Как найти дисперсию выборки значений случайной величины


Загрузить PDF


Загрузить PDF

Дисперсия случайной величины является мерой разброса значений этой величины. Малая дисперсия означает, что значения сгруппированы близко друг к другу. Большая дисперсия свидетельствует о сильном разбросе значений. Понятие дисперсии случайной величины применяется в статистике. Например, если сравнить дисперсию значений двух величин (таких как результаты наблюдений за пациентами мужского и женского пола), можно проверить значимость некоторой переменной.[1]
Также дисперсия используется при построении статистических моделей, так как малая дисперсия может быть признаком того, что вы чрезмерно подгоняете значения.[2]

  1. Изображение с названием Calculate Variance Step 1

    1

    Запишите значения выборки. В большинстве случаев статистикам доступны только выборки определенных генеральных совокупностей. Например, как правило, статистики не анализируют расходы на содержание совокупности всех автомобилей в России – они анализируют случайную выборку из нескольких тысяч автомобилей. Такая выборка поможет определить средние расходы на автомобиль, но, скорее всего, полученное значение будет далеко от реального.

    • Например, проанализируем количество булочек, проданных в кафе за 6 дней, взятых в случайном порядке. Выборка имеет следующий вид: 17, 15, 23, 7, 9, 13. Это выборка, а не совокупность, потому что у нас нет данных о проданных булочках за каждый день работы кафе.
    • Если вам дана совокупность, а не выборка значений, перейдите к следующему разделу.
  2. Изображение с названием Calculate Variance Step 2

    2

    Запишите формулу для вычисления дисперсии выборки. Дисперсия является мерой разброса значений некоторой величины. Чем ближе значение дисперсии к нулю, тем ближе значения сгруппированы друг к другу. Работая с выборкой значений, используйте следующую формулу для вычисления дисперсии:[3]

  3. Изображение с названием Calculate Variance Step 3

    3

    Вычислите среднее значение выборки. Оно обозначается как x̅.[4]
    Среднее значение выборки вычисляется как обычное среднее арифметическое: сложите все значения в выборке, а затем полученный результат разделите на количество значений в выборке.

    • В нашем примере сложите значения в выборке: 15 + 17 + 23 + 7 + 9 + 13 = 84
      Теперь результат разделите на количество значений в выборке (в нашем примере их 6): 84 ÷ 6 = 14.
      Выборочное среднее x̅ = 14.
    • Выборочное среднее – это центральное значение, вокруг которого распределены значения в выборке. Если значения в выборке группируются вокруг выборочного среднего, то дисперсия мала; в противном случае дисперсия велика.
  4. Изображение с названием Calculate Variance Step 4

    4

    Вычтите выборочное среднее из каждого значения в выборке. Теперь вычислите разность x_{i} – x̅, где x_{i} – каждое значение в выборке. Каждый полученный результат свидетельствует о мере отклонения конкретного значения от выборочного среднего, то есть как далеко это значение находится от среднего значения выборки.[5]

  5. Изображение с названием Calculate Variance Step 5

    5

    Возведите в квадрат каждый полученный результат. Как отмечалось выше, сумма разностей x_{i} – x̅ должна быть равна нулю. Это означает, что средняя дисперсия всегда равна нулю, что не дает никакого представления о разбросе значений некоторой величины. Для решения этой проблемы возведите в квадрат каждую разность x_{i} – x̅. Это приведет к тому, что вы получите только положительные числа, которые при сложении никогда не дадут 0.[6]

  6. Изображение с названием Calculate Variance Step 6

    6

  7. Изображение с названием Calculate Variance Step 7

    7

    Полученный результат разделите на n – 1, где n – количество значений в выборке. Некоторое время назад для вычисления дисперсии выборки статистики делили результат просто на n; в этом случае вы получите среднее значение квадрата дисперсии, которое идеально подходит для описания дисперсии данной выборки. Но помните, что любая выборка – это лишь небольшая часть генеральной совокупности значений. Если взять другую выборку и выполнить такие же вычисления, вы получите другой результат. Как выяснилось, деление на n – 1 (а не просто на n) дает более точную оценку дисперсии генеральной совокупности, в чем вы и заинтересованы. Деление на n – 1 стало общепринятым, поэтому оно включено в формулу для вычисления дисперсии выборки.[7]

