Как найти длину большей стороны параллелограмма

Сторона параллелограмма

Зная диагонали параллелограмма и одну его сторону, можно найти вторую сторону. Для этого нужно извлечь квадратный корень из половины суммы квадратов диагоналей без удвоенного квадрата известной стороны.

Другой способ как вычислить сторону параллелограмма требует высоты и противолежащего ей угла, тогда из прямоугольного треугольника, образованного высотой, сторона параллелограмма будет равна отношению высоты к синусу известного угла:

Также высоту можно использовать при нахождении стороны параллелограмма через площадь. Так как площадь параллелограмма представляет собой произведение стороны и высоты, то сторона будет отношением площади к высоте, которая падает на эту сторону:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

Формулы для вычисления длин сторон параллелограмма:

1. Формула сторон параллелограмма через диагонали и угол между ними:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

2. Формула сторон параллелограмма через диагонали и вторую сторону:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

3. Формула сторон параллелограмма через высоту и sin угла:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

4. Формула сторон параллелограмма через площадь и высоту:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

Диагонали параллелограмма.

Диагональю параллелограмма является каждый отрезок соединяющий 2 вершины противолежащих углов параллелограмма.

У параллелограмма есть 2 диагонали — длинная d1, и короткая — d2

Формулы вычисления длины диагонали параллелограмма:

1. Формулы диагоналей параллелограмма через стороны и cos β (из теоремы косинусов):

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

2. Формулы диагоналей параллелограмма через стороны и cos α (из теоремы косинусов):

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

3. Формула диагонали параллелограмма через 2 стороны и известную вторую диагональ:

Геометрические фигуры. Параллелограмм. Стороны, диагонали параллелограмма.

4. Формула диагонали параллелограмма через площадь, диагональ которая известна, и угол между диагоналями:

Как найти большую сторону параллелограмма

Тип 3 № 49979

Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 33.

Это задание ещё не решено, приводим решение прототипа.

Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 4 : 3, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.

Заметим, что как накрест лежащие углы при пересечении параллельных прямых секущей. Значит, треугольник ADL − равнобедренный. Пусть тогда Противоположные стороны параллелограмма ABCD попарно равны, тогда


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Формулы длины сторон через диагонали и угол между ними.

Формулы длины сторон через диагонали и угол между ними

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α, β углы между диагоналями

Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма через диагонали и сторону, (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма , (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

2. Формулы длины сторон параллелограмма через высоту.

Длина стороны параллелограмма через высоту

a, b – стороны параллелограмма

Hb высота на сторону b

Ha – высота на сторону a

α β – углы параллелограмма

Формулы сторон параллелограмма через высоту, (a, b):

Длина стороны параллелограмма через высоту

Длина стороны параллелограмма через высоту

3. Дополнительные, интересные формулы параллелограмма:

Параллелограмм

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол между диагоналями

Формула суммы квадратов диагоналей:

Формула суммы квадратов диагоналей

Формула разности квадратов сторон:

Формула разности квадратов сторон параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

Подробности

Опубликовано: 31 октября 2011

Обновлено: 13 августа 2021

Как найти длину одной из сторон параллелограмма?

Чтобы найти сторону параллелограмма, необходимо наличие некоторых других значений, которые бы были известны. Далее попросту использовать одну из подходящих формул.

Например, по теореме косинусов, это формулы сторон через диагонали и находящийся между ними угол:

Другим решением, являются формулы, где стороны рассчитываются по диагонали и одной из известной стороны:

Вот еще формулы сторон параллелепипеда, через вторую сторону, диагонали и косинус угла:

Стоит напомнить и про формулы длин сторон, через высоту и синус угла:

Так же длину стороны параллелограмма, можно определить если известны площадь и высота:

Как видим, вариантов расчета высоты параллелограмма достаточно много и хотелось напомнить основные характеристики этой геометрической фигуры:

Во первых, параллелограммом называется четырехугольник, имеющий параллельно расположенные противоположные стороны , т. е. находящиеся на параллельных прямых. Квадраты, прямоугольники и ромбы, также являются параллелограммами.

система выбрала этот ответ лучшим

Для нахождения стороны параллелограмма есть более десятка разных формул (они перечислены в ответе автора Бульбозавр), но для решения задач на эту тему, далеко не всегда их можно применить.

На мой взгляд лучше всего разобрать несколько примеров и на практике увидеть, как находить сторону этой фигуры – в наших случаях с помощью уравнений.

Пример 1

Нужно найти стороны параллелограмма, если одна из сторон больше другой в два раза а периметр равен 30 см.

Даже не нужно чертить рисунок, а просто составить уравнение и решить его

периметр(30см) = 2(х+2х) откуда х=5см, следовательно одна сторона равна 5см, другая – 10см.

Пример 2

АВСД – параллелограмм, нужно найти его стороны если – ВМ перпендикуляр к АС, АМ=6см, МС=15см, ВС больше АВ на 6 см

Для решения этой задачи сначала рассматриваем два прямоугольных треугольника АВМ и ВСМ у которых общий катет h.

Согласно Пифагору

h*h=a*a-6*6=b*b-15*15 откуда b*b-a*a=(b-a)(b+a)=225-36=189

по условию задачи b-a=7 тогда b+a=189/7=27

решив эту простенькую систему уравнений найдем стороны a=10см b=17cм

Alexs­andr8­2
[21.4K]

5 лет назад 

Есть еще несколько формул которые будут скорее вспомогательными при решении задач по нахождению стороны паралелограмма но тем не менее их тоже нужно знать. Например одну из сторон паралеллограмма можно найти если известна вторая сторона и периметр фигуры по формуле:

Р = 2(а+b), тогда а = (Р/2 – b), или b = (P/2 – a), где Р – периметр, а и b – стороны.

Также можно найти сторону паралеллограмма зная его площадь и высоту опущенную на искомую сторону:

S = a*H1 = b*H2, тогда а = S/H1 или b = S/H2, где S – площадь, а – меньшая сторона паралелограмма, b – большая сторона, Н1 – высота построенная к меньшей стороне, Н2 – сторна построенная к большей стороне паралеллограмма.

Vecto­r 60
[121]

8 месяцев назад 

Существует несколько формул для вычисления сторон параллелограмма (a и b).

1) Для нахождения сторон параллелограмма можно воспользоваться длиной диагоналей, а также величиной углов между диагоналями. Формулы будут такими:

2) Если известна одна из сторон и диагонали, то другую сторону можно найти так:

3) Если известна высота и величина одного из углов, то стороны параллелограмма можно найти по таким формулам:

4) Еще можно использовать значение площади и высоты:

Stasy­12
[41.5K]

более года назад 

Формул, конечно много, с помощью которых можно найти сторону параллелограмма.

Например можно найти стороны паралелограмма, зная размеры диагоналей и угла между ними(формула 1и 2)

Зная длины диагоналей и одну из сторон, легко можно найти вторую(формулы 3 и 4)

Через высоту, которая опущена на сторону и угол между сторонами(формулы 5 и 6)

Зная площадь и высоту, которая опущена на

заданную сторону можно найти длину стороны(формулы 7 и 8).

Знаете ответ?

24
Июл 2013

Категория: 01 Геометрия

01. Параллелограмм

2013-07-24
2022-09-11

Задача 1. Сумма двух углов параллелограмма равна 62^{circ}. Найдите один из оставшихся углов. Ответ дайте в градусах.

Решение: + показать


Задача 2. Один угол параллелограмма больше другого на 70^{circ}. Найдите больший угол. Ответ дайте в градусах.

Решение:  + показать



Задача 3.  Найдите больший угол параллелограмма, если два его угла относятся как 7:11. Ответ дайте в градусах.

Решение:  + показать



Задача 4. Диагональ параллелограмма образует с двумя его сторонами углы 5^{circ} и 38^{circ}. Найдите больший угол параллелограмма. Ответ дайте в градусах.

Решение:  + показать



Задача 5.  Периметр параллелограмма равен 70. Меньшая сторона равна 16. Найдите большую сторону параллелограмма.

Решение: + показать



Задача 6.  Две стороны параллелограмма относятся как 9:11, а периметр его равен 40. Найдите большую сторону параллелограмма.

Решение: + показать



Задача 7. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 9. Найдите его большую сторону.

Решение: + показать



Задача 8. Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.

Решение: + показать



Задача 9. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 55.

Решение: + показать


Задача 10. В параллелограмме ABCD высота, опущенная на сторону AB из точки D, равна 3, AD=4. Найдите синус угла B.

Решение: + показать



Задача 11. В параллелограмме ABCD sinC=frac{5}{7},;AD=7. Найдите высоту, опущенную на сторону AB.

Решение: + показать



Задача 12.  В параллелограмме ABCD AB=6,;AD=14,;sinA=frac{6}{7}. Найдите большую высоту параллелограмма.

Решение: + показать



Задача 13.  Площадь параллелограмма равна 12, две его стороны равны 4 и 8. Найдите большую высоту этого параллелограмма.

Решение: + показать



Задача 14. В параллелограмме ABCD  sinA=frac{sqrt{561}}{25}. Найдите  cosB.

Решение: + показать



Задача 15. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Решение: + показать



Задача 16.  Площадь параллелограмма ABCD равна 36. Точка E — середина стороны CD. Найдите площадь трапеции ABED.

Решение: + показать



Задача 17.   Площадь параллелограмма ABCD равна 180. Найдите площадь параллелограмма A_1B_1C_1D_1, вершинами которого являются середины сторон данного параллелограмма.

Решение: + показать



Задача 18. Найдите диагональ AC  параллелограмма ABCD, если стороны квадратных клеток равны 1.

 fg

Решение: + показать



Задача 19. Диагонали четырехугольника равны 8 и 10. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Решение: + показать



тест

Вы можете пройти тест по теме «Параллелограмм. Вычисление углов и длин».

Автор: egeMax |

комментария 2

Параллелограммом называют четырёхугольный многоугольник, две соседние стороны которого равны и
параллельны противоположным. Помимо этого, есть ещё несколько важных условий определения фигуры как
параллелограмма:

  1. В месте пересечения диагонали делятся пополам, а точка, в которой пересекаются диагонали,
    является одновременно центром этих двух отрезков. При этом она всегда лежит внутри фигуры.
  2. Любая диагональ данного четырёхугольника разделяет его на одинаковые треугольники, так как
    проходит из одной вершины к противоположной, то есть по центру четырёхугольника.
  3. Сумма квадратов сторон равна сумме квадратов диагоналей.
  4. Углы фигуры, расположенные друг напротив друга, попарно равны. Это условие вытекает из
    утверждения, что параллельные стороны фигуры равны.
  5. Сумма двух односторонних углов равна 180°. Это условие напрямую связано с теоремой о двух
    параллельных прямых и секущей. И действительно, если рассматривать две противоположные и третью
    между ними стороны параллелограмма как две параллельные прямые и секущую, то можно заметить, что
    углы, принадлежащие одной стороне, будут соответствовать односторонним углам, сумма которых,
    согласно теореме, равна 180°.

Только при выполнении всех условий четырёхугольный многоугольник будет считаться
параллелограммом.

  • Длинная сторона параллелограмма через две диагонали и
    острый угол между ними
  • Длинная сторона параллелограмма через две диагонали и тупой
    угол между ними
  • Короткая сторона параллелограмма через две диагонали и
    острый угол между ними
  • Короткая сторона параллелограмма через две диагонали и
    тупой угол между ними
  • Сторона параллелограмма через две диагонали и другую
    известную сторону
  • Сторона параллелограмма через высоту и синус угла
  • Сторона параллелограмма через площадь и высоту

Нахождение длинной стороны через две диагонали и острый угол между ними

Рис 1

Длинную сторону параллелограмма можно найти, зная обе диагонали и острый угол между ними, по
формуле:

a = (√(D² + d² — 2 (D * d) * cosα)) / 2

где D – длинная диагональ, d – короткая диагональ, α — острый угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Допустим, дан параллелограмм, у которого диагонали 7 и 4 см, а угол между
ними 68º. Тогда, согласно формуле, сторона будет равна: a = (√(7² + 4² — 2 (7 * 4) * cos68º)) / 2 = 3,317 см. Ответ:
3,317 см.

Нахождение короткой стороны через две диагонали и острый угол между ними

Рис 3

Можно вычислить и короткую сторону по формуле:

b = (√(D² + d² + 2 (D * d) * cosα)) / 2

где D – длинная диагональ, d – короткая диагональ, α — острый угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Теперь необходимо найти другую сторону параллелограмма. Данные останутся те
же, что и в прошлой задаче, но в уравнении поменяется знак, так как по отношению к углу поменялась
сторона, которую надо найти. Сторона b будет равна: b = (√(7² + 4² + 2 (7 * 4) * cos68º)) / 2 = 4.64.
Ответ: 4,64 см.

Нахождение длинной стороны через две диагонали и тупой угол между ними

Рис 2

Стороны параллелограмма можно найти, зная диагонали и тупой угол между ними. Для этого нужно
использовать следующую формулу:

a = (√(D² + d² + 2 (D * d) * cosβ)) / 2

где D – длинная диагональ, d – короткая диагональ, β — тупой угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим нахождение сторон всё того же параллелограмма с диагоналями 7 и 4
см. Однако на этот раз возьмём между диагоналями другой угол: β=112º. В таком случае для стороны a
минус меняется на плюс, а сама сторона равна: a = (√(7² + 4² + 2 (7 * 4) * cos112º)) / 2 = 3.914

Нахождение короткой стороны через две диагонали и тупой угол между ними

Рис 4

Аналогично можно найти и короткую сторону, зная диагонали и тупой угол между ними:

b = (√(D² + d² — 2 (D * d) * cosβ)) / 2

где D – длинная диагональ, d – короткая диагональ, β — тупой угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Для стороны b так же изменится знак в формуле, но наоборот: плюс на минус. Тогда
получается: b = (√(7² + 4² — 2 (7 * 4) * cos112)) / 2 = 4,64 см. Ответ совпал с ответом второй
задачи, все опять решено верно, а сторона в воображаемом параллелограмме действительно равна 4,64
см.

