Тогда математическое ожидание квадрата случайной величины равно

{displaystyle mathbb {E} left[X^{2}right]=int limits _{0}^{1}!x^{2},dx=left.{frac {x^{3}}{3}}rightvert _{0}^{1}={frac {1}{3}}},

и математическое ожидание случайной величины равно

{displaystyle mathbb {E} left[Xright]=int limits _{0}^{1}!x,dx=left.{frac {x^{2}}{2}}rightvert _{0}^{1}={frac {1}{2}}}

Дисперсия случайной величины равна

{displaystyle D[X]=mathbb {E} left[X^{2}right]-(mathbb {E} [X])^{2}={frac {1}{3}}-left({frac {1}{2}}right)^{2}={frac {1}{12}}}

См. также[править | править код]

  • Среднеквадратическое отклонение
  • Моменты случайной величины
  • Ковариация
  • Выборочная дисперсия
  • Независимость (теория вероятностей)
  • Скедастичность
  • Абсолютное отклонение
  • Дельта-метод

Примечания[править | править код]

  1. Колмогоров А. Н. Глава IV. Математические ожидания; §3. Неравенство Чебышева // Основные понятия теории вероятностей. — 2-е изд. — М.: Наука, 1974. — С. 63—65. — 120 с.
  2. Боровков А. А. Глава 4. Числовые характеристики случайных величин; §5. Дисперсия // Теория вероятностей. — 5-е изд. — М.: Либроком, 2009. — С. 93—94. — 656 с.

Литература[править | править код]

  • Гурский Д., Турбина Е. Mathcad для студентов и школьников. Популярный самоучитель. — СПб.: Питер, 2005. — С. 340. — ISBN 5469005259.
  • Орлов А. И. Дисперсия случайной величины // Математика случая: Вероятность и статистика — основные факты. — М.: МЗ-Пресс, 2004.

Для
вычисления дисперсии часто бывает
пользоваться следующей теоремой.

Теорема.
Дисперсия равна разности между
математическим ожиданием квадрата
случайной величины X
и квадратом ее математического ожидания:

D(X)
= M(X2)
– [М(X)]2.

Доказательство.
Математическое ожидание М(X)
есть постоянная величина, следовательно,
2М(X)
и М2(Х)
есть также постоянные величины. Приняв
это во внимание и пользуясь свойствами
математического ожидания (постоянный
множитель можно вынести за знак
математического ожидания, математическое
ожидание суммы равно сумме математических
ожиданий слагаемых), упростим формулу,
выражающую определение дисперсии:

Итак,

D(X)
= M(X2)
– [М(X)]2.

Квадратная
скобка введена в запись формулы для
удобства ее запоминания.

Пример.
Найти дисперсию случайной величины X,
которая задана следующим законом
распределения:

X

2

3

5

р

0,1

0,6

0,3

Решение.
Найдем математическое ожидание М(X):

М(X)
= 20,1
+ 30,6
+ 50,3
= 3,5.

Напишем
закон распределения случайной величины
X2:

X2

4

9

25

р

0,1

0,6

0,3

Найдем
математические ожидания M(X2):

M(X2)
= 40,1
+ 90,6
+ 250,3
= 13,3.

Искомая дисперсия

D(X)
= M(X2)
– [М(X)]2
= 13,3 – (3,5) = 1,05.

Замечание.
Казалось бы, если X
и Y
имеют одинаковые возможные значения и
одно и то же математическое ожидание,
то и дисперсии этих величин равны (ведь
возможные значения обеих величин
одинаково рассеяны вокруг своих
математических ожиданий!). Однако в
общем случае это не так. Дело в том, что
одинаковые возможные значения
рассматриваемых величин имеют, вообще
говоря, различные вероятности, а величина
дисперсии определяется не только самими
возможными значениями, но и их
вероятностями
.
Например, если вероятности «далеких»
от математического ожидания возможных
значений Х
больше, чем вероятности этих же значений
Y,
и вероятности «близких» значений X
меньше, чем вероятности тех же значений
Y,
то, очевидно, дисперсия X
больше дисперсии Y.

