Как найти длину хорды, стянутой дугой
Хордой называют отрезок, соединяющий две произвольные точки на любой кривой линии, а дуга – это часть кривой, заключенная между крайними точками хорды. Эти два определения могут быть применены к кривой линии любой формы. Однако чаще всего требуется рассчитать длину хорды применительно к кругу, то есть когда дуга является частью окружности.
Инструкция
Если длина дуги (l) между крайними точками, задающими хорду, известна, а кроме нее в условиях дан и радиус окружности (R), задачу вычисления длины хорды (m) можно свести к расчету длины основания равнобедренного треугольника. Боковые стороны этого треугольника будут образованы двумя радиусами окружности, а угол между ними будет центральным углом, который вам и нужно рассчитать в первую очередь. Для этого разделите длину дуги на радиус: l/R. Полученный результат выражен в радианах. Если вам удобнее производить вычисления в градусах, формула будет значительно сложнее – сначала умножьте длину дуги на 360, а затем поделите результат на удвоенное произведение числа Пи на радиус: l*360/(2*π*R) = l*180/(π*R).
Выяснив величину центрального угла, рассчитайте длину хорды. Для этого удвоенный радиус круга умножьте на синус половины центрального угла. Если вы выбрали расчеты в градусах, в общем виде полученную формулу запишите так: m = 2*R*sin(l*90/(π*R)). Для расчетов в радианах она будет содержать на одно математическое действие меньше m = 2*R*sin(l/(2*R)). Например, при длине дуги в 90 см и радиусе 60 см хорда должна иметь длину 2*60*sin(90*90/(3,14*60)) = 120*sin(8100/188,4) = 120*sin(42,99°) ≈ 120*0,68 = 81,6 см при точности расчетов до двух знаков после запятой.
Если в дополнение к длине дуги (l) в условиях задачи дана полная длина окружности (L), выразите через нее радиус, разделив на удвоенное число Пи. Затем подставьте это выражение в общую формулу из предыдущего шага: m = 2*(L/(2*π))*sin(l*90/(π*L/(2*π))). После упрощения выражения у вас должно получиться такое равенство для расчетов в градусах: m = L/π*sin(l*180/L). Для вычислений в радианах оно будет выглядеть так: m = L/π*sin(l*π/L). Например, если длина дуги составляет 90 см, а длина окружности – 376,8 см, длина хорды составит 376,8/3,14*sin(90*180/376,8) = 120*sin(42,99°) ≈ 120*0,68 = 81,6 см.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
У этого термина существуют и другие значения, см. Хорда.
1 — секущая, 2 — хорда AB (отмечена красным цветом), 3 — сегмент (отмечен зелёным цветом), 4 — дуга
Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).
Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда окружности.
Свойства хорд окружности[править | править код]
Хорда и расстояние до центра окружности[править | править код]
- Если расстояния от центра окружности до хорд равны, то эти хорды равны.
- Если хорды равны, то расстояния от центра окружности до этих хорд равны.
- Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
- Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
- Наибольшая возможная хорда является диаметром.
- Наименьшая возможная хорда является точкой.
- Если хорда проходит через центр окружности, то эта хорда является диаметром.
- Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
- Серединный перпендикуляр к хорде проходит через центр окружности.
Хорда и диаметр[править | править код]
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
- Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
- Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
- Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
Хорда и радиус[править | править код]
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
- Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
- Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
- Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
- Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.
Хорда и вписанный угол[править | править код]
- Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
- Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
- Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
- Если вписанный угол опирается на диаметр, то этот угол является прямым.
Хорда и центральный угол[править | править код]
- Если хорды стягивают равные центральные углы, то эти хорды равны.
- Если хорды равны, то эти хорды стягивают равные центральные углы.
- Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
- Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.
Хорда и дуга[править | править код]
- Если хорды стягивают равные дуги, то эти хорды равны.
- Если хорды равны, то эти хорды стягивают равные дуги.
- Из дуг, меньших полуокружности, бóльшая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
- Из дуг, меньших полуокружности, бóльшая хорда стягивает бóльшую дугу, меньшая хорда стягивает меньшую дугу.
- Из дуг, бóльших полуокружности, меньшая дуга стягивается большей хордой, бóльшая дуга стягивается меньшей хордой.
- Из дуг, бóльших полуокружности, бóльшая хорда стягивает меньшую дугу, меньшая хорда стягивает бóльшую дугу.
- Хорда, стягивающая полуокружность, является диаметром.
