Как найти длину биссектрисы формулы

Длина биссектрисы треугольника может быть найдена разными способами, в зависимости от исходных данных.

I. Через длины двух сторон и отрезки, на которые биссектриса делит третью сторону.

Утверждение 1

Квадрат биссектрисы треугольника равен разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

Соответственно, длина биссектрисы равна квадратному корню из разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

najti-dlinu-bissektrisy-treugolnika

    [ l^2 = ab - a_1 b_1 ]

    [ l = sqrt {ab - a_1 b_1 } ]

dlina-bissektrisyДано:

ΔABC,

СF — биссектриса ∠ABC

Доказать:

    [ CF^2 = BC cdot AC - BF cdot AF. ]

dlina-bissektrisy-treugolnikaДоказательство:

Опишем около треугольника ABC окружность и продлим биссектрису CF до пересечения с окружностью в точке D. Соединим точки A и D отрезком.

Рассмотрим треугольники BCF и DCA.

∠BCF=∠DCA (по условию);

∠CBF=∠CDA (как вписанные углы, опирающиеся на одну дугу AC).

Значит, треугольники BFC и DCA подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

    [ frac{{BC}}{{CD}} = frac{{CF}}{{AC}}, Rightarrow CD = frac{{BC cdot AC}}{{CF}}. ]

    [ FD = CD - CF = frac{{BC cdot AC}}{{CF}} - CF. ]

По свойству пересекающихся хорд

    [ BF cdot AF = CF cdot FD ]

Отсюда

    [ BF cdot AF = CF cdot (frac{{BC cdot AC}}{{CF}} - CF) ]

    [ BF cdot AF = BC cdot AC - CF^2 ]

    [ CF^2 = BC cdot AC - BF cdot AF. ]

Что и требовалось доказать.

II. Через три стороны треугольника

Утверждение 2

Длина биссектрисы треугольника выражается через длины его сторон a, b и c по формуле

    [ l_c = frac{1}{{a + b}}sqrt {ab(a + b + c)(a + b - c)} . ]

Доказательство:

dlina-bissektrisy-cherez-storonyПо свойству биссектрисы треугольника:

    [ [ frac{a}{{a_1 }} = frac{b}{{b_1 }}, Rightarrow a_1 b = ab_1 . ]

a1+b1=c, b1=c-a1, поэтому

    [ a_1 b = a(c - a_1 ), ]

    [ a_1 b = ac - aa_1 , ]

    [ aa_1 + a_1 b = ac, ]

    [ a_1 (a + b) = ac, ]

    [ a_1 = frac{{ac}}{{a + b}}. ]

Согласно утверждению 1,

    [ l^2 = ab - a_1 b_1 , ]

    [ l^2 = ab - a_1 (c - a_1 ) = ab - frac{{ac}}{{a + b}}(c - frac{{ac}}{{a + b}}) = ]

    [ l^2 = ab - a_1 (c - a_1 ) = ab - frac{{ac}}{{a + b}}(c - frac{{ac}}{{a + b}}) = ]

    [ = ab - frac{{ac^2 }}{{a + b}} + frac{{a^2 c^2 }}{{(a + b)^2 }} = frac{{ab(a + b)^2 - ac^2 (a + b) + a^2 c^2 }}{{(a + b)^2 }} = ]

    [ = frac{{ab(a + b)^2 - a^2 c^2 - abc^2 + a^2 c^2 }}{{(a + b)^2 }} = frac{{ab(a + b)^2 - abc^2 }}{{(a + b)^2 }} = ]

    [ = frac{{ab}}{{(a + b)^2 }}((a + b)^2 - c^2 ) = frac{{ab}}{{(a + b)^2 }}((a + b) + c)((a + b) - c) = ]

    [ = frac{{ab}}{{(a + b)^2 }}(a + b + c)(a + b - c), ]

откуда

    [ l = sqrt {frac{{ab}}{{(a + b)^2 }}(a + b + c)(a + b - c)} , ]

    [ l_c = frac{1}{{a + b}}sqrt {ab(a + b + c)(a + b - c)} . ]

Что и требовалось доказать.

