Как найти длину градиента функции

Приветствую всех. Сегодня на занятии хотелось бы затронуть немало важную тему, связанную одновременно с дифференциальным исчислением и векторной алгеброй. Мы постараемся как можно меньше углубляться в теоретические тезисы и побольше сделаем упор на решение практических задач. Незамедлительно начнём.

Определение слова “градиент” в математике нужно усвоить.

Градиент – это вектор показывающий направление наибольшего возрастания функции. Модуль вектора градиента показывает скорость изменения функции.

Запишем формулу для нахождения вектора градиента:

Функция представлена в нашем случае тремя переменными, имеет место быть и две переменных. "Что за заумный значок?" вы спросите. Этот перевёрнутый треугольничек имеет название "набла" и обозначает сумму частных производных по координатам, иначе его называют оператором Гамильтона. Хотите отдельную статью на эту тему? Пишите об этом в комментариях.
Функция представлена в нашем случае тремя переменными, имеет место быть и две переменных. “Что за заумный значок?” вы спросите. Этот перевёрнутый треугольничек имеет название “набла” и обозначает сумму частных производных по координатам, иначе его называют оператором Гамильтона. Хотите отдельную статью на эту тему? Пишите об этом в комментариях.

При нашем раскладе можно с теорией закончить, этого будет достаточно.

Разберём простенький примерчик для начала.

Действительно не сложно.
Действительно не сложно.

Никто ведь не забыл как брать частные производные? Если подзабыли, ссылочка (на статью) будет в конце урока.

Решается практически в одно действие, взяли частные производные по трём переменным, далее подставили в формулу и получили в формулу.
Решается практически в одно действие, взяли частные производные по трём переменным, далее подставили в формулу и получили в формулу.

Было слишком уж просто для нас, возьмём что-нибудь посложнее.

Уже интереснее.
Уже интереснее.

Такого плана примеры уже устно не решишь, хотя… Нет, всё же возможно.

Берём частные производные, как и в прошлом примере, после подставляем в формулу. Теперь у нас стоит задача найти длину вектора градиента в точке "М", для начала нужно подставить точку в наш вектор, таким образом получим градиент функции в точке. осталось найти длину. Вспоминаем, что длина вектора определяется через модуль, а модуль находится как сумма всех членов в квадрате под корнем квадратным.
Берём частные производные, как и в прошлом примере, после подставляем в формулу. Теперь у нас стоит задача найти длину вектора градиента в точке “М”, для начала нужно подставить точку в наш вектор, таким образом получим градиент функции в точке. осталось найти длину. Вспоминаем, что длина вектора определяется через модуль, а модуль находится как сумма всех членов в квадрате под корнем квадратным.

Не будем перенапрягаться сильно, рассмотрим последний пример и пойдём отдыхать.

Функция не самая простая, это не должно нас пугать.
Функция не самая простая, это не должно нас пугать.

Берёмся за дело.

Сложно было брать только производные, остальное "пошло как по маслу", все синусы нам дали нули, остался только первый член в итоге длина вектора градиента получилась равной 1/3.
Сложно было брать только производные, остальное “пошло как по маслу”, все синусы нам дали нули, остался только первый член в итоге длина вектора градиента получилась равной 1/3.

Не отчаиваемся что уже конец практики, у вас всегда есть возможность найти похожие задачки в интернете или взять в библиотеке задачник по высшей математике. Практикуйтесь, практикуйтесь, и ещё раз практикуйтесь. Спасибо за внимание.

Другие темы:

Ответы Mail.ru


Наука, Техника, Языки


Гуманитарные науки

Естественные науки


Лингвистика
Техника

Вопросы – лидеры.

frenky

Где у скамьи право,а где лево? Я знаю,какие руки у меня))) Вопрос в другом…


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

Длина вектора градиента функции

Негр Ганджубасович



Мыслитель

(7988),
закрыт



7 лет назад

Дополнен 7 лет назад

в точке A(-1;2) равна:

а) 7√2
б) 8√2
в) 5√2
г) 9√2

Лучший ответ

Андрей Степанов

Просветленный

(22749)


7 лет назад

grad(z) = i*(y^3 + 8xy) + j*(3xy^2 + 4x^2)
Подставим А (-1; 2)
grad(z) = -8i – 8j
|grad(z)| = sqrt(64 + 64) = sqrt(2*64) = 8*sqrt(2)

Остальные ответы

Рустам Искендеров

Искусственный Интеллект

(133392)


7 лет назад

б).

Похожие вопросы

Производная
по направлению. Градиент

Пусть в некоторой области

задана функция
и точка .
Проведем из точки
вектор ,
направляющие косинусы которого .
На векторе ,
на расстоянии
от его начала рассмотрим точку ,
т.е. .


Будем предполагать, что функция
и ее частные производные первого порядка непрерывны в области .


Предел отношения
при называется
производной от функции
в точке по
направлению вектора

и обозначается ,
т.е.
.


Для нахождения производной от функции
в заданной точке по
направлению вектора
используют формулу: ,
где
– направляющие косинусы вектора ,
которые вычисляются по формулам:
.