Приведем
иллюстрирующий пример.

Пример.
Сравнить дисперсии случайных величин,
заданных законами распределения:

X


1

1

2

3

Y


1

1

2

3

р

0,48

0,01

0,09

0,42

р

0,19

0,51

0,25

0,05

Решение.
Легко убедиться, что

М(Х)
= М(Y)
= 0,97; D(X)

3,69, D(Y)

1,21.

Таким
образом, возможные значения и математические
ожидания X
и Y
одинаковы, а дисперсии различны, причем
D(X)
> D(Y).
Этот результат можно было предвидеть
без вычислений, глядя лишь на законы
распределений.

7.5. Свойства дисперсии

Свойство
1. Дисперсия
постоянной величины С равна нулю
:

D(С)
= 0.

Доказательство.
По определению дисперсии,

D(С)
= M{[C
M(C)]2}.

Пользуясь
первым свойством математического
ожидания (математическое ожидание
постоянной равно самой постоянной),
получим

D(С)
= M[(C
C)2]
= M(0)
= 0.

Итак,

D(С)
= 0.

Свойство
становится ясным, если учесть, что
постоянная величина сохраняет одно и
то же значение и рассеяния, конечно, не
имеет.

Свойство
2. Постоянный
множитель можно выносить за знак
дисперсии, возводя его в квадрат
:

D(СX)
= C2
D(X).

Доказательство.
По определению дисперсии имеем

D(СX)
= M{[CX
M(CX)]2}.

Пользуясь
вторым свойством математического
ожидания (постоянный множитель можно
выносить за знак математического
ожидания), получим

D(СX)
= M{[CX
CM(X)]2}
= M{C2[X
M(X)]2}
= C2M{[X
M(X)]2}
= C2D(X).

Итак,

D(СX)
= C2
D(X).

Свойство
становится ясным, если принять во
внимание, что при |С|
> 1 величина СХ
имеет возможные значения (по абсолютной
величине), большие, чем величина X.
Отсюда следует, что эти значения рассеяны
вокруг математического ожидания М(СХ)
больше, чем возможные значения X
вокруг М(Х),
т.е. D(СХ)
> D(X).
Напротив, если 0 < |С|
< 1, то D(СХ)
< D(X).

Свойство
3. Дисперсия
суммы двух независимых случайных величин
равна сумме дисперсий этих величин
:

D(X
+
Y)
= D(X)
+
D(Y)

Доказательство.
По формуле для вычисления дисперсии
имеем

D(X
+
Y)
= М[(X
+
Y)2]

[М(X
+
Y)]2.

Раскрыв
скобки и пользуясь свойствами
математического ожидания суммы нескольких
величин и произведения двух независимых
случайных величин, получим

Итак,

D(X
+
Y)
= D(X)
+
D(Y).

Следствие
1. Дисперсия суммы нескольких взаимно
независимых случайных величин равна
сумме дисперсий этих величин.

Например,
для трех слагаемых имеем

.

Для
произвольного числа слагаемых
доказательство проводится методом
математической индукции.

Следствие
2. Дисперсия суммы постоянной величины
и случайной равна дисперсии случайной
величины:

D(С
+
Y)
= D(X).

Доказательство.
Величины С
и X
независимы, поэтому, по третьему свойству,

D(C
+
X)
= D(С)+
D(X).

В
силу первого свойства D(С)
= 0. Следовательно,

D(С
+
Y)
= D(X).

Свойство
становится понятным, если учесть, что
величины X
и Х + С
отличаются лишь началом отсчетам,
значит, рассеяны вокруг своих математических
ожиданий одинаково.

Свойство
4. Дисперсия
разности двух независимых случайных
величин равна сумме их дисперсий
:

D(X
Y)
= D(X)
+
D(Y).

Доказательство.
В силу третьего свойства

D(X
Y)
= D(X)
+
D(Y).