    • В нашем примере выборка включает 6 значений, то есть n = 6.
      Дисперсия выборки = s^{2}={frac  {166}{6-1}}= 33,2
  8. Изображение с названием Calculate Variance Step 8

    8

    Отличие дисперсии от стандартного отклонения. Заметьте, что в формуле присутствует показатель степени, поэтому дисперсия измеряется в квадратных единицах измерения анализируемой величины. Иногда такой величиной довольно сложно оперировать; в таких случаях пользуются стандартным отклонением, которое равно квадратному корню из дисперсии. Именно поэтому дисперсия выборки обозначается как s^{2}, а стандартное отклонение выборки – как s.

    • В нашем примере стандартное отклонение выборки: s = √33,2 = 5,76.

    Реклама

  1. Изображение с названием Calculate Variance Step 9

    1

    Проанализируйте некоторую совокупность значений. Совокупность включает в себя все значения рассматриваемой величины. Например, если вы изучаете возраст жителей Ленинградской области, то совокупность включает возраст всех жителей этой области. В случае работы с совокупностью рекомендуется создать таблицу и внести в нее значения совокупности. Рассмотрим следующий пример:

  2. Изображение с названием Calculate Variance Step 10

    2

    Запишите формулу для вычисления дисперсии генеральной совокупности. Так как в совокупность входят все значения некоторой величины, то приведенная ниже формула позволяет получить точное значение дисперсии совокупности. Для того чтобы отличить дисперсию совокупности от дисперсии выборки (значение которой является лишь оценочным), статистики используют различные переменные: [8]

  3. Изображение с названием Calculate Variance Step 11

    3

    Вычислите среднее значение совокупности. При работе с генеральной совокупностью ее среднее значение обозначается как μ (мю). Среднее значение совокупности вычисляется как обычное среднее арифметическое: сложите все значения в генеральной совокупности, а затем полученный результат разделите на количество значений в генеральной совокупности.

    • Имейте в виду, что средние величины не всегда вычисляются как среднее арифметическое.
    • В нашем примере среднее значение совокупности: μ = {frac  {5+5+8+12+15+18}{6}} = 10,5
  4. Изображение с названием Calculate Variance Step 12

    4

    Вычтите среднее значение совокупности из каждого значения в генеральной совокупности. Чем ближе значение разности к нулю, тем ближе конкретное значение к среднему значению совокупности. Найдите разность между каждым значением в совокупности и ее средним значением, и вы получите первое представление о распределении значений.

    • В нашем примере:
      x_{1} – μ = 5 – 10,5 = -5,5
      x_{2} – μ = 5 – 10,5 = -5,5
      x_{3} – μ = 8 – 10,5 = -2,5
      x_{4} – μ = 12 – 10,5 = 1,5
      x_{5} – μ = 15 – 10,5 = 4,5
      x_{6} – μ = 18 – 10,5 = 7,5
  5. Изображение с названием Calculate Variance Step 13

    5

    Возведите в квадрат каждый полученный результат. Значения разностей будут как положительными, так и отрицательными; если нанести эти значения на числовую прямую, то они будут лежать справа и слева от среднего значения совокупности. Это не годится для вычисления дисперсии, так как положительные и отрицательные числа компенсируют друг друга. Поэтому возведите в квадрат каждую разность, чтобы получить исключительно положительные числа.

    • В нашем примере:
      (x_{i} – μ)^{2} для каждого значения совокупности (от i = 1 до i = 6):
      (-5,5)^{2} = 30,25
      (-5,5)^{2} = 30,25
      (-2,5)^{2} = 6,25
      (1,5)^{2} = 2,25
      (4,5)^{2} = 20,25
      (7,5)^{2} = 56,25
  6. Изображение с названием Calculate Variance Step 14

    6

    Найдите среднее значение полученных результатов. Вы нашли, как далеко каждое значение совокупности расположено от ее среднего значения. Найдите среднее значение суммы квадратов разностей, поделив ее на количество значений в генеральной совокупности.

