Как найти длину медианы в равностороннем треугольнике

В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.

  • Определение медианы

  • Свойства медианы равностороннего треугольника

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

    • Свойство 7

  • Примеры задач

Определение медианы

Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.

Медиана в равностороннем треугольнике

  • BD – медиана, проведенная к стороне AC;
  • AD = DC.

Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).

Свойства медианы равностороннего треугольника

Свойство 1

Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.

Медиана в равностороннем треугольнике

  • BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
  • ∠ABD = ∠CBD.

Свойство 2

Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.

Равенство медиан в равностороннем треугольнике

Свойство 3

Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.

Деление медиан в точке пересечения в равностороннем треугольнике

  • G – центр тяжести (центроид) треугольника;
  • AG = 2GF;
  • BG = 2GD;
  • CG = 2GE.

Свойство 4

Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.

Деление равностороннего треугольника медианой на два равновеликих прямоугольных треугольника

Свойство 5

Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.

Деление равностороннего треугольника медианами на шесть равновеликих прямоугольных треугольников

Свойство 6

Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.

Центры описанной и вписанной в равносторонний треугольник окружностей на пересечении медиан

  • r – радиус вписанной окружности;
  • R – радиус описанной окружности;
  • R = 2r (следует из Свойства 3).

Свойство 7

Длину медианы равностороннего треугольника можно вычислить по формуле:

Формула нахождения медианы равностороннего треугольника через длину его стороны

a – сторона треугольника.

Примеры задач

Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.

Решение
Для нахождения требуемого значения применим формулу выше:

Нахождение медианы равностороннего треугольника через длину его стороны (пример)

Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.

Решение
Нарисуем чертеж согласно условиям задачи.

Медианы равностороннего треугольника (пример)

Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.

  • BG = 8 см (самая большая сторона, является гипотенузой △BFG);
  • FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).

Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF2 = BG2 – FG2 = 82 – 42 = 48 см2.
Следовательно, BF ≈ 6,93 см.

BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.

Сколько равна медиана равностороннего треугольника?

Анонимный вопрос

21 декабря 2018  · 5,8 K

Педагог, музыкант, начинающий путешественник и немножко психолог  · 21 дек 2018

Медианой треугольника называется отрезок, соединяющий его вершину с серединой противоположной стороны.

В равностороннем треугольнике медиана является одновременно и биссектрисой, и высотой. И все эти значения равны для всех углов и сторон.

Высчитать длину этого отрезка можно тремя способами, применив, соответственно, 3 формулы:

1) через сторону треугольника – m=(а√3)/2, где “m” – медиана, а “a” – длина стороны;

2) через радиус вписанной окружности – m=3r, где “m” – медиана, а “r” – радиус (прим.: вписанной окружностью называется та, которая касается всех сторон треугольника);

3) через радиус описанной окружности – m=3R/2, где “m” – медиана, а “R” – радиус (прим.: описанной окружностью называется та, которая проходит через все вершины треугольника).

3,8 K

Комментировать ответ…Комментировать…

Медиана равностороннего треугольника


Медиана равностороннего треугольника

4.6

Средняя оценка: 4.6

Всего получено оценок: 139.

4.6

Средняя оценка: 4.6

Всего получено оценок: 139.

Равносторонний треугольник стоит особняком среди всех фигур: в нем легко можно найти значение всех сторон и углов, так как все углы известны заранее, а найдя одну сторону, можно найти сразу все три. Но именно из-за этих свойств, составители задач любят писать каверзные условия, в которых не всегда можно разобраться с первого раза, например, не всегда можно понять, что такое медиана, потому что человеку проще воспринимать понятие высоты, нежели медианы. Рассмотрим же понятие медианы в равностороннем треугольнике подробно.

Определения

Равносторонний треугольник – это треугольник, все стороны которого равны, а углы по 60 градусов.

Равносторонний треугольник это частный случай равнобедренного, но в равностороннем любую сторону можно считать основанием.

Равносторонний треугольник

Рис. 1. Равносторонний треугольник.

Из этого следует, что любая высота равностороннего треугольника является медианой и биссектрисой, так как любая высота проводится к стороне, которую можно считать основанием.

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположно стороны. Медиана также имеет ряд свойств, которые можно использовать в решении задач.

Медианы в треугольнике пересекаются в одной точке и делят эту точку в отношении 2:3, считая от вершины. При этом медианы разбивают треугольник на 6 разновеликих треугольников. Если посмотреть на рисунок, то можно увидеть, что в равностороннем треугольнике каждый из 6 этих треугольников будет прямоугольным.

Формула медианы равностороннего треугольника

Выведем формулу медианы равностороннего треугольника. В равностороннем треугольнике АВС проведем высоту АН. Она же будет являться медианой и высотой. Медиана разобьет треугольник на два прямоугольных: АНС и АНВ. Рассмотрим треугольник АНС.

Рис. 2. Рисунок к задаче.

В нем применим теорему Пифагора:

$$АС^2=AH^2+HC^2$$

$$AH=sqrt{AB^2-BH^2}$$

Каждую из сторон обозначим буквой а. Тогда АВ=а; $$ВН={аover2}$$

$$АН=sqrt{a^2-{aover2}^2}=sqrt{a^2-{a^2over4}}$$

Это и есть формула медианы равностороннего треугольника. С другой стороны, можно воспользоваться тригонометрическими тождествами и вывести еще одну формулу:

$$sin(ACH)={AHover AC}$$

При этом угол АСН равен 60 градусам. Значит, можно определить синус угла: $$sin(ACH)={sqrt{3}over 2}$$

Выразим значение медианы АН

$$АН=sin(ACH)*AC={sqrt{3}over2}*AC={sqrt{3}over2}*a$$

Вот еще одна формула, характерная для равностороннего треугольника.

Задача

Для закрепления темы решим простую задачу на обратное использование формулы медианы.

В равностороннем треугольнике медиана равна $$20over{sqrt{3}}$$. Найти площадь треугольника.

Для нахождения площади воспользуемся классической формулой.

Классическую формулу можно использовать для нахождения площади любого треугольника.

Для нее нам нужно значение стороны и высоты. Высота в равностороннем треугольнике совпадает с медианой, поэтому нужно найти только сторону. Выразим ее через формулу медианы равностороннего треугольника.

Рис. 3. Рисунок к задаче.

$$m={sqrt{3}over2}*a$$

$$a={mover{sqrt{3}over2}}=m*{2oversqrt{3}}$$

Подставим в формулу значение медианы:

$$a={20oversqrt{3}}*{2oversqrt{3}}={40over3}$$

Посчитаем площадь:

$$S={1over2}*a*m={1over2}*{40over3}*{20 oversqrt{3}}={400over{3sqrt{3}}}$$

Заключение

Что мы узнали?

Мы вывели две формулы медианы равностороннего треугольника, дали определения, необходимые для решения задач и решили небольшую задачу для закрепления знаний.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Александр Рудаков

    5/5

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 139.


А какая ваша оценка?

Какими свойствами обладает медиана равностороннего треугольника? Как выразить длину медианы через сторону треугольника? Через радиус вписанной и описанной окружностей?

Теорема 1

(свойство медианы равностороннего треугольника)

В равностороннем треугольнике медиана, проведённая к любой стороне, является также его  биссектрисой и высотой.

Доказательство:

mediana-ravnostoronnego-treugolnikaПусть в треугольнике ABC AB=BC=AC.

Проведём медиану BF.

Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.

По свойству медианы равнобедренного треугольника, BF является также его биссектрисой и высотой.

mediana-ravnostoronnego-treugolnika-yavlyaetsyaАналогично, так как AB=AC, треугольник ABC — равнобедренный с основанием BC, AK — его медиана, биссектриса и высота;

так как AC=BC, треугольник ABC — равнобедренный с основанием AB, CD — его медиана, биссектриса и высота.

Что и требовалось доказать.

Теорема 2

(свойство медиан равностороннего треугольника)

Все три медианы равностороннего треугольника равны между собой.

Доказательство:

mediany-ravnostoronnego-treugolnika-ravny Пусть в треугольнике ABC AB=BC=AC,

AK, BF, CD — его медианы.

Тогда AF=FC=BK=CK=AD=BD.

vse-mediany-ravnostoronnego-treugolnika-ravny

∠BAF=∠BFC=∠ABC (как углы равностороннего треугольника).

Следовательно, треугольники ABK, BCF и CAK равны (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон:

AK=BF=CD.

Что и требовалось доказать.

Из 1 и 2 теоремы следует, что все медианы, биссектрисы и высоты равностороннего треугольника равны между собой.

1) Выразим длину медианы равностороннего треугольника через его сторону.

mediana-ravnostoronnego-treugolnika-cherez-storonuТак как медиана равностороннего треугольника является также его высотой, треугольник ABF- прямоугольный.

Обозначим AB=a,  BF=m, тогда AF=a/2.

По теореме Пифагора

    [m = sqrt {{a^2} - {{(frac{a}{2})}^2}}  = sqrt {frac{{4{a^2} - {a^2}}}{4}}  = sqrt {frac{{3{a^2}}}{4}}  = frac{{asqrt 3 }}{2}.]

Таким образом, формула медианы равностороннего треугольника по его стороне:

    [m = frac{{asqrt 3 }}{2}.]

2) Выразим медиану равностороннего треугольника через радиусы вписанной и описанной окружностей.

Центр правильного треугольника является центром его вписанной и описанной окружностей.

mediana-ravnostoronnego-treugolnika-cherez-radiusТак как центр вписанной окружности лежит в точке пересечения биссектрис треугольника, а медианы равностороннего треугольника являются также его биссектрисами, в равностороннем треугольнике ABC OF — радиус вписанной, BO — радиус описанной окружностей:

OF=r, BO=R.

Так как медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то BO:OF=2:1. Таким образом,

    [OF = frac{1}{3}BF,BO = frac{2}{3}BF,]

    [ Rightarrow BF = 3 cdot OF;BF = frac{3}{2} cdot BO.]

Отсюда медиана равностороннего треугольника через радиус вписанной окружности равна

    [m = 3r,]

через радиус описанной окружности —

    [m = frac{{3R}}{2}.]

Найти медиану биссектрису высоту равностороннего треугольника


Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L – высота=биссектриса=медиана

a – сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

Калькулятор – вычислить, найти медиану, биссектрису, высоту



Подробности

Автор: Administrator

Опубликовано: 07 октября 2011

Обновлено: 13 августа 2021

Добавить комментарий