По второму свойству,

D(X
Y)
= D(X)
+
(1)2D(Y),

или

D(X
Y)
= D(X)
+
D(Y).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Числовые характеристики распределения вероятностей. Математическое ожидание, дисперсия и стандартное отклонение

  1. Закон распределения дискретной случайной величины
  2. Математическое ожидание
  3. Дисперсия
  4. Среднее квадратичное отклонение
  5. Правило трёх сигм
  6. Примеры

п.1. Закон распределения дискретной случайной величины

Законом распределения дискретной случайной величины называют соответствие между полученными на опыте значениями этой величины X= {xi} и их вероятностями pi = P(xi).
При этом сумма всех вероятностей равна 1: (mathrm{sum_{i=1}^n p_i=1})
Закон распределения можно задать таблицей, графиком или аналитически (в виде формулы).

Например:
Закон распределения случайной величины X = {0;1;2;3}, равной числу выпадения орлов при 3 бросках монеты, аналитически задаётся формулой: $$ mathrm{ p_i=P(x_i)=P_3(i)=frac{C_3^{i}}{2^3}, i={0;1;2;3} } $$

В табличном виде:

xi

pi

0

1/8

1

3/8

2

3/8

3

1/8

В виде графика:

Закон распределения дискретной случайной величины

п.2. Математическое ожидание

Математическое ожидание дискретной случайной величины X = {xi} равно сумме произведений всех возможных значений xi на соответствующие вероятности pi: $$ mathrm{ M(X)=x_1p_1+x_2p_2+…+x_{n}p_{n}=sum_{i=1}^n x_{i}p_{i} } $$ Математическое ожидание является средним значением величины X.

Свойства математического ожидания
1) Размерность математического ожидания равна размерности случайной величины.
2) Математическое ожидание может быть любым действительным числом: положительным, равным 0, отрицательным.
3) Математическое ожидание постоянной величины равно этой постоянной:

M(C) = C

4) Математическое ожидание суммы независимых случайных величин равно сумме математических ожиданий:

M(X + Y) = M(X) + M(Y)

5) Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий:

M(XY) = M(X) · M(Y)

6) Постоянный множитель можно вынести за знак математического ожидания:

M(CX) = C · M(X)

Например:
Пусть в результате экспериментов получено следующее распределение случайной величины X – числа появления белых шаров (см. пример 1, §40 данного справочника):

Число белых шаров, xi 0 1 2 3 4 5
pi (mathrm{C_5^0q^5}) (mathrm{C_5^1pq^4}) (mathrm{C_5^2p^2q^3}) (mathrm{C_5^3p^3q^2}) (mathrm{C_5^4p^4q}) (mathrm{C_5^5p^5})
0,0074 0,0618 0,2060 0,3433 0,2861 0,0954

Найдём математическое ожидание для данного распределения:

M(X) = 0 · 0,0074 + 1 · 0,0618 + … + 5 · 0,0954 = 3,125

п.3. Дисперсия

Дисперсия дискретной случайной величины X = {xi} – это математическое ожидание квадрата отклонения случайной величины от её математического ожидания: $$ mathrm{ D(X)=M(X-M(X))^2 } $$ На практике дисперсия рассчитывается по формуле: $$ mathrm{ D(X)=M(X)^2-M^2(X)=sum_{i=1}^n x_i^2p_i-M^2(X) } $$

Свойства дисперсии
1) Размерность дисперсии равна квадрату размерности случайной величины.
2) Дисперсия может быть любым неотрицательным действительным числом.
3) Дисперсия постоянной величины равна нулю:

D(C) = 0

4) Дисперсия суммы независимых случайных величин равна сумме дисперсий:

D(X + Y) = D(X) + D(Y)

5) Постоянный множитель можно вынести за знак дисперсии:

D(CX) = C2 · D(X)

Например:
Продолжим исследование и найдём дисперсию для распределения случайной величины X – числа появления белых шаров. Составим расчётную таблицу:

pi

0,0074

0,0618

0,2060

0,3433

0,2861

0,0954

1

xip1

0

0,0618

0,4120

1,0300

1,1444

0,4768

3,125

(mathrm{x_i^2})

0

1

4

9

16

25

(mathrm{x_i^2p_i})

0

0,0618

0,8240

3,0899

4,5776

2,3842

10,9375

Получаем: D(X) = 10,9375 – 3,1252 ≈ 1,1719.

