Как найти длину фрагмента молекулы днк

Задачи на определение длины отдельного участка ДНК или количества нуклеотидов в нем. По количество нуклеотидов ДНК и длине молекулы ДНК.

Знания, необходимые для решения задач

  • Линейная длина одного нуклеотида в нуклеиновой кислоте:
    • l н = 0,34 нм = 3,4 ангстрем
  • Средняя молекулярная масса одного нуклеотида:
    • Mr н = 345 а.е.м. (Da)

Алгоритм решения задач

Если дано количество нуклеотидов ДНК

Алгоритм решения задач:

  1. Находим количество нуклеотидов в одной цепи ДНК
  2. Что бы найти длину ДНК, умножаем количество нуклеотидов на 0,34нм
  3. Записываем ответ

Задача№1. Какова длина фрагмента ДНК, состоящая из 540 нуклеотидов?

Решение:

  1. Количество нуклеотидов одной цепи = 540: 2 = 270 нуклеотидов в одной цепи ДНК
  2. Длина ДНК= количество нуклеотидов × длину нуклеотидов= 270× 0,34=83,7 нм.

Ответ: длина ДНК =83.7нм.

Если дана контурная длина молекулы ДНК бактериофага

Алгоритм решения задач:

  1. Вычисляем общую длину отрезка ДНК бактериофага выпавшего в результате воздействия мутагенами
  2. Вычисляем количество пар нуклеотидов в выпавшем фрагменте
  3. Записываем ответ

Задача №2. Контурная длина молекулы ДНК бактериофага составляет 17×10’6 м. После воздействия на него мутагенами длина оказалась 13,6×10-6 м. Определите, сколько пар азотистых оснований выпало в результате мутации, если известно, что расстояние между соседними нуклеотидами составляет 34×1011 м.

Решение:

  1. Вычислим общую длину отрезка ДНК бактериофага выпавшего в результате воздействия мутагенами. 17×10’6 – 13,6×106 = 3,4×10 6 метров.
  2. Вычислим количество пар нуклеотидов в выпавшем фрагменте: 3,4×10-6 / 34×10’11 = 104 = 10 000 пар нуклеотидов.

Ответ: 10 000 пар нуклеотидов.

Определение нуклеотидов в ДНК и РНК. Примеры решения задач

Определение массы и длины белка закодированного на ДНК

Задача 5.
Масса гена, который кодирует белок, равна 207000. Определите массу и длину белка закодированного на ДНК.
Решение:
Линейная длина одного аминокислотного остатка в полипептидной цепи – 0,35 нм, или 3,5 А(Ангстрем);
Средняя молекулярная масса одного аминокислотного остатка – 110 г/ моль;
Средняя молекулярная масса одного нуклеотидного остатка – 345 г/ моль.
Определим сколько нуклеотидов содержится в гене имеющем массу 207000, зная, что молекулярная масса одного нуклеотида равна 345 г/ моль. Тогда получим число нуклеотидов в гене:

207000/345 = 600 нуклеотидов. 

Известно, что одну аминокислоту кодирует триплет, состоящий из трех нуклеотида. Определим сколько аминокислот содержит белок, если ген содержит 600 нуклеотидов, получим:

600/3 =200 аминокислот. 

Так как масса одной аминокислоты рана 120 г/моль, то массу всего белка рассчитаем, получим:

200 . 110 = 22000 г/ моль. 

Длина одной аминокислоты равна 0,3 нм. Тогда весь белок имеет длину:

200 . 0,35 = 70 нм.

Ответ: масса белка рана 22000 г/моль; длина белка – 70 нм.
 


Определение длины фрагмента молекулы ДНК


Задача 6. 
Дана молекула ДНК с относительной  молекулярной массой 75 900, из них 10350 приходится на долю адениловых нуклеотидов.
Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.
Решение:
Расстояние между двумя нуклеотидами – 0,34 нм;
молекулярная масса одного нуклеотида – 345 г/моль.

1) Находим количество нуклеотидов:

а) 75 900 : 345 = 220 (нуклеотидов в ДНК),

б) 10350 : 345 = 30 (адениловых нуклеотидов в этой ДНК),

в) ∑(Г + Ц) = 220 – (30 + 30) = 160, т.е. Г = Ц = 80, их по 80;

2) Определяем длину фрагмента ДНК, получим:

220 нуклеотидов в двух цепях, значит в одной – 110.

Тогда 

L(ДНК) = 110 . 0,34 = 37,4 (нм).

Ответ: 37,4 (нм).
 


Определение аминокислотных остатков в молекуле белка

Задача 7. 
Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если Мглицина = 75,1 г/моль? Сколько аминокислотных остатков в этом белке?
Решение:
Молекулярная масса одной аминокислоты = 110 г/моль;
М(глицина) = а = 75,1 г/моль; 
в = 0,5%.

1) Находим минимальну массу белка

Вычисление минимальной молекулярной массы белка определяем по формуле:

 Мmin = (а/в) . 100%,

где

Мmin – минимальная молекулярная масса белка, а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Тогда

Мmin = (75,1 г/моль /0,5%) . 100% = 15 020 г/моль.

2) Расчитаем количество аминокислотных остатков, получим:

15 020 : 110 ≈ 136 (аминокислот в этом белке).

Ответ: Аминокислотных остатков в белке  136.
 


Вычисление процентного содержания нуклеотидов в ДНК и длину ее молекулы


Задача 8. 
В молекуле ДНК 20% гуаниловых нуклеотидов. Определите процентное содержание Ц, Т, А и длину молекулы ДНК, если в ней всего 400 нуклеотидов.
Решение:
Расстояние между двумя нуклеотидами – 0,34 нм.
В соответствии с принципом комплементарности количество (Г) равно количеству (Ц), т.е. (Г) = (Ц) = 30%. Тогда их совместное количество: (Г + Ц) = 60%, а количество (А + Т) = 100 – 60 = 40%, а в отдельности (А) = (Т) = 40/2 = 20%. Длина молекулы ДНК определяется количеством нуклеотидов в одной цепи (т.е. количеством пар нуклеотидов) умноженным на длину нуклеотида. В ДНК 400 нуклеотидов (шт.) или 200 пар, расстояние между соседними парами 0,34 нм, следовательно длина молекулы ДНК будет: 200 х 0,34 = 68 нм.

Ответ: (Г) = 30%, (Ц) = 30%, (А) = 20%, (Т) = 20%; длина ДНК 68 нм.


Темы «Молекулярная биология» и «Генетика» – наиболее интересные и сложные темы в курсе «Общая биология». Эти темы изучаются и в 9-х, и в 11­х классах, но времени на отработку умения решать задачи в программе явно недостаточно. Однако умение решать задачи по генетике и молекулярной биологии предусмотрено Стандартом биологического образования, а также  такие задачи входят в состав КИМ ЕГЭ.

Для  решения задач по молекулярной биологии  необходимо владеть следующими биологическими понятиями: виды нуклеиновых  кислот,строение ДНК,  репликация ДНК , функции ДНК, строение  и функции РНК, генетический код, свойства генетического кода,мутация.

Типовые задачи знакомят с основными приемами рассуждений в генетике, а “сюжетные”– полнее раскрывают и иллюстрируют особенности этой науки, делая ее интересной и привлекательной для учащихся. Подобранные задачи характеризуют генетику как точную науку, использующую математические методы анализа. Решение задач в биологии требует умения анализировать фактический материал, логически думать и рассуждать , а также определенной изобретательности при решении особенно трудных  и запутанных задач.

Для закрепления теоретического материала по способам и приемам  решения задач предлагаются задачи для самостоятельного решения, а также вопросы для самоконтроля.

Примеры решения задач

Необходимые пояснения:

  • Один шаг это полный виток спирали ДНК–поворот на 360o
  • Один шаг составляют 10 пар нуклеотидов
  • Длина одного шага – 3,4 нм
  • Расстояние между двумя нуклеотидами – 0,34 нм
  • Молекулярная масса одного нуклеотида – 345 г/моль
  • Молекулярная масса одной аминокислоты – 120 г/мол
  • В молекуле ДНК: А+Г=Т+Ц (Правило Чаргаффа: ∑(А) = ∑(Т), ∑(Г) = ∑(Ц), ∑(А+Г) =∑(Т+Ц)
  • Комплементарность нуклеотидов: А=Т; Г=Ц
  • Цепи ДНК удерживаются водородными связями, которые образуются между комплементарными азотистыми основаниями: аденин с тимином соединяются 2 водородными связями, а гуанин с цитозином тремя.
  • В среднем один белок содержит 400 аминокислот;
  • вычисление молекулярной массы белка:


где Мmin – минимальная молекулярная масса белка,
а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Задача № 1.Одна из цепочек  ДНК имеет последовательность нуклеотидов : АГТ  АЦЦ  ГАТ  АЦТ  ЦГА  ТТТ  АЦГ  … Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. Для наглядности  можно использовать  магнитную “азбуку” ДНК (прием автора статьи) .
Решение: по принципу комплементарности достраиваем вторую цепочку (А-Т,Г-Ц) .Она выглядит следующим образом: ТЦА  ТГГ  ЦТА   ТГА  ГЦТ  ААА  ТГЦ.

Задача № 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА  ЦАЦ  ЦТГ  ЦТТ  ГТА  ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
Решение: Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Задача № 3. Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот : фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК,  хранящего информацию об этом белке.

Решение (для удобства используем табличную форму записи решения): т.к. одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК  и участка  ДНКопределить невозможно, структура может варьировать. Используя принцип комплементарности  и таблицу генетического кода получаем один из вариантов:

Цепь белка

Фен

Вал

Асн

Глу

Гис

Лей

и-РНК

УУУ

ГУУ

ААУ

ГАА

ЦАЦ

УУА

ДНК

1-я цепь

ААА

ЦАА

ТТА

ЦТТ

ГТГ

ААТ

2-я цепь

ТТТ

ГТТ

ААТ

ГАА

ЦАЦ

ТТА

Задача № 4. Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ  ЦГЦ  ТЦА  ААА  ТЦГ  …  Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении  белка удаление из гена четвертого нуклеотида?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

Цепь ДНК

ЦГГ

ЦГЦ

ТЦА

ААА

ТЦГ

и -РНК

ГЦЦ

ГЦГ

АГУ

УУУ

АГЦ

Аминокислоты цепи белка

Ала-Ала-Сер-Фен-Сер

При удалении из гена четвертого нуклеотида – Ц произойдут заметные изменения – уменьшится количество и состав аминокислот в  белке:

Цепь ДНК

ЦГГ

ГЦТ

ЦАА

ААТ

ЦГ

и -РНК

ГЦЦ

ЦГА

ГУУ

УУА

ГЦ

Аминокислоты цепи белка

Ала-Арг-Вал-Лей-

Задача № 5. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: Ала – Тре – Сер – Глу – Мет-. Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирова ния превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем  :

Аминокислоты цепи белка (исходная)

Ала – Тре – Сер – Глу – Мет-

и -РНК (исходная)

ГЦУ

АЦГ

АГУ

ГАГ

АУГ

и -РНК (дезаминированная)

ГУУ

АУГ

АГУ

ГАГ

АУГ

Аминокислоты цепи белка (дезаминированная)

Вал – Мет – Сер – Глу – Мет-

Задача № 6. При  синдроме Фанкоми (нарушение образования костной ткани)  у больного с мочой выделяются аминокислоты , которым соответствуют кодоны в и -РНК : АУА   ГУЦ  АУГ  УЦА  УУГ  ГУУ  АУУ. Определите, выделение каких аминокислот с мочой характерно  для синдрома Фанкоми, если у здорового человека в моче содержатся аминокислоты аланин, серин, глутаминовая кислота, глицин.

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

и -РНК

АУА

ГУЦ

АУГ

УЦА

УУГ

ГУУ

АУУ

Аминокислоты цепи белка (больного человека)

Изе-Вал-Мет-Сер-Лей-Вал-Иле

Аминокислоты цепи белка (здорового человека)

Ала-Сер-Глу-Гли

Таким образом, в моче больного человека только одна аминокислота (серин) такая же как, у здорового человека, остальные – новые, а три, характерные для здорового человека, отсутствуют.

Задача № 7. Цепь А инсулина быка в 8-м звене содержит аланин, а лошади – треонин, в 9-м звене соответственно серин и глицин. Что можно сказать о происхождении инсулинов?

Решение (для удобства  сравнения используем табличную форму записи решения): Посмотрим, какими триплетами в и-РНК кодируются упомянутые в условии задачи аминокислоты.

Организм

Бык

Лошадь

8-е звено

Ала

Тре

и- РНК

ГЦУ

АЦУ

9-е звено

Сер

Гли

и- РНК

АГУ

ГГУ

Т.к. аминокислоты кодируются  разными триплетами, взяты триплеты, минимално отличающиеся друг от друга. В данном случае  у лошади и быка в 8-м и 9-м звеньях  изменены аминокислоты в результате замены первых нуклеотидов в триплетах и -РНК : гуанин заменен на аденин ( или наоборот). В двухцепочечной ДНК  это будет равноценно замене пары Ц-Г  на  Т-А (или наоборот).
Следовательно, отличия цепей А инсулина быка и  лошади обусловлены транзициями в участке молекулы ДНК, кодирующей 8-е и 9-е звенья цепи А инсулинов быка и лошади.

Задача № 7 . Исследования показали, что в и- РНК содержится 34% гуанина,18% урацила, 28% цитозина и 20% аденина.Определите процентный состав  азотистых оснваний в участке ДНК, являющейся матрицей для данной и-РНК.
Решение (для удобства   используем табличную форму записи решения): Процентное соотношение азотистых оснований высчитываем исходя из принципа комплементарности:

и-РНК

Г

У

Ц

А

34%

18%

28%

20%

ДНК (смысловая цепь, считываемая)

Г

А

Ц

Т

28%

18%

34%

20%

ДНК (антисмысловая цепь)

Г

А

Ц

Т

34%

20%

28%

18%

Суммарно  А+Т  и Г+Ц в смысловой цепи будут составлять: А+Т=18%+20%=38%  ; Г+Ц=28%+34%=62%. В антисмысловой (некодируемой) цепи суммарные показатели будут такими же , только процент отдельных оснований будет обратный: А+Т=20%+18%=38%  ; Г+Ц=34%+28%=62%. В обеих же цепях в парах комплиментарных оснований будет поровну, т.е аденина и тимина – по 19%, гуанина и цитозина по 31%.

Задача № 8.  На фрагменте одной нити ДНК нуклеотиды расположены в последователь ности:  А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т. Определите процентное содержание всех нукле отидов в этом фрагменте ДНК и длину гена.

Решение:

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,из них ∑(А) = 8 = ∑(Т)

24 – 100%

=> х = 33,4%

8 – х%

24 – 100%

=>  х = 16,6%

4 –  х%

∑(Г) = 4 = ∑(Ц) 

  
3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 9. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;
2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Задача № 10. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%); На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%; Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 11. Дана молекула ДНК с относительной  молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000 : 345 = 200 (нуклеотидов в ДНК), 8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК),∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;
2) 200 нуклеотидов в двух цепях, значит в одной – 100. 100 × 0,34 = 34 (нм)

Задача № 12. Что тяжелее: белок или его ген?

Решение: Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х.  120х < 345 × 3х, значит ген тяжелее белка.

Задача № 13. Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение: Мmin = 56 : 0,34% · 100% = 16471

Задача №14. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение: 68400 : 120 = 570 (аминокислот в молекуле альбумина)

Задача №15. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение: Мmin = 75,1 : 0,5% · 100% = 15020 ; 15020 : 120 = 125 (аминокислот в этом белке)

Задачи для самостоятельной работы

  1. Молекула ДНК распалась на две цепочки. одна из них имеет строение : ТАГ  АЦТ  ГГТ  АЦА  ЦГТ  ГГТ  ГАТ  ТЦА … Какое строение будет иметь  вторая молекула ДНК ,когда указанная цепочка достроится до полной двухцепочечной молекулы ?
  2. Полипептидная цепь одного белка животных имеет следующее начало : лизин-глутамин-треонин-аланин-аланин-аланин-лизин-… С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?
  3. Участок молекулы белка имеет следующую последовательность аминокислот: глутамин-фенилаланин-лейцин-тирозин-аргинин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  4. Участок молекулы белка имеет следующую последовательность аминокислот: глицин-тирозин-аргинин-аланин-цистеин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  5. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу-Гли-асп-Про-Тир-Вал-Про-Вал-Про-Вал-Гис-фен-Фен-Асн-Ала-Сер-Вал. Определите  структуру участка ДНК , кодирующего эту часть рибонуклеазы.
  6. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ГТЦ  ЦТА  АЦЦ  ГГА  ТТТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  7. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТЦГ  ГТЦ  ААЦ  ТТА  ГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  8. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТГГ  АЦА  ГГТ  ТТЦ  ГТА. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА  ТГЦ   ГТТ  ТАТ  ГЦГ  ЦЦЦ. Как изменится  белок , если химическим путем будут удалены 9-й и 13-й нуклеотиды?
  10. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ЦГТ  ТТЦ  ТЦГ  ГТА. Как изменится структура молекулы белка, если произойдет удвоение шестого нуклеотида в цепи ДНК. Объясните результаты.
  11. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ТТЦ  ТЦГ  АГА. Как изменится структура молекулы белка, если произойдет удвоение восьмого нуклеотида в цепи ДНК. Объясните результаты.
  12. Под воздействием мутагенных факторов во фрагменте гена: ЦАТ  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена второго триплета на триплет АТА. Объясните, как изменится структура молекулы белка.
  13. Под воздействием мутагенных факторов во фрагменте гена: АГА  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена четвёртого триплета на триплет АЦЦ. Объясните, как изменится структура молекулы белка.
  14. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦА  УГУ  АГЦ  ААГ  ЦГЦ. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  15. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГАГ  ЦЦА  ААУ  АЦУ  УУА. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  16. Ген ДНК включает 450пар нуклеотидов. Какова длина, молекулярная масса гена и сколько аминокислот закодировано в нём?
  17. Сколько нуклеотидов содержит ген ДНК, если в нем закодировано 135 аминокислот. Какова молекулярная масса данного гена и его длина?
  18. Фрагмент одной цепи ДНК имеет следующую структуру: ГГТ АЦГ АТГ ТЦА АГА. Определите первичную структуру белка, закодированного в этой цепи, количество (%) различных видов нуклеотидов в двух цепях фрагмента и его длину.
  19. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 1500 г/моль?
  20. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 42000 г/моль?
  21. В состав белковой молекулы входит 125 аминокислот. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  22. В состав белковой молекулы входит 204 аминокислоты. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  23. В синтезе белковой молекулы приняли участие 145 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  24. В синтезе белковой молекулы приняли участие 128 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  25. Фрагмент цепи и-РНК имеет следующую последовательность: ГГГ  УГГ  УАУ  ЦЦЦ  ААЦ  УГУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  26. Фрагмент цепи и-РНК имеет следующую последовательность: ГУУ  ГАА  ЦЦГ  УАУ  ГЦУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  27. В молекуле и-РНК содержится 13% адениловых, 27% гуаниловых и 39% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК.
  28. В молекуле и-РНК содержится 21% цитидиловых, 17% гуаниловых и 40% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК
  29. Молекула и-РНК содержит 21% гуаниловых нуклеотидов, сколько цитидиловых нуклеотидов содержится в кодирующей цепи участка ДНК?
  30. Если в цепи молекулы ДНК, с которой транскрибирована генетическая информация, содержалось 11% адениловых нуклеотидов, сколько урациловых нуклеотидов будет содержаться в соответствующем ему отрезке и-РНК?

Используемая литература.

  1. Болгова И.В. Сборник задач по общей биологии с решениями для поступающих в вузы–М.: ООО “Издательство Оникс”:”Издательство.”Мир и Образование”, 2008г.
  2. Воробьев О.В. Уроки биологии с применением информационных технологий .10 класс. Методическое пособие с электронным приложением–М.:Планета,2012г.
  3. Чередниченко И.П. Биология. Интерактивные дидактические материалы.6-11 класс. Методическое пособие с электронным интерактивным приложением. – М.:Планета,2012г.
  4. Интернет-ссылки:
  5. http://ru.convdocs.org/download/docs-8406/8406.doc
  6. https://bio.1sept.ru/articles/2009/06

When it comes to measuring the length of DNA fragments, which are much smaller than cells, microbiologists need a trick, and the most convenient one is gel electrophoresis. This method relies on the fact that DNA fragments are charged, and it is an alternative to more expensive methods, such as X-ray crystallography, which was responsible for the discovery of the double-helix structure of DNA.

How Gel Electrophoresis Works

Because DNA molecules are charged, they are affected by an electric current. When you set them in a neutral gel and place a current across the gel, the molecules migrate toward the positive electrode (anode). Because DNA molecules of different sizes carry the same charge, the smaller ones travel faster, so this process separates the molecules into bands that can be compared to samples of known sizes.

A Basic Electrophoresis Procedure

The gel is usually made from agarose, a polysaccharide that when heated in a buffer solution forms a semi-solid, slightly porous gel. At one end, the gel forms tiny indentations called wells where the researcher places the DNA samples under study, along with reference samples of known length, called a DNA ladder. The lengths of the ladder fragments have been pre-determined by another method, such as X-ray crystallography.

When the gel is immersed in a conducting solution and voltage is applied, the fragments begin migrating through the gel – the smaller ones first and the larger, slower ones behind. They eventually form themselves into spectrum-like bands according to size.

Once this occurs, the researcher turns off the power, infuses the gel with a DVA-binding dye and examines the specimens under ultraviolet light. Using the ladder as a reference, the researcher can determine the size of each of the fragments in a visible band. Only bands are visible – individual DNA fragments are too small to see.

Determining Lengths of Unknown Fragments

Chances are not every band in a sample pairs up with a band on the ladder, so to determine the sizes of these unknown fragments, scientists usually plot a graph. On the x-axis is the distance traveled by each band in the ladder in millimeters, while on the y-axis is the size of each band. When the points are connected by a curve, the size of any band can be extrapolated from the curve after measuring the distance traveled by that band in millimeters.

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице – нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
“генетическом языке”. Скоро вы все поймете – мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится – перерисуйте его себе 🙂

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) – АТЦ. На иРНК этим нуклеотидам будут соответствовать – УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись – АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) – в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А – У, Т – А, Г – Ц, Ц – Г (загляните в “генетический словарик”
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК – промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК – терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень – в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним – мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ – метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) – У (урацил), Г (гуанин) – Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно – образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка – полипептидной цепи из аминокислот – в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция – завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй – из верхнего горизонтального,
третий – из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота 🙂

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА – Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота – Ала, ААА – Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

“Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода”

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

“Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК”

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова “Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК “. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК – другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой – мы записываем их линейно через тире.

Третий триплет ДНК – АЦГ соответствует антикодону тРНК – УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК – УГЦ в кодон иРНК – АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ – Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК – так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% – (20%+20%) = 60% – столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Добавить комментарий