Аналогично,

    [ l_a = frac{1}{{b + c}}sqrt {bc(b + c + a)(b + c - a)} , ]

    [ l_b = frac{1}{{a + c}}sqrt {ac(a + c + b)(a + c - b)} . ]

III Через две стороны треугольника и угол между ними.

Утверждение 3

Длина биссектрисы треугольника через две стороны, образующие угол, из вершины которого исходит биссектриса, и угол между этими сторонами выражается по формуле

dlina-bissektrisy-cherez-storony-i-ugol

    [ l_c = frac{{2abcos frac{alpha }{2}}}{{a + b}} ]

Доказательство:

Найдем площади треугольников BCF, ACF и ABC.

formula-dliny-bissektrisy

    [ S_{Delta BCF} = frac{1}{2}BC cdot CF cdot sin angle BCF, ]

    [ S_{Delta ACF} = frac{1}{2}AC cdot CF cdot sin angle ACF, ]

    [ S_{Delta ABC} = frac{1}{2}AC cdot BC cdot sin angle BCA. ]

Так как

    [ S_{Delta ABC} = S_{Delta BCF} + S_{Delta ACF} , ]

то

    [ frac{1}{2}AC cdot BC cdot sin angle BCA = ]

    [ = frac{1}{2}BC cdot CF cdot sin angle BCF + frac{1}{2}AC cdot CF cdot sin angle ACF, ]

    [ ab cdot sin alpha = al cdot sinfrac{alpha }{2} + bl cdot sinfrac{alpha }{2}, ]

    [ ab cdot sin alpha = l cdot sinfrac{alpha }{2}(a + b), ]

    [ l = frac{{ab cdot sin alpha }}{{sinfrac{alpha }{2}(a + b)}} = frac{{ab cdot sin (2 cdot frac{alpha }{2})}}{{sinfrac{alpha }{2}(a + b)}} = frac{{ab cdot 2sin frac{alpha }{2}cos frac{alpha }{2}}}{{sinfrac{alpha }{2}(a + b)}} = frac{{2abcos frac{alpha }{2}}}{{a + b}}. ]

Что и требовалось доказать.


Найти длину биссектрисы в треугольнике

L– биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b – стороны треугольника

с – сторона на которую опущена биссектриса

d, e – отрезки полученные делением биссектрисы

γ – угол ABC , разделенный биссектрисой пополам

p – полупериметр, p=(a+b+c)/2

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.



Подробности

Опубликовано: 06 октября 2011

Обновлено: 13 августа 2021

Формулы для вычисления длины биссектрисы треугольника

Формулы для вычисления длины биссектрисы треугольника

Можно вывести различные формулы, с помощью которых можно вычислить длину биссектрисы треугольника, если известны:

· длины прилежащих сторон и угол между ними

· длины прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону

· длины трех сторон треугольника.

Докажем первую из формул.

Задача 1. Вычислить длину биссектрисы треугольника, если известны длинны двух прилежащих сторон треугольника и угол между ними.

Решение. Пусть в треугольнике АВС известно, что

.

Обозначим биссектрису AD через la .

.

Используя формулу синуса двойного угла, получаем:

.

Ответ: .

Выражение называется средним гармоническим чисел а и с. Поэтому формулу можно запомнить следующим образом:

биссектриса треугольника равна произведению среднего гармонического прилежащих сторон треугольника на косинус половинного угла между ними.

Доказательство остальных формул можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».

Задача 2. Вычислите биссектрису треугольника ABC, проведённую из вершины А, если ВС = 18, АС = 15, АВ = 12.

Решение. Воспользуемся формулой для вычисления биссектрисы угла, если известны три стороны треугольника:

Задача 3. Определить площадь треугольника, если две его стороны равны 35 см и 14 см, а биссектриса угла между ними содержит 12 см.

Пусть в треугольнике АВС АС=35, АВ=14, AD – биссектриса, AD=12.

,

Вычислим , получаем:

, .

(по основному тригонометрическому тождеству).

Далее по формуле синуса двойного угла вычисляем

.

Для вычисления площади треугольника воспользуемся формулой .

Задача 4. . В равнобедренном треугольнике BCD с основанием BD

проведена биссектриса BE. Известно, что СЕ = 20 и DE = 10. Найдите BE.

Используя свойство биссектрисы угла треугольника (урок 4), получаем

, то есть .

Таким образом, нам известны длины двух прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону, поэтому

Ответ :.

Задачи для самостоятельного решения

1. Дан треугольник со сторонами 4, 8, 9. Найти длину биссектрисы, проведенной к большей стороне.

2. В треугольнике ABC известно, что АВ = 10, АС = 15, BAC = 120°. Найдите биссектрису AD.

3. Катеты прямоугольного треугольника равны 6 и 8. Найдите биссектрису треугольника, проведённую из вершины прямого угла.

4. В равнобедренном треугольнике BCD с основанием BD проведена биссектриса BE. Известно, что СЕ = 18 и DE = 12. Найдите BE.

Длина биссектрисы треугольника

Длина биссектрисы треугольника может быть найдена разными способами, в зависимости от исходных данных.

I. Через длины двух сторон и отрезки, на которые биссектриса делит третью сторону.

Квадрат биссектрисы треугольника равен разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

Соответственно, длина биссектрисы равна квадратному корню из разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

Дано:

СF — биссектриса ∠ABC

Доказательство:

Опишем около треугольника ABC окружность и продлим биссектрису CF до пересечения с окружностью в точке D. Соединим точки A и D отрезком.

Рассмотрим треугольники BCF и DCA.

∠BCF=∠DCA (по условию);

Значит, треугольники BFC и DCA подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Что и требовалось доказать.

II. Через три стороны треугольника

Длина биссектрисы треугольника выражается через длины его сторон a, b и c по формуле

По свойству биссектрисы треугольника:

Согласно утверждению 1,

Что и требовалось доказать.

III Через две стороны треугольника и угол между ними.

Длина биссектрисы треугольника через две стороны, образующие угол, из вершины которого исходит биссектриса, и угол между этими сторонами выражается по формуле

Биссектриса треугольника

Напомним, что биссектрисой угла называют луч, делящий угол пополам.

Определение . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника и соединяющий вершину треугольника с точкой на противоположной стороне (рис 1).

Поскольку в каждом треугольнике имеются три угла, то в каждом треугольнике можно провести три биссектрисы.

На рисунке 1 биссектрисой является отрезок AD .

Теорема 1 . Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.

Доказательство . Продолжим сторону AC треугольника ABC , изображенного на рисунке 1, за точку A . Проведем через точку B прямую, параллельную биссектрисе AD . Обозначим точку пересечения построенных прямых буквой E (рис. 2).

Докажем, что отрезки AB и AE равны. Для этого заметим, что угол EBA равен углу BAD , поскольку эти углы являются внутренними накрест лежащими при параллельных прямых EB и AD . Заметим также, что угол BEA равен углу DAC , поскольку эти углы являются соответственными при параллельных прямых EB и AD . Таким образом, угол EBA равен углу BEA , откуда вытекает, что треугольник EAB является равнобедренным, и отрезки AB и AE равны.

Отсюда, воспользовавшись теоремой Фалеса, получаем:

что и требовалось доказать.

Следствие 1 . Рассмотрим рисунок 3, на котором изображен тот же треугольник, как и на рисунке 1, но для длин отрезков использованы обозначения

b = |AC|, a = |BC|, c = |AB|, p = |BD|, q = |DC|.

что и требовалось доказать.

Следствие 2 . Рассмотрим рисунок 4, на котором изображены две биссектрисы треугольника, пересекающиеся в точке O .

Тогда справедлива формула:

что и требовалось доказать.

Теорема 2 . Рассмотрим рисунок 5, который практически совпадает с рисунком 2.

Тогда для длины биссектрисы справедлива формула:

Доказательство . Из рисунка 5 следует формула

Если воспользоваться этой формулой, то из подобия треугольников ADC и EBC , получаем:

что и требовалось доказать.

Теорема 3 . Длину биссектрисы треугольника (рис.6) можно найти по формуле:

Доказательство . Рассмотрим рисунок 6

откуда с помощью Теоремы 2 получаем:

что и требовалось доказать.

Задача . Из вершины C треугольника ABC (рис.7) проведена биссектриса CD и высота CE .

Доказать, что выполнено равенство:

Решение . Поскольку CD – биссектриса угла ACB , то

Поскольку CE – высота, то

что и требовалось доказать.

Из решения этой задачи вытекает простое следствие.

Следствие . Длины биссектрисы CD и высоты CE связаны следующей формулой:

[spoiler title=”источники:”]

http://www.resolventa.ru/spr/planimetry/bisector.htm

[/spoiler]

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 апреля 2022 года; проверки требуют 32 правки.

Биссектриса AD делит пополам угол A

Биссектри́са (от лат. bi- «двойное», и sectio «разрезание») угла — луч, исходящий из вершины угла и делящий этот угол на два равных угла. Можно также определить биссектрису как геометрическое место точек внутри угла, равноудалённых от сторон этого угла[1].

Биссектрисой треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам.

(!) Удобно биссектрисы треугольника обозначать следующим образом.

Если ABC ― треугольник, и {displaystyle a=BC}, {displaystyle b=AC}, {displaystyle c=AB} ― длины сторон (или просто стороны), то {displaystyle l_{a}}, {displaystyle l_{b}}, l_{c} ― биссектрисы, проведённые соответственно из вершин A, B, C к сторонам a, b, c.

Связанные определения[править | править код]

  • Точка пересечения биссектрисы угла треугольника с его стороной, не являющейся стороной этого угла, называется основанием биссектрисы.

Свойства[править | править код]

Свойства точек пересечения биссектрис[править | править код]

  • Биссектрисы внутренних углов треугольника пересекаются в одной точке — центре вписанной в этот треугольник окружности (инцентре).
  • Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
  • Каждая биссектриса треугольника делится точкой пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
  • Гипербола Фейербаха — описанная гипербола, проходящая через ортоцентр и центр вписанной окружности (он же — инцентр или точка пресечения внутренних биссектрис треугольника). Её центр лежит в точке Фейербаха. Подерные и чевианные окружности точек на гиперболе Фейербаха проходят через точку Фейербаха.

Свойства, связанные с углами[править | править код]

  • Каждая внутренняя (внешняя) биссектриса угла треугольника, выходящая из его вершины, делит этот внутренний (внешний) угол треугольника пополам (на две равные половинки).
  • Угол между биссектрисами двух смежных углов (между внутренними и внешними биссектрисами углов треугольника при одной вершине) равен 90 градусам.
  • Внутренняя биссектриса угла треугольника изогонально сопряжена самой себе.

Свойства, связанные с дугами[править | править код]

  • Свойство биссектрисы вписанного угла: биссектриса вписанного угла делит на две равные части дугу, на которую этот угол опирается.
  • То же свойство верно и для биссектрисы центрального угла.

Свойства биссектрис равнобедренного треугольника[править | править код]

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья биссектриса одновременно является медианой и высотой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две биссектрисы равны, и третья биссектриса одновременно является медианой и высотой.
  • В равнобедренном треугольнике внутренняя биссектриса угла, противоположного основанию треугольника, является медианой и высотой.
  • Одна и только одна биссектриса внешнего угла неравностороннего треугольника может быть параллельна противоположной внутреннему углу стороне — основанию, если треугольник равнобедренный.
  • У равностороннего треугольника все три биссектрисы внешних углов параллельны противоположным сторонам.
  • У равностороннего треугольника все три внутренние биссектрисы равны.

Свойства оснований биссектрис[править | править код]

  • Теорема о биссектрисе (см. рис.): Биссектриса внутреннего угла треугольника делит противоположную сторону (то есть делит своим основанием противоположную сторону) в отношении, равном отношению двух прилежащих сторон. То есть {frac  {BD}{CD}}={frac  {AB}{AC}} или {frac  {BD}{AB}}={frac  {CD}{AC}}.
  • Теорема о биссектрисе — частный случай теоремы Штейнера.
  • Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника (Одна и только одна биссектриса внешнего угла треугольника может быть параллельна противоположной стороне — основанию, если треугольник равнобедренный. У равностороннего треугольника все три биссектрисы внешних углов параллельны противоположным сторонам. Других возможностей нет).
  • Биссектриса внутреннего угла треугольника делит противоположную сторону изотомически по отношению к антибиссектрисе того же угла.
  • Окружности, построенные, как на диаметре, на отрезке, соединяющем основания внутренней и внешней биссектрисы, выпущенных из одного угла, проходят через точки Аполлония.
  • Через точку Фейербаха проходит окружность, проведённая через основания трёх биссектрис.
  • В общем случае не пересекаются в одной точке 3 перпендикуляра к сторонам треугольника, проведённые через основания 3 внутренних его биссектрис, которые лежат на этих сторонах. [4]

Свойства осей биссектрис[править | править код]

  • Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой, называемой осью внешних биссектрис.
  • Точка Лемуана треугольника лежит на прямой Обера четырёхсторонника, образованного четырьмя осями биссектрис.

Свойство проекции одной вершины на биссектрисы двух других вершин[править | править код]

  • Если из двух вершин треугольника провести сразу две пары биссектрис (две внутренние и две внешние), а затем на четыре полученные биссектрисы ортогонально спроектировать третью вершину, тогда полученные четыре точки проекций вершины на биссектрисы будут лежать на одной прямой (коллинеарны)[5]. Эта прямая является средней линией треугольника, параллельной той стороне, концами которой являются упомянутые выше две вершины.

Замечание[править | править код]

  • В утверждении: ” Точка Лемуана треугольника лежит на прямой Обера четырёхсторонника, образованного четырьмя осями биссектрис”,- не понятно, о каких конкретно четырёх осях биссектрис идет речь. Видимо, речь идет о каких-то осях биссектрис четырёх треугольников, фигурирующих в теореме Микеля. Возможно, что речь идет об осях внешних биссектрис или антиортовых осях этих треугольниов.

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то внутренняя биссектриса, проведённая из любой его вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.
  • Расстояния от сторон угла до любой точки биссектрисы одинаковы.
  • Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно,[6] причём даже при наличии трисектора.[7]
  • Три внешние биссектрисы любого треугольника пересекаются в трёх разных точках, которые являются центрами вневписанных окружностей исходного треугольника или вершинами так называемого треугольника трёх внешних биссектрис исходного треугольника[8].
  • Три продолжения трёх биссектрис исходного треугольника, через три их основания до их пересечения в трёх вершинах его треугольника трёх внешних биссектрис оказываются в последнем треугольнике в качестве трёх высот.

Тройки отрезков, параллельных трем бессектрисам треугольника[править | править код]

Тройки отрезков, параллельных трем бессектрисам и одновременно пересекающихся в одной точке[править | править код]

  • Каждый кливер есть отрезок, один конец которого находится в середине стороны треугольника и который параллелен биссектрисе угла, противоположного этой стороне. Три кливера, подобных описанному выше, пересекаются в центре Шпикера.
  • Если проведен отрезок с одним концом в точке касания вписанной окружности треугольника с его стороной в направлении параллельно биссектрисе угла, противоположного этой стороне, а затем для двух других сторон построены аналогичные отрезки, то эти три отрезка пересекаются в одной точке[9].

Тройки отрезков, параллельных трем бессектрисам и одновременно образующих 2 треугольника[править | править код]

  • Во вся­кий треугольник ABC мож­но впи­сать 2 треугольника, 3 сто­ро­ны ко­то­рых па­рал­лель­ны 3 биссектрисам треугольника ABC. Эти треугольники име­ют об­щую окруж­ность типа окружности Эйле­ра, то есть 6 их вершин лежат на 1 окруж­ности.[10]

Длина биссектрис в треугольнике[править | править код]

Для выведения нижеприведённых формул можно воспользоваться теоремой Стюарта.