Нахождение стороны параллелограмма через диагонали и другую сторону

Рис 5

Как и в случае с прошлыми пунктами, существуют формула, которая позволяет найти сторону
параллелограмма с использованием диагоналей и известной стороны. Вот она:

a = √(D² + d² — 2b² / 2)

где D, d — диагонали, b — сторона.

Цифр после
запятой:

Результат в:

Выводится данная формулы из первого следствия теоремы косинусов. 

Пример. Используем для следующих задач другой параллелограмм. Эта фигура будет с
диагоналями 9 и 5 см и стороной 6 см. Тогда другая сторона данного параллелограмма равна: a = √(9² + 5² — 2 * 6² / 2) = 4,1 см. Ответ: 4,1 см.

Для проверки ответа можем решить обратную задачу, при которой нам не известна сторона b, но известна
сторона a = 4,1 см. По обратной формуле получается b = √(9² + 5² — 2 * 4,1² / 2) = 6 см. Ответ
совпадает с изначальными данными первой задачи. А значит и этот воображаемый параллелограмм
действительно существует.

Нахождение стороны через синус угла и высоту

Рис 6

Высота – это отрезок, опущенный перпендикулярно из вершины фигуры на противоположную сторону. Есть
несколько интересных свойств у неё. Например, высоты, проведенные из острых углов, будут всегда
лежать вне фигуры, в то время как высоты из тупых углов всегда лежат внутри. Если из одного угла
опустить две высоты, то между ними образуется угол, равный смежному углу параллелограмма. Равными
будут те высоты, что заключены между параллельными сторонами четырёхугольника. Найти сторону
параллелограмма через эту величину достаточно просто, по формуле:

a = h / sinα

где: h — высота параллелограмма, sin α — угол.

Цифр после
запятой:

Результат в:

Стоит заметить, что высота должна быть опущена не к искомой стороне, а к соседней. При этом для
формулы сойдет синус любого известного угла параллелограмма.

Пример. Найти сторону параллелограмма, если высота, опущенная на соседнюю сторону
равна 10 см, а острый угол — 30º. Решение: a=10 / 0,5 = 20 см

Нахождение стороны через площадь и высоту

Рис 7

Более подробно о площади и высоте параллелограмма рассказано в пунктах выше. В этом достаточно легко
вывести единственную формулу, по которой можно найти сторону. Если площадь является произведением
стороны на высоту, то сторона будет равна отношению площади к высоте:

a = S / h

где S — площадь параллелограмма, h — высота.

Цифр после
запятой:

Результат в:

Причем не имеет значения, к какой стороне опущена высота: к искомой или соседней.

Пример. Найти сторону параллелограмма, если его площадь равна 20 см, а высота,
опущенная на одну из сторон — 5 см. Решение: a = 20 / 5 = 4 см.

Фигура кажется сложной для восприятия из-за того, что её нельзя постоянно наблюдать где-то в
повседневной жизни. Однако всё становится проще, если вспомнить, что есть более известные широкой
публике частные случаи параллелограмма. Их-то человек обычно наблюдает ежедневно. Это ромб,
прямоугольник и квадрат. Причем последний, хоть и наиболее известен, является и наиболее
интересным.

Ромб считается частным случаем, потому что представляет собой параллелограмм, диагонали которого в
точке пересечения образуют прямой угол. Прямоугольник является частным случаем, потому что это
параллелограмм, у которого все углы прямые. У квадрата же положение ещё интереснее, так как его
можно назвать не только частным случаем параллелограмма, но и прямоугольника, и ромба. Квадрат – это
комбо трёх предыдущих определений. Можно даже сказать, что квадрат одновременно является особенным
случаем и для параллелограмма, и для прямоугольника, и для ромба. Все его стороны равны,
противоположные стороны параллельны. Все углы являются прямыми, даже образующиеся при пересечении
диагоналей, которые к тому же делятся пополам в точке пересечения.

Добавить комментарий