п.4. Среднее квадратичное отклонение

Среднее квадратичное отклонение (СКО) дискретной случайной величины X = {xi} – это корень квадратный от дисперсии: $$ mathrm{ sigma(X)=sqrt{D(X)} } $$ СКО характеризует степень отклонения случайной величины от среднего значения.

Свойства СКО
1) Размерность СКО равна размерности случайной величины.
2) СКО может быть любым неотрицательным действительным числом.
3) СКО постоянной величины равно нулю:

σ(C) = 0

4) Постоянный множитель можно вынести за знак СКО:

σ(CX) = C · σ(X)

п.5. Правило трёх сигм

Большое количество случайных величин, измеряемых в экспериментах (например, в школьных лабораторных работах), имеет так называемое нормальное распределение.
В частности, при больших n, биномиальное распределение можно с хорошей точностью описывать как нормальное с M(X) = np и (mathrm{sigma(X)=sqrt{npq}}).
График плотности нормального распределения p(x) похож на колокол, с максимумом, соответствующим M(X) = Xcp – среднему значению измеряемой величины.
Правило трёх сигм
Величина СКО σ(X) характеризует степень отклонения X от среднего значения M(X).

Если величина X имеет нормальное распределение, то в пределах
±σ лежит 68,26% значений, принимаемых этой величиной
±2σ лежит 95,44% значений, принимаемых этой величиной
±3σ лежит 99,72% значений, принимаемых этой величиной
Вероятность того, что нормально распределённая величина примет значение, отклоняющееся от среднего больше, чем на «три сигмы», равна 0,28%, т.е. пренебрежимо мала.

п.6. Примеры

Пример 1. Найдите математическое ожидание, дисперсию и СКО при бросании кубика.

Закон распределения величины X – очки на верхней грани при бросании кубика и расчётная таблица:

pi

1/6

1/6

1/6

1/6

1/6

1/6

1

xip1

1/6

1/3

1/2

2/3

5/6

1

3,5

(mathrm{x_i^2})

1

4

9

16

25

36

(mathrm{x_i^2p_i})

(mathrm{frac16})

(mathrm{frac23})

(mathrm{1frac12})

(mathrm{2frac23})

(mathrm{4frac16})

6

(mathrm{15frac16})

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=1}^6 x_ip_i=3,5 }\ mathrm{ D(X)=sum_{i=1}^6 x_i^2p_i-M^2(X)=15frac16-3,5^3=2frac{11}{12} }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{2frac{11}{12}}approx 1,7 } end{gather*} Ответ: (mathrm{M(X)=3,5; D(X)=2frac{11}{12}; sigma(X)approx 1,7}).

Пример 2*. Найти математическое ожидание, дисперсию и СКО суммы очков при бросании двух кубиков.

Используем свойства мат.ожиданий и дисперсий.
Пусть X – очки на первом кубике, Y – на втором.
Параметры распределения для каждого из кубиков рассчитаны в примере 1.
(mathrm{M(X)=M(Y)=3,5, D(X)=D(Y)=2frac{11}{12}}).
Для суммы очков получаем:
(mathrm{M(X+Y)=M(X)+M(Y)=3,5+3,5=7})
(mathrm{D(X+Y)=D(X)+D(Y)=2frac{11}{12}+2frac{11}{12}=5frac56})
(mathrm{sigma(X+Y)=sqrt{D(X+Y)}=sqrt{5frac56}approx 2,4})
Ответ: (mathrm{M(X+Y)=7; D(X+Y)=5frac56; sigma(X+Y)approx 2,4}).