Пусть в каждой точке некоторой
области
задана функция .
Вектор, проекциями которого на оси координат являются значения частных производных
этой функции в соответствующей точке, называется градиентом функции

и обозначается
или
(читается «набла у»): .


При этом говорят, что в области
определено векторное поле градиентов.


Для нахождения градиента функции
в заданной точке
используют формулу:
.

Свойства
градиента

1. Производная
в данной точке по направлению вектора
имеет наибольшее значение, если направление вектора
совпадает с направлением градиента. Это наибольшее значение производной равно
.

2. Производная
по направлению вектора, перпендикулярного к вектору ,
равна нулю.

Примеры
решения задач

Пример 1.
Найти производную от функции
в точке
по направлению вектора .

Решение.

Для решения задачи воспользуемся
формулой для нахождения производной от функции
в заданной точке
по направлению вектора :
,
где
– направляющие косинусы вектора ,
которые вычисляются по формулам:
.


По условию задачи вектор
имеет координаты .
Тогда его длина равна:
.


Следовательно, для направляющих косинусов вектора получим следующие значения:
.


Далее для решения задачи необходимо найти все частные производные первого порядка
от функции :


Вычислим значения этих частных производных первого порядка в точке :


В заключении подставим полученные значения для направляющих косинусов вектора

и значения частных производных первого порядка от функции в
точке
в формулу для нахождения производной по направлению в заданной точке:


Ответ: производная от функции
в точке
по направлению вектора
равна .

Пример 2.
Найти градиент функции
в точке .

Решение.

Поскольку градиентом функции
называется вектор, проекциями которого на оси координат являются значения частных
производных этой функции в соответствующей точке, то для решения задачи сначала
найдем все частные производные первого порядка от заданной функции:


Далее вычислим значения этих частных производных первого порядка в точке :



Подставим полученные значения в формулу градиента функции
в заданной точке :

.


Ответ: градиент функции
в точке
равен .

Пример 3.
Найти производную функции
в точке
по направлению градиента функции
в той же точке.

Решение.

Для нахождения производной
от функции
в заданной точке
по направлению вектора
используют формулу:
,
где
– направляющие косинусы вектора ,
которые вычисляются по формулам:
.


В данном случае вектор совпадает
с градиентом функции
в точке :
.


Следовательно, для решения задачи необходимо найти значения всех частных производных
первого порядка от функции
в точке ,
а также координаты и длину градиента функции
в той же точке.


Вычислим значения частных производных первого порядка от функции
в точке :


Для нахождения координат вектора ,
равного градиенту функции
в заданной точке ,
вычислим значения частных производных первого порядка от функции
в этой точке:


Длина вектора равна: .


Найдем направляющие косинусы вектор по формулам:
.


Подставим полученные значения в формулу для нахождения производной от функции

в заданной точке
по направлению вектора :


Ответ: производная функции
в точке по
направлению градиента функции
в той же точке равна 1.

Задания
для самостоятельной работы

1.
Найти производную функции
в точке
по направлению вектора .
Ответ: .


2. Найти производную функции
в точке
по направлению вектора .
Ответ: .



3.
Найти производную функции
в точке
по направлению вектора .
Ответ: .


4. Найти градиент функции
в точке .
Ответ: .


5. Найти градиент функции
в точке .
Ответ: .


6. Найти градиент функции
в точке .
Ответ:
.

Hosted by uCoz

Градиент функции

Как найти?

Постановка задачи

Найти градиент функции $ f(x,y,z) $ в точке $ M(x_0,y_0,z_0) $

План решения

Градиент функции $ f(x,y,z) $ – это вектор, каждая координата которого является частной производной первого порядка этой функции:

$$ grad f = frac{partial f}{partial x} overline {i} + frac{partial f}{partial y} overline{j} + frac{partial f}{partial z} overline {k} $$

  1. Берём частные производные первого порядка от функции $ f(x,y,z) $:
    $$ frac{partial f}{partial x}, frac{partial f}{partial y}, frac{partial f}{partial z} $$
  2. Вычисляем полученные производные в точке $ M(x_0,y_0,z_0) $:
    $$ frac{partial f}{partial x} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial y} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial z} bigg |_{M(x_0,y_0,z_0)} $$
  3. Подставляем, полученные данные в формулу градиента функции:
    $$ grad f bigg |_M = frac{partial f}{partial x} bigg |_M overline{i} + frac{partial f}{partial y} bigg |_M overline{j} + frac{partial f}{partial z} bigg |_M overline{k} $$

Примеры решений

Пример 1
Найти градиент функции $ u = x + ln (z^2+y^2) $ в точке $ M(2,1,1) $
Решение

Находим частные производные первого порядка функции трёх переменных:
$$ frac{partial f}{partial x} = 1; frac{partial f}{partial y} = frac{2y}{z^2+y^2}; frac{partial f}{partial z} = frac{2z}{z^2+y^2} $$

