Найти медиану равнобедренного треугольника зная только периметр
Даю 30 баллов.
Светило науки – 5 ответов – 0 раз оказано помощи
Ответ:
Периметр равнобедренного треугольника – это сумма всех его трёх сторон. P (ABD) = AB + AD + BD = 24 (сантиметра). Так как данная медиана делит равнобедренный треугольник на два равных треугольника, то: АВ + AD = P (ABC): 2 = 32: 2 = 16 (сантиметров). И если мы из периметра треугольника ABD, суммы всех его трёх сторон, вычтем сумму двух из них, мы найдём третью сторону: BD = Р (ABD) – (AB + AD) = 24 – 16 = 8 (сантиметров). Ответ: 8 сантиметров.
Объяснение:
надеюсь поставишь❤ и 5 ⭐
Найди верный ответ на вопрос ✅ «Периметр треугольника равен 40 см. Медиана делит данный треугольник на два треугольника, периметры которых равны 28 см и 24 см. Найдите …» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Геометрия » Периметр треугольника равен 40 см. Медиана делит данный треугольник на два треугольника, периметры которых равны 28 см и 24 см. Найдите длину медианы.
В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Найдите медиану АМ, если периметр треугольника АВС равен 40 см, а периметр треугольника АВМ равен 32 см.
Спрятать решение
Решение.
Периметр треугольника ABC равен сумме длин трех сторон AB + AC + BС. Так как треугольник ABC равнобедренный, то стороны AB и AC равны. Медиана AM делит BC на две равные части CM = MB. Периметр треугольника ABM равен AM + BM + AB. Периметр треугольника ABC равен AB + AC + CB = 2AB + 2BM = 2(AB + BM) = 40 см. Следовательно, AB + BM = 20 см. Зная периметр ABM, можно найти медиану: 32 − 20 = 12 см.
Ответ: 12 см.
Спрятать критерии
Критерии проверки:
Критерии оценивания выполнения задания | Баллы |
---|---|
Другие случаи, не соответствующие указанным критериям | 0 |
Ход решения правильный, все его шаги присутствуют, но допущена ошибка или описка вычислительного характера | 1 |
Ход решения задачи верный, получен верный ответ | 2 |
Максимальный балл | 2 |
Все формулы медианы треугольника
Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.
Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.
M – медиана, отрезок |AO|
c – сторона на которую ложится медиана
a, b – стороны треугольника
γ – угол CAB
Формула длины медианы через три стороны, (M):
Формула длины медианы через две стороны и угол между ними, (M):
- Подробности
-
Автор: Administrator
-
Опубликовано: 08 октября 2011
-
Обновлено: 13 августа 2021
Содержание материала
- Алгоритм нахождения медианы
- Видео
- Формула длины медианы треугольника
- Что такое медиана и чем она лучше
- Медиана в прямоугольном треугольнике
- Пример вычисления медианы
- Есть ли альтернативы медиане
Алгоритм нахождения медианы
Искать медиану в числовом ряде достаточно просто, для этого достаточно всего лишь придерживаться определенного алгоритма:
- Первым шагом будет нужно упорядочить числовой набор, выписав все числа последовательно в порядке возрастания.
- Затем, чтобы было удобнее находить медиану, следует поочередно зачеркивать одновременно самое большое и самое маленькое числа, то есть одно значение из начала числового ряда, а другое — из его конца. Это нужно делать до тех пор, пока в середине не останется одно (если ряд имеет нечетное количество чисел) или два (если ряд имеет четного количества чисел) значения.
- При условии, что в центре остается одно число, его и считают медианой, поэтому в таком случае задача уже будет решена.
- Если же в середине осталось два числа, то нужно найти их полусумму. Полученное значение и будет являться медианой числового ряда.
Попробуем применить данный алгоритм на примере. У нас имеется следующий ряд чисел:
$$19, 7, 21, 2, 15, 5$$
Прежде всего запишем все числа в порядке возрастания друг за другом:
$$2, 5, 7, 15, 19, 21$$
Теперь начнем убирать самое большое и самое маленькое значения. Сначала зачеркиваем числа $21$ и $2$, затем $19$ и $5$. Мы видим, что в середине осталось два числа, так как числовой ряд состоял из четного количества чисел.
$$textcolor{red}{2}, textcolor{red}{5}, 7, 15, textcolor{red}{19}, textcolor{red}{21}$$
Чтобы найти медиану, нам нужно сложить числа $7$ и $15$, после чего разделить их на два. Получается такой пример:
$$frac{7+15}{2}=frac{22}{2}=11$$
Значение $11$ и будет являться искомой медианой, поэтому в ответе мы можем записать, что $Me=11$.
Формула длины медианы треугольника
Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно?
Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем.
Итак, ( displaystyle {{m}^{2}}=frac{1}{4}~left( 2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}} right))
Видео
Что такое медиана и чем она лучше
Чтобы застраховаться от подобных ошибок, вместо среднего значения можно применять медианное.
Медиана поможет найти именно тот показатель, который ближе всего к истинно среднему. На неё не влияют выбивающиеся из общей массы числа, поэтому она считается одним из самых надёжных и устойчивых показателей. Так, для упомянутого выше ряда «1, 2, 1, 1, 3, 8, 10, 1, 587» медиана будет равна 2. Если вместо 587 поставить 87, она всё равно будет равна 2, если 7 — тоже 2. Среднее арифметическое же в аналогичных случаях будет меняться: 12,7 и 3,8 соответственно.
С помощью медианы можно получить более точные данные и правильнее интерпретировать статистику. Например, при расчёте средней заработной платы, когда 19 сотрудников получают по 20 тысяч рублей, а директор — миллион. Среднее арифметическое в этом случае будет равным 69 тысячам рублей, а медиана — 20. Поэтому последнюю и предпочитают люди, работающие с цифрами: от бухгалтеров до учёных.
Медианное значение рассчитывается из числа или пары чисел, которые больше одной половины показателей и меньше другой. Чтобы найти медиану, надо упорядочить набор чисел и просто найти в нём середину. Вот так: «1, 1, 1, 1, 2, 3, 8, 10, 587».
Если в ряде чётное количество показателей, как например в «1, 1, 1, 1, 2, 3, 8, 10», надо взять два средних числа. Это 1 и 2. Их нужно сложить, а сумму разделить пополам:
(1+2)/2=1,5
Медиана в прямоугольном треугольнике
Медиана равна половине гипотенузы прямоугольного треугольника!
Почему??? При чём тут прямой угол?
Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.
Ты заметил, что наш треугольник ( displaystyle ABC) – ровно половина этого прямоугольника?
Проведём диагональ ( displaystyle BD):
Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?
Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, ромб…»
Но одна из диагоналей – ( displaystyle AC) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы ( displaystyle Delta ABC).
Она называлась у нас ( displaystyle M).
Значит, половина второй диагонали – наша медиана ( displaystyle BM). Диагонали равны, их половинки, конечно же, тоже. Вот и получим ( displaystyle BM=MA=MC)
Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.
Более того, так бывает только в прямоугольном треугольнике!
Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.
Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?
Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.
Пример вычисления медианы
Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.
Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).
Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.
Есть ли альтернативы медиане
Иногда может понадобиться найти не максимально усреднённый показатель, а наиболее частый. Например, когда нужно выяснить самый популярный размер в магазине одежды. В таком случае нужно использовать моду. Это значение, которое встречается чаще других. Так, в ряде «1, 2, 1, 1, 3, 8, 10, 1, 87», мода — это 1. Модой может быть сразу несколько чисел. Как и медиану, её можно посчитать с помощью онлайн‑калькулятора и Excel.