Пример 3*. Докажите, что в опытах по схеме Бернулли математическое ожидание M(X)=np, а дисперсия D(X)=npq.

Проведем один опыт. В нём может быть только два исхода: «успех» и «неудача».
Составим расчётную таблицу:

(mathrm{x_i^2p_i})

0

p

p

Мат.ожидание первого опыта (mathrm{M(X)=sum x_ip_i=p}).
Общее число успехов при n опытах складывается из числа успехов при каждом опыте, т.е. (mathrm{X=X_1+X_2+…+X_n}). Все опыты между собой независимы.
По свойству мат.ожидания суммы независимых событий: begin{gather*} mathrm{ M(X)=M(X_1+X_2+…+X_n)=M(X_1)+M(X_2)+…+M(X_n)= }\ mathrm{=underbrace{p+p+…+p}_{n text{раз}}=np } end{gather*} Дисперсия первого опыта (mathrm{D(X)=sum x_i^2p_i-M(X)=p-p^2=p(1-p)=pq})
По свойству дисперсии суммы независимых событий: begin{gather*} mathrm{ D(X)=D(X_1+X_2+…+X_n)=D(X_1)+D(X_2)+…+D(X_n)= }\ mathrm{=underbrace{pq+pq+…+pq}_{n text{раз}}=npq } end{gather*} Что и требовалось доказать.

Пример 4. 100 канцелярских кнопок высыпали на стул. Вероятность, что кнопка упала острием вверх, равна 0,4. Найдите среднее количество, дисперсию и СКО для числа кнопок, упавших острием вверх. Найдите интервал оценки для количества этих кнопок по правилу «трёх сигм».

По условию n = 100, p = 0,4.
Для каждой кнопки может быть два исхода: упасть острием вверх или вниз.
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. begin{gather*} mathrm{ M(X)=np=100cdot 0,4=40 }\ mathrm{D(X)=npq=100cdot 0,4cdot 0,6=24 }\ mathrm{sigma(X)=sqrt{D(X)}=sqrt{24}approx 4,9} end{gather*} Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X)lt Xlt M(X)+3sigma(X) }\ mathrm{40-3cdot 4,9lt Xlt 40+3cdot 4,9 }\ mathrm{25,3lt Xlt 54,7}\ mathrm{26leq Xleq 54} end{gather*} Скорее всего (99,7%), от 26 до 54 кнопок будут острием вверх.
Ответ: (mathrm{M(X)=40; D(X)=24; sigma(X)approx 4,9; 26leq Xleq 54})

Пример 5*. В тесте 10 задач с 4 вариантами ответов. Ответы выбираются наугад. Постройте распределение величины X = «количество угаданных ответов», найдите числовые характеристики этого распределения.
Найдите интервал оценки для количества угаданных ответов по правилу «трёх сигм».
Какова вероятность угадать хотя бы 1 ответ? Хотя бы 5 ответов? Угадать все 10 ответов?

По условию: (mathrm{n=10, p=frac14, q=frac34}).
Для каждого ответа может быть два исхода: «угадал»/ «не угадал».
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. $$ mathrm{ P_{10}(k)=C_{10}^kp^kq^{10-k}=C_{10}^kfrac{3^{10-k}}{4^{10}}=left(frac34right)^{10}frac{C_{10}^k}{3^k} } $$ Строим расчётную таблицу. Для (mathrm{C_{10}^k}) используем рекуррентную формулу (см. §36 данного справочника): $$ mathrm{ C_{n}^k=frac{n-k+1}{k}C_n^{k-1} } $$