{displaystyle l_{c}={{sqrt {ab(a+b+c)(a+b-c)}} over {a+b}}={dfrac {2{sqrt {abp(p-c)}}}{a+b}}}, где p — полупериметр.
l_{c}={sqrt  {ab-a_{l}b_{l}}}
l_{c}={frac  {2abcos {frac  {gamma }{2}}}{a+b}}
{displaystyle l_{c}={dfrac {2a_{l}b_{l}cos {dfrac {gamma }{2}}}{sqrt {a_{l}^{2}+b_{l}^{2}-2a_{l}b_{l}cos {(gamma })}}}}
l_{c}={frac  {h_{c}}{cos {frac  {alpha -beta }{2}}}}

Для трёх биссектрис углов A, B и C с длинами соответственно {displaystyle l_{a},l_{b},} и l_{c}, справедлива формула[11]

{displaystyle {dfrac {(b+c)^{2}}{bc}}l_{a}^{2}+{dfrac {(c+a)^{2}}{ca}}l_{b}^{2}+{dfrac {(a+b)^{2}}{ab}}l_{c}^{2}=(a+b+c)^{2}},
{displaystyle w_{c}^{2}=a_{w}cdot b_{w}-ab=CE^{2}=BEcdot AE-ab},

где:

  • a,b,c — стороны треугольника против вершин A,B,C соответственно,
  • alpha ,beta ,gamma  — внутренние углы треугольника при вершинах A,B,C соответственно,
  • h_{c} — высота треугольника, опущенная на сторону c.
  • l_{c} — длина внутренней биссектрисы, проведённой к стороне c,
  • a_{l},b_{l} — длины отрезков, на которые внутренняя биссектриса l_{c} делит сторону c,
  • {displaystyle w_{c}} — длина внешней биссектрисы, проведённой из вершины C к продолжению стороны AB.
  • {displaystyle a_{w},b_{w}} — длины отрезков, на которые внешняя биссектриса {displaystyle w_{c}} делит сторону {displaystyle c=AB} и её продолжение до основания самой биссектрисы.
  • Если медиана m, высота h и внутренняя биссектриса t выходят из одной и той же вершины треугольника, около которого описана окружность радиуса R, тогда[12]:p.122,#96
{displaystyle 4R^{2}h^{2}(t^{2}-h^{2})=t^{4}(m^{2}-h^{2}).}

Длина частей биссектрис в треугольнике[править | править код]

Уравнения биссектрис[править | править код]

{displaystyle y={frac {a_{1}{sqrt {a_{2}^{2}+1}}pm a_{2}{sqrt {a_{1}^{2}+1}}}{{sqrt {a_{2}^{2}+1}}pm {sqrt {a_{1}^{2}+1}}}},x+{frac {b_{1}{sqrt {a_{2}^{2}+1}}pm b_{2}{sqrt {a_{1}^{2}+1}}}{{sqrt {a_{2}^{2}+1}}pm {sqrt {a_{1}^{2}+1}}}}}

См. также[править | править код]

  • Антибиссектриса
  • Высота (геометрия)
  • Высота треугольника
  • Инцентр
  • Медиана треугольника
  • Симедиана
  • Теорема о биссектрисе
  • Ось внешних биссектрис или антиортовая ось
  • Треугольник
  • Треугольник трёх внешних биссектрис
  • Центроид
  • Чевиана

Примечания[править | править код]

  1. Иванов А. Б. Биссектриса угла // Математическая энциклопедия : [в 5 т.] / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1977. — Т. 1: А — Г. — С. 496. — 1152 стб. : ил. — 150 000 экз.
  2. Kimberling, Clark (1994), Central Points and Central Lines in the Plane of a Triangle, Mathematics Magazine Т. 67 (3): 163–187, DOI 10.2307/2690608.
  3. v. Nagel, C. H. (1836), Untersuchungen über die wichtigsten zum Dreiecke gehörenden Kreise, Leipzig.
  4. , . Геометрические свойства кривых второго порядка. — 2-е изд., дополн.. — 2011. — С. 105.
  5. Дмитрий Ефремов. Новая геометрия треугольника Архивная копия от 25 февраля 2020 на Wayback Machine. — Одесса, 1902. — С. 6. Глава I, п.8
  6. Кто и когда доказал невозможность построения треугольника по трем биссектрисам? Архивная копия от 18 октября 2009 на Wayback Machine. Дистанционный консультационный пункт по математике МЦНМО.
  7. Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор Архивная копия от 26 августа 2015 на Wayback Machine. Дистанционный консультационный пункт по математике МЦНМО.
  8. Стариков В. Н. Исследования по геометрии// Сборник публикаций научного журнала Globus по материалам V-й международной научно-практической конференции «Достижения и проблемы современной науки» г. Санкт-Петербург: сборник со статьями (уровень стандарта, академический уровень). С-П.: Научный журнал Globus, 2016. С. 99-100
  9. Решения заданий первого этапа Всесибирской открытой олимпиады школьников 2015-2016 г. по математике. Задача 10.3, С. 5-6// https://sesc.nsu.ru/upload/iblock/1ad/2015_1_math_s.pdf Архивная копия от 20 сентября 2022 на Wayback Machine
  10. Дмитрий Ефремов. Новая геометрия треугольника Архивная копия от 25 февраля 2020 на Wayback Machine. — Одесса, 1902. — С. 26. Глава I. Упражнения. п.33
  11. Simons, Stuart. Mathematical Gazette 93, March 2009, 115—116.
  12. Altshiller-Court, Nathan, College Geometry, Dover Publ., 2007.
  13. Уравнение биссектрисы угла между двумя прямыми. Задачи повышенной трудности. Прикладная математика. Дата обращения: 3 декабря 2021. Архивировано 3 декабря 2021 года.

Литература[править | править код]

  • Коган Б. Ю. Приложение механики к геометрии. — М.: Наука, 1965. — 56 с.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 30-31. — ISBN 5-94057-170-0.

24
Ноя 2015

Категория: Справочные материалы

Формула длины биссектрисы через длины сторон треугольника

2015-11-24
2016-07-10

Докажем следующую теорему.

Пусть a,b,c – стороны треугольника, l_a – биссектриса треугольника проведенная к стороне a.

Тогда

l_a=frac{sqrt{bc(a+b+c)(b+c-a)}}{b+c}.

Доказательство:

Пусть AL=l_a – биссектриса треугольника ABC.

Пусть BL=c_1,CL=b_1. Пусть angle A=2alpha.

jk

Распишем теорему Косинусов для треугольников ABL,ACL:

c_1^2=c^2+l_a^2-2cl_acosalpha;

b_1^2=b^2+l_a^2-2bl_acosalpha;

Откуда

frac{c^2+l_a^2-c_1^2}{2cl_a}=frac{b^2+l_2^2-b_1^2}{2bl_a}       (1)

По свойству биссектрисы треугольника

frac{c}{c_1}=frac{b}{b_1}.

Или

frac{c}{c_1}=frac{b}{a-c_1}.

Откуда

c_1=frac{ac}{b+c}             (2)

Тогда

b_1=a-frac{ac}{b+c}=frac{ab}{b+c}          (3)

Подставляем (2) и (3) в (1):

frac{c^2+l_a^2-(frac{ac}{b+c})^2}{2cl_a}=frac{b^2+l_a^2-(frac{ab}{b+c})^2}{2bl_a};

 b(c^2+l_a^2-(frac{ac}{b+c})^2)=c(b^2+l_a^2-(frac{ab}{b+c})^2);

l_a^2(b-c)=cb^2+b(frac{ac}{b+c})^2-bc^2-c(frac{ab}{b+c})^2);

l_a^2(b-c)=frac{cb^2(b+c)^2+a^2bc^2-bc^2(b+c)^2-a^2b^2c}{(b+c)^2};

l_a^2=frac{bc(b+c)^2(b-c)-a^2bc(b-c)}{(b-c)(b+c)^2};

l_a^2=frac{bc(b-c)((b+c)^2-a^2)}{(b-c)(b+c)^2};

l_a^2=frac{bc(b+c-a)(a+b+c)}{(b+c)^2};

l_a=frac{sqrt{bc(a+b+c)(b+c-a)}}{b+c}.

Что и требовалось доказать.

Автор: egeMax |

комментариев 5

Добавить комментарий