- Если хорды параллельны, то дуги, заключённые между этими хордами (не путать с дугами, стягиваемыми хордами), равны.
Другие свойства[править | править код]
Рис. 1.
- При пересечении двух хорд AB и CD в точке E получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рис. 1): .
- Если хорда делится пополам какой-либо точкой, то её длина самая маленькая по сравнению с длинами проведённых через эту точку хорд.
Свойства хорд эллипса[править | править код]
Этот раздел статьи ещё не написан. Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017) |
Основные формулы[править | править код]
- Длина хорды равна , где — радиус окружности, – диаметр окружности, — центральный угол, опирающийся на данную хорду (рис. 2).
- Формула, напрямую выводящаяся из теоремы Пифагора (рис. 3): , где — длина хорды, — радиус окружности, — расстояние от центра окружности до хорды.
- Если известны все четыре длины отрезков двух пересекающихся хорд, например, (см. Рис.1), то радиус окружности определяется формулой:
-
- при ограничениях: .
- Здесь — угол между отрезками и (или между отрезками и ) .
- В случае, когда хорды взаимно перпендикулярны,
Связанные понятия[править | править код]
- Касательная
- Секущая
- Диаметр
- Дуга окружности
Ссылки[править | править код]
- Справочник. Окружности.
Хорда – отрезок соединяющий любые две точки окружности. Диаметр окружности, самая большая хорда.
Определение хорды
Хорда – это отрезок, который соединяет две точки заданной кривой. Хорда может быть у дуги, окружности, эллипса и т.д.
На рисунке хорда обозначена как отрезок AB красного цвета . Оба его конца находятся на окружности
Часть кривой, заключенной между двумя точками хорды, называется дугой.
На рисунке дуга хорды AB обозначена зеленым цветом .
Плоская фигура, заключенная между дугой и ее хордой называется сегментом.
Сегмент на рисунке ограничен красным отрезком AB с одной стороны, и зеленой дугой – с другой стороны.
Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности – самая длинная хорда окружности.
Свойства хорды к окружности
- Если расстояния от центра окружности до хорд равны, то эти хорды равны. Верно и обратное – если хорды равны, то расстояния от центра окружности до этих хорд равны
- Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше. Верно и обратное
- Наибольшая возможная хорда является диаметром
- Серединный перпендикуляр к хорде проходит через центр окружности
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде. Верно и обратное – если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам. Верно и обратное – если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде. Верно и обратное – если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
- Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное – если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.
Свойства хорды и вписанного угла
Свойства хорды и центрального угла
Формулы нахождения хорды
Обозначения в формулах:
l – длина хорды
α – величина центрального угла
R – радиус окружности
d – длина перпендикуляра, проведенного от центра окружности к хорде
Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла.
Сумма квадрата половины длины хорды и квадрата перпендикуляра, проведенного к этой хорде, равна квадрату радиуса окружности. Данная формула следует из теоремы Пифагора.
Решение задач
Примечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.
Задача.
Хорды АВ и СD пересекаются в точке S, при чем AS:SB = 2:3, DS = 12см, SC = 5см, найти АВ.
Решение.
Поскольку соотношение AS:SB = 2:3 , то пусть длина AS = 2x, SB = 3x
Согласно свойству хорд AS x SB = CS x SD, тогда
2х * 3х = 5 * 12
6х 2 = 60
х 2 = 10
x = √10
Откуда
AB = AS + SB
AB = 2√10 + 3√10= 5√10
Окружность разделена на части, которые относятся как 3,5:5,5:3 и точки деления соединены между собой. Определить величину углов образовавшегося треугольника.
Решение.
Обозначим коэффициент пропорциональности дуг окружности, как х. Соединим центры окружности с концами дуг. Поскольку центральный угол равен градусной мере дуги, на которую опирается, то соотношение центральных углов окружности будет равно соотношению ее частей (дуг).
Поскольку градусная мера окружности равна 360 градусам, то
3,5х + 5,5х + 3х = 360
12х = 360
х = 30
Откуда градусные величины центральных углов равны:
3 * 30 = 90
3,5 *30 = 105
5,5 *30 = 165
Углы образовавшегося треугольника являются углами, вписанными в окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается.
Откуда углы треугольника равны:
90 / 2 = 45
105 / 2 = 52,5
165 / 2 = 82,5
Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ;
Хорда окружности – определение, свойства, теорема
Хорда в геометрии
Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.
Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.
Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.
Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.
Свойства отрезка окружности
Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:
- Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
- Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
- Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
- Самый маленький отрезок в окружности это точка.
- Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
- При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
- Дуги, которые находятся между двумя параллельными хордами, равны.
Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.
Ключевая теорема
Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.
Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.
Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.
Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.
Касательная и секущая
Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.
Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.
Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.
Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.
Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.
Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.
Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.
Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.
Решение задач
При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:
- Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
- Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
- Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.
Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.
[spoiler title=”источники:”]
http://profmeter.com.ua/communication/learning/course/course7/lesson318/
http://nauka.club/matematika/geometriya/khorda-okruzhnosti.html
[/spoiler]
Геометрия круга
Круг, его части, их размеры и соотношения — вещи, с которыми ювелир постоянно сталкивается. Кольца, браслеты, касты, трубки, шары, спирали — много всего круглого приходится делать. Как же всё это посчитать, особенно если тебе посчастливилось в школе прогулять уроки геометрии?..
Давайте сначала рассмотрим, какие у круга бывают части и как они называются.
- Окружность — линия, ограничивающая круг.
- Дуга — часть окружности.
- Радиус — отрезок, соединяющий центр круга с какой-либо точкой окружности.
- Хорда — отрезок, соединяющий две точки окружности.
- Сегмент — часть круга, ограниченная хордой и дугой.
- Сектор — часть круга, ограниченная двумя радиусами и дугой.
Интересующие нас величины и их обозначения:
Теперь посмотрим, какие задачи, связанные с частями круга, приходится решать.
- Найти длину развертки какой-либо части кольца (браслета). Задан диаметр и хорда (вариант: диаметр и центральный угол), найти длину дуги.
- Есть рисунок на плоскости, надо узнать его размер в проекции после сгибания в дугу. Заданы длина дуги и диаметр, найти длину хорды.
- Узнать высоту детали, полученной сгибанием плоской заготовки в дугу. Варианты исходных данных: длина дуги и диаметр, длина дуги и хорда; найти высоту сегмента.
Жизнь подскажет и другие примеры, а эти я привел только для того, чтобы показать необходимость задания каких-нибудь двух параметров для нахождения всех остальных. Вот этим мы и займемся. А именно, возьмем пять параметров сегмента: D, L, X, φ и H. Затем, выбирая из них все возможные пары, будем считать их исходными данными и путем мозгового штурма находить все остальные.
Чтобы зря не грузить читателя, подробных решений я приводить не буду, а приведу лишь результаты в виде формул (те случаи, где нет формального решения, я оговорю по ходу дела).
И еще одно замечание: о единицах измерения. Все величины, кроме центрального угла, измеряются в одних и тех же абстрактных единицах. Это значит, что если, к примеру, вы задаёте одну величину в миллиметрах, то другую не надо задавать в сантиметрах, а результирующие значения будут измеряться в тех же миллиметрах (а площади — в квадратных миллиметрах). То же самое можно сказать и про дюймы, футы и морские мили.
И только центральный угол во всех случаях измеряется в градусах и ни в чём другом. Потому что, как показывает практика, люди, проектирующие что-нибудь круглое, не склонны измерять углы в радианах. Фраза «угол пи на четыре» многих ставит в тупик, тогда как «угол сорок пять градусов» — понятна всем, так как это всего на пять градусов выше нормы. Однако, во всех формулах будет присутствовать в качестве промежуточной величины еще один угол — α. По смыслу это половина центрального угла, измеренная в радианах, но в этот смысл можно спокойно не вникать.
1. Даны диаметр D и длина дуги L
; длина хорды ;
высота сегмента ; центральный угол .
2. Даны диаметр D и длина хорды X
; длина дуги ;
высота сегмента ; центральный угол .
Поскольку хорда делит круг на два сегмента, у этой задачи не одно, а два решения. Чтобы получить второе, нужно в приведенных выше формулах заменить угол α на угол .
3. Даны диаметр D и центральный угол φ
; длина дуги ;
длина хорды ; высота сегмента .
4. Даны диаметр D и высота сегмента H
; длина дуги ;
длина хорды ; центральный угол .
6. Даны длина дуги L и центральный угол φ
; диаметр ;
длина хорды ; высота сегмента .
8. Даны длина хорды X и центральный угол φ
; длина дуги ;
диаметр ; высота сегмента .
9. Даны длина хорды X и высота сегмента H
; длина дуги ;
диаметр ; центральный угол .
10. Даны центральный угол φ и высота сегмента H
; диаметр ;
длина дуги ; длина хорды .
Внимательный читатель не мог не заметить, что я пропустил два варианта:
5. Даны длина дуги L и длина хорды X
7. Даны длина дуги L и высота сегмента H
Это как раз те два неприятных случая, когда у задачи нет решения, которое можно было бы записать в виде формулы. А задача-то не такая уж редкая. Например, у вас есть плоская заготовка длины L, и вы хотите согнуть ее так, чтобы ее длина стала X (или высота стала H). Какого диаметра взять оправку (ригель)?
Задача эта сводится к решению уравнений:
; — в варианте 5
; — в варианте 7
и хоть они и не решаются аналитически, зато легко решаются программным способом. И я даже знаю, где взять такую программу: на этом самом сайте, под именем Segment. Всё то, что я тут длинно рассказываю, она делает за микросекунды.
Для полноты картины добавим к результатам наших вычислений длину окружности и три значения площадей — круга, сектора и сегмента. (Площади нам очень помогут при вычислении массы всяких круглых и полукруглых деталей, но об этом — в отдельной статье.) Все эти величины вычисляются по одним и тем же формулам:
длина окружности ;
площадь круга ;
площадь сектора ;
площадь сегмента ;
И в заключение еще раз напомню о существовании абсолютно бесплатной программы, которая выполняет все перечисленные вычисления, освобождая вас от необходимости вспоминать, что такое арктангенс и где его искать.
Программа Segment
Окружность – это фигура на плоскости, все точки которой равноудалены от центра окружности. Окружность
– самая простая фигура, которую можно провести на местности, для этого достаточно колышка для
обозначения центра окружности и веревки с чертилкой. Чтобы вычертить окружность на листе бумаги,
достаточно циркуля.
Хорда – это отрезок, соединяющий 2 любые точки окружности. Самой длинной хордой является диаметр, или
согласно другому определению, диаметр – это хорда, проходящая через центр окружности. Нередко
появляется практическая необходимость рассчитать длину хорды по известному радиусу окружности и
одному из 2 углов, определяющих положение хорды (центральному или вписанному). В окружности
центральный угол – это угол, вершина которого располагается в центре окружности, а вписанный угол –
это угол, вершина которого лежит на окружности. Или же, вписанный угол — это угол,
образованный двумя пересекающимися на окружности хордами.
- Длина хорды через радиус и угол между радиусами
- Длина хорды через вписанный угол и радиус
Через радиус и угол между радиусами
Если известен радиус и угол между радиусами, то формула будет следующая:
L = 2R * sin α/2
где R – радиус окружности, α – центральный угол между радиусами, опирающийся на хорду.
Цифр после
запятой:
Результат в:
Пример. Решим практическую задачу: на местности строится из кирпича сооружение, в
плане имеющее форму неполной окружности с радиусом 3 м, со стороны входа стянутой хордой, на которую
опирается центральный угол в 36°. Найти длину хорды, что требуется для построения на местности без
откладывания угла, а также проверки, достаточно ли в прямой стенке места для входа и устройства
двери. L = 2R * sin α/2 = 2 * 3 * sin 36°/2 = 6 * 0,309 = 1,854 (м).
Через вписанный угол и радиус
Если известен вписанный угол и радиус, то формула по нахождению длины хорды следующая:
L = 2R * sin α
где R — радиус, sin α — вписанный угол
Цифр после
запятой:
Результат в:
Удивительно простой вид этой формулы основан на теореме о вписанном угле, согласно которой вписанный
угол равен половине центрального угла, опирающегося на ту же дугу (а соответственно на ту же хорду),
тем самым данная формула выводится из предыдущей.
Пример. В качестве примера, рассчитаем длину хорды в окружности радиусом 10 м, на
которую опирается вписанный угол 30°. L = 2R * sin α = 2 * 10 * sin 30° = 20 * 0,5 = 10 (м).
Длина хорды оказалась равной радиусу, т.е. представляет собой одну сторону вписанного в окружность
шестиугольника.
Таким образом, расчет длины хорды позволяет построить на местности или бумаге любой правильный
многоугольник без необходимости откладывания углов, центральных или вписанных. Уже в эпоху
первобытного строя люди знали о свойствах окружности, и пользовались ими для своих целей. Одно из
самых известных сооружений той поры – Стоунхендж в Англии, предположительно являвшийся
астрономической обсерваторией. Следовательно, уже тогда появилась необходимость выдерживать строго
центральные и вписанные углы.