    • В нашем примере:
      Дисперсия совокупности = {frac  {30,25+30,25+6,25+2,25+20,25+56,25}{6}}={frac  {145,5}{6}}= 24,25
  7. Изображение с названием Calculate Variance Step 15

    7

    Соотнесите это решение с формулой. Если вы не поняли, как приведенное выше решение соотносится с формулой, ниже представлено объяснение решения:

    Реклама

Советы

  • Дисперсию довольно сложно интерпретировать, поэтому в большинстве случаев она вычисляется как промежуточная величина, которая необходима для нахождения стандартного отклонения.
  • При вычислении дисперсии выборки деление на n-1, а не просто на n, называется коррекцией Бесселя. Дисперсия выборки представляет собой только оценочное значение дисперсии генеральной совокупности, при этом выборочное среднее смещено, чтобы соответствовать этому оценочному значению. Коррекция Бесселя устраняет такое смещение.[9]
    Это связано с тем, что при анализе n – 1 значения использование n-го значения уже ограничено, так как только определенные значения приводят к выборочному среднему (x̅), которое используется в формуле для вычисления дисперсии.[10]

Реклама

Об этой статье

Эту страницу просматривали 122 174 раза.

Была ли эта статья полезной?

Как найти дисперсию?

Понравилось? Добавьте в закладки

Дисперсия – это мера разброса значений случайной величины $X$ относительно ее математического ожидания $M(X)$ (см. как найти математическое ожидание случайной величины). Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около $M(X)$: если дисперсия маленькая – значения сравнительно близки друг к другу, если большая – далеки друг от друга (см. примеры нахождения дисперсии ниже).

Если случайная величина описывает физические объекты с некоторой размерностью (метры, секунды, килограммы и т.п.), то дисперсия будет выражаться в квадратных единицах (метры в квадрате, секунды в квадрате и т.п.). Ясно, что это не совсем удобно для анализа, поэтому часто вычисляют также корень из дисперсии – среднеквадратическое отклонение $sigma(X)=sqrt{D(X)}$, которое имеет ту же размерность, что и исходная величина и также описывает разброс.

Еще одно формальное определение дисперсии звучит так: “Дисперсия – это второй центральный момент случайной величины” (напомним, что первый начальный момент – это как раз математическое ожидание).

Нужна помощь? Решаем теорию вероятностей на отлично

Формула дисперсии случайной величины

Дисперсия случайной величины Х вычисляется по следующей формуле:
$$
D(X)=M(X-M(X))^2,
$$
которую также часто записывают в более удобном для расчетов виде:
$$
D(X)=M(X^2)-(M(X))^2.
$$

Эта универсальная формула для дисперсии может быть расписана более подробно для двух случаев.

Если мы имеем дело с дискретной случайной величиной (которая задана перечнем значений $x_i$ и соответствующих вероятностей $p_i$), то формула принимает вид:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
Если же речь идет о непрерывной случайной величине (заданной плотностью вероятностей $f(x)$ в общем случае), формула дисперсии Х выглядит следующим образом:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$

Пример нахождения дисперсии

Рассмотрим простые примеры, показывающие как найти дисперсию по формулам, введеным выше.

Пример 1. Вычислить и сравнить дисперсию двух законов распределения:
$$
x_i quad 1 quad 2 \
p_i quad 0.5 quad 0.5
$$
и
$$
y_i quad -10 quad 10 \
p_i quad 0.5 quad 0.5
$$

Для убедительности и наглядности расчетов мы взяли простые распределения с двумя значениями и одинаковыми вероятностями. Но в первом случае значения случайной величины расположены рядом (1 и 2), а во втором – дальше друг от друга (-10 и 10). А теперь посмотрим, насколько различаются дисперсии:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2 =\
= 1^2cdot 0.5 + 2^2 cdot 0.5 – (1cdot 0.5 + 2cdot 0.5)^2=2.5-1.5^2=0.25.
$$
$$
D(Y)=sum_{i=1}^{n}{y_i^2 cdot p_i}-left(sum_{i=1}^{n}{y_i cdot p_i} right)^2 =\
= (-10)^2cdot 0.5 + 10^2 cdot 0.5 – (-10cdot 0.5 + 10cdot 0.5)^2=100-0^2=100.
$$
Итак, значения случайных величин различались на 1 и 20 единиц, тогда как дисперсия показывает меру разброса в 0.25 и 100. Если перейти к среднеквадратическому отклонению, получим $sigma(X)=0.5$, $sigma(Y)=10$, то есть вполне ожидаемые величины: в первом случае значения отстоят в обе стороны на 0.5 от среднего 1.5, а во втором – на 10 единиц от среднего 0.