(mathrm{x_i=k}) (mathrm{C_k}) (mathrm{3^k}) (mathrm{p_i(x_i)}) (mathrm{x_icdot p_i}) (mathrm{x_i^2}) (mathrm{x_i^2cdot p_i})
0 1 1 0,0563135 0,0000000 0 0,0000000
1 10 3 0,1877117 0,1877117 1 0,1877117
2 45 9 0,2815676 0,5631351 4 1,1262703
3 120 27 0,2502823 0,7508469 9 2,2525406
4 210 81 0,1459980 0,5839920 16 2,3359680
5 252 243 0,0583992 0,2919960 25 1,4599800
6 210 729 0,0162220 0,0973320 36 0,5839920
7 120 2187 0,0030899 0,0216293 49 0,1514053
8 45 6561 0,0003862 0,0030899 64 0,0247192
9 10 19683 0,0000286 0,0002575 81 0,0023174
10 1 59049 0,0000010 0,0000095 100 0,0000954
Σ 1 2,5 8,125

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=0}^{10} x_ip_i=2,5 }\ mathrm{ D(X)=sum_{i=0}^{10} x_i^2p_i-M^2(X)=8,125=2,5^2=1,875 }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{1,875}approx 1,37 } end{gather*} Пример 5
Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X) lt Xlt M(X)+3sigma(X) }\ mathrm{ 2,5-3cdot 1,37lt X lt 2,5+3cdot 1,37 }\ mathrm{ -1,61lt Xlt 6,61 }\ mathrm{ 0leq Xleq 6 } end{gather*} Скорее всего (по расчетам – 99,65%), вы угадаете от 0 до 6 ответов.

Вероятность угадать хотя бы один ответ: begin{gather*} mathrm{ P(Xgeq 1)=1-p_0approx 1-0,0563=0,9437 }end{gather*} Очень хорошие шансы – 94,37%.
Вероятность угадать хотя бы 5 ответов: begin{gather*} mathrm{ P(Xgeq 5)=1-left(sum_{i=0}^{4}{p_i} right)approx 1-(0,0563+0,1877+…+0,1460)=0,0781 }end{gather*} Шансов мало – 7,81%. Т.е. «средний балл» при сдаче тестов мало достижим методом научного тыка.
Вероятность угадать все 10 ответов: p10≈ 0,000001. Шанс – один из миллиона.

Дисперсия и ее свойства.
Среднее квадратическое отклонение

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Дисперсия и формула для ее вычисления

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. M[X-M(X)], для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие – отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, то есть вычисляют среднее значение квадрата отклонения, которое и называют дисперсией.

Дисперсией называется
математическое ожидание квадрата отклонения случайной величины

 от

:

Для того чтобы найти дисперсию, достаточно вычислить сумму произведений возможных значений квадрата отклонения на их вероятности.

Для вычисления дисперсии
на практике удобно пользоваться следующей формулой:

Свойства дисперсии

Свойство 1.

Дисперсия равна разности между
математическим ожиданием квадрата случайной величины

 и
квадратом ее математического ожидания.

Свойство 2.

Дисперсия константы
равна нулю:

Свойство 3.

Постоянный множитель
выносится из-под знака дисперсии в квадрате:

Свойство 4.

Дисперсия суммы
случайных величин:

где 

 –
ковариация  случайных величин

 и

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Следствия из свойств дисперсии.

В частности, если

 и

 независимы, то

Прибавление константы

 в
случайной величине не меняет ее дисперсии:

Дисперсия разности равна сумме дисперсий:

Среднеквадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.

Стандартное (среднее
квадратичное) отклонение
случайной величины

 определяется
как корень из дисперсии и обозначается

Легко показать, что дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение равно квадратному корню из дисперсии, то ее размерность совпадает с размерностью X. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию. Например, если X выражается в линейных метрах, то среднее квадратичное отклонение X будет выражаться также в линейных метрах, a дисперсия X – в квадратных метрах.

Смежные темы решебника:

  • Математическое ожидание и его свойства
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

В коробке 20 конфет, из которых 4 с
вареньем. Х – число конфет с вареньем среди двух случайно выбранных. Найти
дисперсию случайной величины Х.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Случайная
величина

 – число конфет с вареньем, может принимать
значения 0,1,2

Найдем
соответствующие вероятности:

Проверка:

Получаем
следующий закон распределения СВ

:

Математическое
ожидание:

Дисперсию
можно вычислить по формуле:

Искомая
дисперсия:


Пример 2

Даны
законы распределения независимых случайных величин X и Y:

и

Найти
закон распределения суммы (X+Y). Проверить равенство D(X+Y)=D(X)+D(Y).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Распределение суммы

:

Окончательно получаем:

2 3 4 Итого

0.2 0.5 0.3 1

Вычислим математические ожидания:

Вычислим
дисперсии:

Проверим
равенство

:

Равенство
выполняется.


Пример 3

Вероятность
изготовления бракованной детали на первом станке составляет 3%, на втором
станке 5%. На первом станке было изготовлено 20 деталей, на втором 40 деталей.
Найти математическое ожидание и дисперсию числа бракованных деталей.

Решение

Математическое
ожидание биномиального распределения:

Дисперсия:

Математическое
ожидание величины

 – числа бракованных деталей на 1-м станке:

Дисперсия:

Математическое
ожидание величины

 – числа бракованных деталей на 2-м станке:

Дисперсия:

Математическое
ожидание числа бракованных деталей:

Дисперсия
числа бракованных деталей:

Ответ:

.


Пример 4

Случайные
величины X,Y распределены по закону
Пуассона. Найдите M{(X+Y)2}, если M(X)=40 и
M(Y)=70, а коэффициент корреляции X и Yравен 0,8.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Поскольку
случайные величины

 и

 распределены по закону Пуассона и известны их
математические ожидания, соответствующие дисперсии равны:

Пользуясь
свойствами математического ожидания и дисперсии:

Подставляя
числовые значения, получаем:

Ответ:

.

Задачи контрольных и самостоятельных работ


Задача 1

Независимые случайные величины X и Y
заданы следующими законами:

x 2.3 2.5 2.7 2.9
p 0.4 0.3 0.2 0.1

Укажите
законы распределения случайной величины X+Y, X-Y и найдите их
математическое ожидание и дисперсию.


Задача 2

Найти
дисперсию, математическое ожидания, среднекваратическое отклонение ДСВ X,
заданной законом распределения.

x -5 2 3 4
p 0,4 0,3 0,1 0,2

Написать F(x) и построить ее график.


Задача 3

Случайная
величина X имеет плотность вероятности

Требуется
найти дисперсию Dx.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 4

Вероятность
того, что прибор исправен, равна 0,8. X – число исправных приборов
из двух выбранных. Найти дисперсию случайной величины X.


Задача 5

Случайные
величины X и Y независимы. Найти
дисперсию случайной величины Z=2X+3Y, если известно, что D(X)=4, D(Y)=5.


Задача 6

Найти
дисперсию дискретной случайной величины X – числа отказов элемента
некоторого устройства в десяти независимых опытах, если вероятность отказа
элемента в каждом опыте равна 0,9.


Задача 7

Дискретная
случайная величина X имеет только два возможных значения: x1 и x2, причем x2>x1. Вероятность того, что X
примет значение x1, равна 0,6. Найти закон распределения величины X, если
математическое ожидание и дисперсия известны: M(X)=1,4; D(X)=0,24.


Задача 8

Закон
распределения случайной величины ξ имеет вид:

ξ -1 2 3 5
P 1/4 1/2 1/8 1/8

Найти функцию распределения случайной величины ξ,
вычислить ее математическое ожидание, дисперсию и среднее квадратическое
отклонение. Вычислить вероятность P{5⁄2<ξ<5}.


Задача 9

Дискретная
случайная величины X принимает лишь два значения. Большее из значений 3
она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной
величины D(X)=6. Найти математическое
ожидание случайной величины.


Задача 10

Найти
дисперсию по заданному непрерывному закону распределения случайной величины X,
заданному плотностью вероятности

 при

 и

 в остальных точках.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Добавить комментарий