Вычисляем значение производных в точке $ M(2,1,1) $:

$$ frac{partial f}{partial x} bigg |_{M(2,1,1)} = 1 $$

$$ frac{partial f}{partial y} bigg |_{M(2,1,1)} = frac{2 cdot 1}{1^2+1^2} = frac{2}{2}=1 $$

$$ frac{partial f}{partial z} bigg |_{M(2,1,1)} = frac{2cdot 1}{1^2 + 1^2} = frac{2}{2}=1 $$

Подставляем в формулу градиента функции полученные данные:

$$ grad f = 1 cdot overline{i} + 1 cdot overline{j} + 1 cdot overline{k} = overline{i}+overline{j}+overline{k} $$

Запишем ответ в координатной форме:

$$ grad f = overline{i}+overline{j}+overline{k} = (1,1,1) $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ grad f = (1,1,1) $$
Пример 2
Найти градиент функции $ u = sin(x+2y)+2sqrt{xyz} $ в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $
Решение

Находим частные производные:

$$ frac{partial f}{partial x} = cos(x+2y) + frac{yz}{sqrt{xyz}} $$

$$ frac{partial f}{partial y} = 2cos(x+2y) + frac{xz}{sqrt{xyz}} $$

$$ frac{partial f}{partial z} = frac{xy}{sqrt{xyz}} $$

Вычисляем значения производных в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $:

$$ frac{partial f}{partial x} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = cos(frac{pi}{2}+3pi)+ frac{frac{9pi}{2}}{sqrt{frac{9pi^2}{4}}} = cos frac{7pi}{2} + sqrt{9} = 3 $$

$$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = 2 cos(frac{pi}{2}+3pi) + frac{frac{3pi}{2}}{sqrt{frac{9pi^2}{4}}} = 2 cos frac{7pi}{2} + 1 = 2 cdot 0 + 1 = 1 $$

$$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = frac{frac{3pi^2}{4}}{sqrt{frac{9pi^2}{4}}} = sqrt{frac{pi^2}{4}} = frac{pi}{2} $$

Подставляем вычисленные недостающие данные в формулу и получаем:

$$ grad f = 3 cdot overline{i}+ 1 cdot overline{j} + frac{pi}{2} cdot overline{k} = 3overline{i}+overline{j}+frac{pi}{2} overline{k} $$

Записываем ответ в координатной форме:

$$ grad f = (3,1,frac{pi}{2}) $$

Ответ
$$ grad f = (3,1,frac{pi}{2}) $$

Как найти градиент функции

Градиент функции – векторная величина, нахождение которой связано с определением частных производных функции. Направление градиента указывает путь наискорейшего роста функции от одной точки скалярного поля к другой.

Как найти градиент функции

Инструкция

Для решения задачи на градиент функции используются методы дифференциального исчисления, а именно нахождение частных производных первого порядка по трем переменным. При этом предполагается, что сама функция и все ее частные производные обладают свойством непрерывности в области определения функции.

Градиент – это вектор, направление которого указывает направление максимально быстрого возрастания функции F. Для этого на графике выбираются две точки M0 и M1, которые являются концами вектора. Величина градиента равна скорости возрастания функции от точки M0 к точке M1.

Функция дифференцируема во всех точках этого вектора, следовательно, проекциями вектора на координатных осях являются все ее частные производные. Тогда формула градиента выглядит следующим образом:grad = (∂F/∂х)•i + (∂F/∂y)•j + (∂F/∂z)•k, где i, j, k – координаты единичного вектора. Иными словами, градиент функции – это вектор, координатами которого являются ее частные производные grad F = (∂F/∂х, ∂F/∂y, ∂F/∂z).

Пример1.Пусть задана функция F = sin(х•z²)/y. Требуется найти ее грaдиент в точке (π/6, 1/4, 1).

Решение.Определите частные производные по каждой переменной: F’_х = 1/y•соs(х•z²)•z²;F’_y = sin(х•z²)•(-1)•1/(y²);F’_z = 1/y•соs(х•z²)•2•х•z.

Подставьте известные значения координат точки:F’_x = 4•соs(π/6) = 2•√3; F’_y = sin(π/6)•(-1)•16 = -8; F’_z = 4•соs(π/6)•2•π/6 = 2•π/√3.

Примените формулу градиента функции:grаd F = 2•√3•i – 8•j + 2•π/√3•k.

Пример2.Найдите координаты градиента функции F = y•arсtg (z/x) в точке (1, 2, 1).

Решение.F’_х = 0•аrсtg (z/х) + y•(аrсtg(z/х))’_х = y•1/(1 + (z/х)²)•(-z/х²) = -y•z/(х²•(1 + (z/х)²)) = -1;F’_y = 1•аrсtg(z/х) = аrсtg 1 = π/4;F’_z = 0•аrсtg(z/х) + y•(аrсtg(z/х))’_z = y•1/(1 + (z/х)²)•1/х = y/(х•(1 + (z/х)²)) = 1.grаd = (-1, π/4, 1).

Видео по теме

Источники:

  • нахождение градиента

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий