Как найти длинну правильной треугольной пирамиды

В этом уроке приведены определение и свойства правильной треугольной пирамиды и ее частного случая – тетраэдра (см. ниже). Ссылки на примеры решения задач приведены в конце урока.

Определение

Правильная треугольная пирамида – это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.

Правильная треугольная пирамида (с правильным треугольником в основании) с обозначенными апофемой, радиусом вписанной и описанной окружности, высотой

На рисунке обозначены:
ABC – Основание пирамиды
OS – Высота
KS – Апофема
OK – радиус окружности, вписанной в основание
AO – радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO – двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Свойства правильной треугольной пирамиды:

  • боковые ребра правильной пирамиды равны
  • все боковые грани правильной пирамиды являются равнобедренными треугольниками
  • в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
  • если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3  (пи делить на 3 или 60 градусов ).
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

Формулы для правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

Формула объема правильной треугольной пирамиды, радиуса вписанной и описанной окружности.Нахождение объема правильной треугольной пирамиды через высоту и радиус вписанной или описанной окружности

где

V – объем правильной пирамиды, имеющей в основании правильный (равносторонний) треугольник
h – высота пирамиды
a – длина стороны основания пирамиды
R – радиус описанной окружности
r – радиус вписанной окружности

Поскольку правильная треугольная пирамида является частным случаем правильной пирамиды, то формулы, которые верны для правильной пирамиды, верны и для правильной треугольной – см. формулы для правильной пирамиды.

Примеры решения задач:

  • Нахождение периметра правильной треугольной пирамиды 
  • Вычисление объема 
  • Нахождение площади поверхности   

Тетраэдр

Частным случаем правильной треугольной пирамиды является тетраэдр.

Тетраэдр – это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.

У тетраэдра:

  • Все грани равны
  • 4 грани, 4 вершины и 6 ребер
  • Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны

Медиана тетраэдра – это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)

Бимедиана тетраэдра – это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)

Высота тетраэдра – это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).

Тетраэдр обладает следующими свойствами:

  • Все медианы и бимедианы тетраэдра пересекаются в одной точке
  • Эта точка делит медианы в отношении 3:1, считая от вершины
  • Эта точка делит бимедианы пополам

Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра

Формулы нахождения площади, объема, высоты, радиуса вписанной и описанной окружности для правильного тетраэдра

См. пример задачи: формулы и свойства тетраэдра.


0
 

 Пирамида с равнобедренным треугольником в основании |

Описание курса

| Периметр основания правильной треугольной пирамиды 

Объемной фигурой, которая часто появляется в геометрических задачах, является пирамида. Самая простая из всех фигур этого класса – треугольная. В данной статье разберем подробно основные формулы и свойства правильной пирамиды треугольной.

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

Лихой - это: значение и синонимыВам будет интересно:Лихой – это: значение и синонимы

Она состоит из 4-х сторон, причем все они являются треугольниками. Точки, в которых соединяются три грани, называются вершинами. Их у фигуры также четыре. Линии пересечения двух граней – это ребра. Ребер у рассматриваемой пирамиды 6. Рисунок ниже демонстрирует пример этой фигуры.

Треугольная пирамида

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

Правильная треугольная пирамида

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

h = √(b2 – a2/3)

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

ab = √(b2 – a2/4)

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

Молекула метана - треугольная пирамида

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

V = 1/3*So*h

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

V3 = √3/12*a2*h

Где высота правильной треугольной пирамиды равна h, а ее сторона основания – a.

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

V = √2/12*a3

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

Развертка правильной треугольной пирамиды

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

So = √3/4*a2

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Sb = 3/2*√(a2/12+h2)*a

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

S = √3*a2

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

Усеченная треугольная пирамида

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Здесь первое слагаемое – это площадь боковой поверхности, второе слагаемое – площадь треугольных оснований.

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

Пирамида – это объемная многогранная геометрическая фигура, состоящая из основания и треугольных
граней, собирающихся в одной точке. У нее есть: вершина, ребра (боковые и основные), боковые грани,
основание, высота и апофема – прямая, соединяющая вершину с границей вписанной в основание
окружности. Правильная пирамида –та, у которой все боковые ребра равны и находятся под одним углом к
основанию, а вершина проецируется на центр окружности, описанной вокруг основания. Тетраэдр –
частный случай правильной пирамиды, в которой боковые ребра равны основным и между собой.

Боковые ребра правильной пирамиды – выходящие из ее вершины, общие для боковых граней стороны. Длина
бокового ребра обозначается латинской буквой «b». Это одно из базовых значений, через которое можно
найти остальные элементы пирамиды. Во многих математических задачах требуется вычислить его или
подставить в формулы.

  • Боковое ребро правильной треугольной пирамиды через высоту
    и ребро основания
  • Боковое ребро правильной треугольной пирамиды через высоту
    и радиус описанной окружности вокруг правильной треугольной пирамиды
  • Ребро основания правильной треугольной пирамиды через обьём
    и высоту

Ребро основания правильной треугольной пирамиды через объём и высоту

Та часть пространства, которую занимает правильная треугольная пирамида называется ее объемом.
Является физической величиной. Его можно найти через, например, через высоту и сторону основания.
Если нам известен объем и высота правильной треугольной пирамиды, то не составит особого труда найти
ребро основания. Для этого используется формула:

a = √((V * 4 * √3) / H)

где V — объём, H — высота.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим конкретную задачу. Необходимо найти ребро основания, зная что
высота H равна 56 см, a объем 268 см³, подставив все в формулу получим следующий результат: a = √((V * 4 * √3) / H) = √((268 * 4 * √3) / 56) = 5,76 см. Боковое
ребро (b) = 5,76 см.

Боковое ребро правильной треугольной пирамиды через высоту и ребро основания

Боковое ребро правильной пирамиды можно найти по теореме Пифагора, поскольку высота, опущенная в
основание пирамиды, опускается в центр вписанной и описанной окружности для данного многоугольника.
Таким образом формула для нахождения бокового ребра правильной треугольной пирамиды через высоту и
ребро основания будет следующей:

b = √(H² + (a / 2 sin (60º)²))

где H — высота, a — ребро основания.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим конкретные данные. Пусть высота H равна 44 мм, a ребро основания
a равно 63 мм, подставив все в формулу получим следующий результат: b = √(H² + (a / 2 sin (60º)²)) = √(44² + (63 / 2 sin (60º)²)) = 57,09 мм.
Боковое ребро (b) = 57.08765 мм.

Боковое ребро правильной треугольной пирамиды через высоту и радиус описанной окружности вокруг
правильной треугольной пирамиды

Если пирамида вписана в окружность, то ее называют описанной вокруг пирамиды. Около пирамиды можно
описать сферу тогда и только тогда, когда около основания пирамиды можно описать
окружность. Основание перпендикуляра, опущенного из вершины такой пирамиды на плоскость ее
основания, является центром описанной около основания окружности. Если нам известна высота и радиус
этой описанной окружности, то мы сможем найти боковое ребро. Формула подходит только для правильной
треугольной пирамиды:

b = √(H² + R²)

где H — высота правильной треугольной пирамиды, R — радиус описанной вокруг
окружности.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим конкретные данные. Пусть высота H равна 73 мм, a радиус описанной
вокруг окружности 114 мм, подставив все в формулу получим следующий результат: b = √(H² + R²) = √(73² + 114²) = 135 мм. Боковое
ребро (b) = 135 мм.

Почти все формулы пирамиды основываются на теореме Пифагора. Таким образом, можно вывести боковое
ребро правильной треугольной пирамиды через высоту и радиус описанной окружности, опираясь на
прямоугольный треугольник, гипотенуза которого является искомой величиной. По одному из основных
свойств правильной пирамиды, ее высота соединяет вершину с центрами окружностей, вписанных и
описанных вокруг пирамиды. Так внутри формируются 2 треугольника с углом 90°. Один состоит из
высоты, бокового ребра и соединяет их с радиусом описанной окружности, другой составляет высота и
апофема, соединённые с радиусом вписанной окружности.

Добавить комментарий