Ясно, что для более сложных распределений, где число значений больше и вероятности не одинаковы, картина будет более сложной, прямой зависимости от значений уже не будет (но будет как раз оценка разброса).

Пример 2. Найти дисперсию случайной величины Х, заданной дискретным рядом распределения:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Снова используем формулу для дисперсии дискретной случайной величины:
$$
D(X)=M(X^2)-(M(X))^2.
$$
В случае, когда значений много, удобно разбить вычисления по шагам. Сначала найдем математическое ожидание:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Потом математическое ожидание квадрата случайной величины:
$$
M(X^2)=sum_{i=1}^{n}{x_i^2 cdot p_i}
= (-1)^2cdot 0.1 + 2^2 cdot 0.2 +5^2cdot 0.3 +10^2cdot 0.3+20^2cdot 0.1=78.4.
$$
А потом подставим все в формулу для дисперсии:
$$
D(X)=M(X^2)-(M(X))^2=78.4-6.8^2=32.16.
$$
Дисперсия равна 32.16 квадратных единиц.

Пример 3. Найти дисперсию по заданному непрерывному закону распределения случайной величины Х, заданному плотностью $f(x)=x/18$ при $x in(0,6)$ и $f(x)=0$ в остальных точках.

Используем для расчета формулу дисперсии непрерывной случайной величины:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Вычислим сначала математическое ожидание:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{6} frac{x}{18} cdot x dx = int_{0}^{6} frac{x^2}{18} dx =
left.frac{x^3}{54} right|_0^6=frac{6^3}{54} = 4.
$$
Теперь вычислим
$$
M(X^2)=int_{-infty}^{+infty} f(x) cdot x^2 dx = int_{0}^{6} frac{x}{18} cdot x^2 dx = int_{0}^{6} frac{x^3}{18} dx = left.frac{x^4}{72} right|_0^6=frac{6^4}{72} = 18.
$$
Подставляем:
$$
D(X)=M(X^2)-(M(X))^2=18-4^2=2.
$$
Дисперсия равна 2.

Другие задачи с решениями по ТВ

Подробно решим ваши задачи на вычисление дисперсии

Вычисление дисперсии онлайн

Как найти дисперсию онлайн для дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$ и затем искомое значение дисперсии $D(X)$.

Видео. Полезные ссылки

Видеоролики: что такое дисперсия и как найти дисперсию

Если вам нужно более подробное объяснение того, что такое дисперсия, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Лучшее спасибо – порекомендовать эту страницу

Полезные ссылки

Не забывайте сначала прочитать том, как найти математическое ожидание. А тут можно вычислить также СКО: Калькулятор математического ожидания, дисперсии и среднего квадратического отклонения.

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по ТВ. Для закрепления материала – еще примеры решений задач по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Выборочная дисперсия, описание

Выборочная дисперсия является сводной характеристикой для наблюдения рассеяния количественного признака выборки вокруг среднего значения.

Определение

Выборочная дисперсия – это среднее арифметическое значений вариантов части отобранных объектов генеральной совокупности (выборки).

Связь выборочной и генеральной дисперсии

Генеральная дисперсия представляет собой среднее арифметическое квадратов отступлений значений признаков генеральной совокупности от их среднего значения.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Генеральная совокупность – это комплекс всех возможных объектов, относительно которых планируется вести наблюдение и формулировать выводы.

Выборочная совокупность или выборка является частью генеральной совокупности, выбранной для изучения и составления заключения касательной всей генеральной совокупности.

Как вычислить выборочную дисперсию

Выборочная дисперсия при различии всех значений варианта выборки находится по формуле:

({widehat D}_В=frac{displaystylesum_{i-1}^n{(x_i-{overline x}_В)}^2}n)

Для значений признаков выборочной совокупности с частотами n1, n2,…,nформула выглядит следующим образом:

({widehat D}_В=frac{displaystylesum_{i-1}^kn_i{(x_i-{overline x}_В)}^2}n)

Квадратный корень из выборочной дисперсии характеризует рассеивание значений вариантов выборки вокруг своего среднего значения. Данная характеристика называется выборочным средним квадратическим отклонением и имеет вид:

({widehatsigma}_В=sqrt{{widehat D}_В})

Упрощенный способ вычисления выборочной или генеральной дисперсии производят по формуле:

(D=overline{x^2}-left[overline xright]^2)

Если вариационный ряд выборочной совокупности интервальный, то за xi принимается центр частичных интервалов. 

Пример

Найти выборочную дисперсию выборки со значениями:

  • xi: 1, 2, 3, 4;
  • ni: 20, 15, 10, 5.

Решение

Для начала необходимо определить выборочную среднюю:

({overline x}_В=frac1{50}(1cdot20+2cdot15+3cdot10+4cdot5)=frac1{50}cdot100=2)

Затем найдем выборочную дисперсию:

(D_В=frac1{50}({(1-2)}^2cdot20+{(2-2)}^2cdot15+{(3-2)}^2cdot10+{(4-2)}^2cdot5)=1)

Исправленная дисперсия

Математически выборочная дисперсия не соответствует генеральной, поскольку выборочная используется для смещенного оценивания генеральной дисперсии. По этой причине математическое ожидание выборочной дисперсии вычисляется так:

(Mleft[D_Bright]=frac{n-1}nD_Г)

В данной формуле DГ – это истинное значение дисперсии генеральной совокупности.

Исправить выборочную дисперсию можно путем умножения ее на дробь:

(frac n{n-1})

Получим формулу следующего вида:

(S^2=frac n{n-1}cdot D_В=frac{displaystylesum_{i=1}^kn_i{(x_i-{overline x}_В)}^2}{n-1})

Исправленная дисперсия используется для несмещенной оценки генеральной дисперсии и обозначается S2

Среднеквадратическая генеральная совокупность оценивается при помощи исправленного среднеквадратического отклонения, которое вычисляется по формуле:

(S=sqrt{S^2})

При нахождении выборочной и исправленной дисперсии разнятся лишь знаменатели в формулах. Различия в этих характеристиках при больших n незначительны. Применение исправленной дисперсии целесообразно при объеме выборки меньше 30.

Для чего применяют исправленную выборочную дисперсию

Исправленную выборочную используют для точечной оценки генеральной дисперсии.

Пример

Длину стержня измерили одним и тем же прибором пять раз. В результате получили следующие величины: 92 мм, 94 мм, 103 мм, 105 мм, 106 мм. Задача найти выборочную среднюю длину предмета и выборочную исправленную дисперсию ошибок измерительного прибора.

Решение

Сначала вычислим выборочную среднюю:

({overline x}_В=frac{92+94+103+105+106}5=100)

Затем найдем выборочную дисперсию:

(D_В=frac{displaystylesum_{i=1}^k{(x_i-{overline x}_В)}^2}n=frac{{(92-100)}^2+{(94-100)}^2+{(103-100)}^2+{(105-100)}^2+{(106-100)}^2}5=34)

Теперь рассчитаем исправленную дисперсию:

(S^2=frac5{5-1}cdot34=42,5)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 января 2023 года; проверки требуют 2 правки.

У этого термина существуют и другие значения, см. Дисперсия.

Диспе́рсия случа́йной величины́ — мера разброса значений случайной величины относительно её математического ожидания. Обозначается D[X] в русской литературе и operatorname {Var}(X) (англ. variance) в зарубежной. В статистике часто употребляется обозначение sigma _{X}^{2} или displaystyle sigma ^{2}.

Квадратный корень из дисперсии, равный displaystyle sigma , называется среднеквадратическим отклонением, стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что вероятность того, что значения случайной величины отстоят от математического ожидания этой случайной величины более чем на k стандартных отклонений, составляет менее 1/k^{2}. В специальных случаях оценка может быть усилена. Так, например, как минимум в 95 % случаев значения случайной величины, имеющей нормальное распределение, удалены от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % — не более чем на три.

Определение[править | править код]

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

Пусть X — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется

{displaystyle D[X]=mathbb {E} left[{big (}X-mathbb {E} [X]{big )}^{2}right],}

где символ {mathbb  {E}} обозначает математическое ожидание[1][2].

Замечания[править | править код]

где x_{i} — i-ое значение случайной величины, {displaystyle p_{i}=P(X=x_{i})} — вероятность того, что случайная величина принимает значение x_{i}, n — количество значений, которые принимает случайная величина.

Доказательство 2-й формулы

где f(x) — плотность вероятности случайной величины.

Для получения несмещённой оценки дисперсии случайной величины значение {displaystyle {overline {S}}^{2}} необходимо умножить на {frac  {n}{n-1}}. Несмещённая оценка имеет вид:
{displaystyle {widetilde {S}}^{2}={frac {1}{n-1}}sum limits _{i=1}^{n}(X_{i}-{bar {X}})^{2}}

Свойства[править | править код]

Условная дисперсия[править | править код]

Наряду с условным математическим ожиданием {displaystyle mathbb {E} [X|Y]} в теории случайных процессов используется условная дисперсия случайных величин {displaystyle D[X|Y]}.

Условной дисперсией случайной величины X относительно случайной величины Y называется случайная величина:

{displaystyle D[X|Y]=mathbb {E} [(X-mathbb {E} [X|Y])^{2}|Y]=mathbb {E} [X^{2}|Y]-mathbb {E} [X|Y]^{2}}.

Её свойства:

откуда, в частности, следует, что дисперсия условного математического ожидания {displaystyle mathbb {E} [X|Y]} всегда меньше или равна дисперсии исходной случайной величины X.

Пример[править | править код]

Пусть случайная величина displaystyle X имеет стандартное непрерывное равномерное распределение на {displaystyle displaystyle [0,1]}, то есть её плотность вероятности задана равенством

f_{X}(x)=left{{begin{matrix}1,&xin [0,1]\0,&xnot in [0,1].end{matrix}}right.

Тогда математическое ожидание квадрата случайной величины равно

{displaystyle mathbb {E} left[X^{2}right]=int limits _{0}^{1}!x^{2},dx=left.{frac {x^{3}}{3}}rightvert _{0}^{1}={frac {1}{3}}},

и математическое ожидание случайной величины равно

{displaystyle mathbb {E} left[Xright]=int limits _{0}^{1}!x,dx=left.{frac {x^{2}}{2}}rightvert _{0}^{1}={frac {1}{2}}}

Дисперсия случайной величины равна

{displaystyle D[X]=mathbb {E} left[X^{2}right]-(mathbb {E} [X])^{2}={frac {1}{3}}-left({frac {1}{2}}right)^{2}={frac {1}{12}}}

См. также[править | править код]

  • Среднеквадратическое отклонение
  • Моменты случайной величины
  • Ковариация
  • Выборочная дисперсия
  • Независимость (теория вероятностей)
  • Скедастичность
  • Абсолютное отклонение
  • Дельта-метод

Примечания[править | править код]

  1. Колмогоров А. Н. Глава IV. Математические ожидания; §3. Неравенство Чебышева // Основные понятия теории вероятностей. — 2-е изд. — М.: Наука, 1974. — С. 63—65. — 120 с.
  2. Боровков А. А. Глава 4. Числовые характеристики случайных величин; §5. Дисперсия // Теория вероятностей. — 5-е изд. — М.: Либроком, 2009. — С. 93—94. — 656 с.

Литература[править | править код]

  • Гурский Д., Турбина Е. Mathcad для студентов и школьников. Популярный самоучитель. — СПб.: Питер, 2005. — С. 340. — ISBN 5469005259.
  • Орлов А. И. Дисперсия случайной величины // Математика случая: Вероятность и статистика — основные факты. — М.: МЗ-Пресс, 2004.

Для того чтобы охарактеризовать
рассеяние наблюдаемых значений
количественного признака выборки вокруг
своего среднего значения ,
вводят сводную
характеристику – выборочную дисперсию.

Выборочной дисперсией

называют среднее
арифметическое квадратов отклонения
наблюдаемых значений признака от их
среднего значения .

Если все значения x1,
х2,
…, xn
признака выборки объема п
различны, то

.

Если же значения признака
x1,
х2,
…, xk
имеют соответственно
частоты п1,
n2,…,
nk,
причем n1
+ n
2+…+nk
= n
, то

,

т.е. выборочная дисперсия есть средняя
взвешенная квадратов отклонений с
весами, равными соответствующим частотам.

Пример.
Выборочная
совокупность задана таблицей распределения

xi

1
2 3 4

ni
20 15
10
5

Найти выборочную
дисперсию.

Решение.
Найдем выборочную среднюю (см. § 4):

.

Найдем выборочную
дисперсию:

.

Кроме дисперсии для характеристики
рассеяния значений признака выборочной
совокупности вокруг своего среднего
значения пользуются сводной
характеристикой-средним квадратическим
отклонением.

Выборочным средним
квадратическим отклонением
(стандартом)
называют квадратный
корень из выборочной дисперсии:

.

§ 10. Формула для вычисления дисперсии

Вычисление дисперсии, безразлично-выборочной
или генеральной, можно упростить,
используя следующую теорему.

Теорема. Дисперсия
равна среднему квадратов значений
признака минус квадрат общей средней:

.

Доказательство. Справедливость теоремы
вытекает из преобразований:

.

Итак,

,

где
,.

Пример.
Найти
дисперсию по данному распределению

xi
1
2 3 4

ni
20
15
10
5

Решение.
Найдем
общую среднюю:

.

Найдем
среднюю квадратов
значений признака:

.

Искомая дисперсия

=5-22=1.

§11. Групповая, внутригрупповая, межгрупповая и общая дисперсии

Допустим, что все значения
количественного признака X
совокупности,
безразлично-генеральной или выборочной,
разбиты на k
групп. Рассматривая
каждую группу как самостоятельную
совокупность, можно найти групповую
среднюю (см. § 6) и дисперсию значений
признака, принадлежащих группе,
относительно групповой средней.

Групповой дисперсией называют
дисперсию значений признака, принадлежащих
группе, относительно групповой средней

,

где ni

частота значения
xi;
j

номер группы;

– групповая средняя
группы j;

объем группыj.

Пример
1.
Найти
групповые дисперсии совокупности,
состоящей из следующих двух групп:

первая группа

вторая группа

xi

ni

xi

ni

2

1

3

2

4

7

8

3

5

2

Решение.
Найдем
групповые средние:

;

.

Найдем
искомые
групповые дисперсии:

;

.

Зная дисперсию каждой группы, можно
найти их среднюю арифметическую.

Внутригрупповой дисперсией называют
среднюю арифметическую дисперсий,
взвешенную по объемам групп:

,

где Nj
– объем группы
j;
п =
объем всей совокупности.

Пример
2.
Найти
внутригрупповую дисперсию по данным
примера 1.

Решение.
Искомая внутригрупповая дисперсия
равна

Зная групповые средние и общую среднюю,
можно найти дисперсию групповых средних
относительно общей средней.

Межгрупповой дисперсией называют
дисперсию групповых средних относительно
общей средней:

,

где

групповая средняя группыj;
Nj
– объем группы j;

– общая средняя;
n
=
объем всей совокупности.

Пример
3.
Найти
межгрупповую дисперсию по

данным
примера 1.

Решение.
Найдем общую среднюю:

.

Используя
вычисленные выше величины
=
4,=
6, найдем искомую межгрупповую дисперсию:

.

Теперь целесообразно ввести специальный
термин для дисперсии всей совокупности.

Общей дисперсией называют дисперсию
значений признака всей совокупности
относительно общей средней:

,

где ni
– частота значения
xi
;

общая средняя; n
– объем всей совокупности.

Пример
4.
Найти
общую дисперсию по данным примера 1.

Решение.
Найдем искомую общую дисперсию, учитывая,
что общая средняя равна 14/3:

Замечание.
Найденная общая дисперсия равна сумме
внутригрупповой и межгрупповой дисперсий:

Dобщ=
148/45;

Dвнгр
+ Dмежгр=
12/5 + 8/9= 148/45.

В следующем
параграфе будет доказано, что такая
закономерность справедлива для любой
совокупности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий