Как найти длину медианы высоту через координаты

Найти медиану треугольника по координатам вершин

Как найти медиану если даны координаты вершин треугольника?

Чтобы найти медиану треугольника по координатам его вершин, применим формулы координат середины отрезка и формулу расстояния между точками.

Рассмотрим нахождение медианы на конкретном примере.

najti-medianu-dany-koordinaty-vershin-treugolnikaДано: ΔABC,

A(-11;12), B(3;8), C(-1;6),

AF — медиана.

Найти: AF

Решение:

1) Так как AF — медиана треугольника ABC, то F — середина BC.

По формулам координат середины отрезка:

    [x_F = frac{{x_B + x_C }}{2} = frac{{3 + ( - 1)}}{2} = 1;]

    [y_F = frac{{y_B + y_C }}{2} = frac{{8 + 6}}{2} = 7.]

Итак, F(1;7).

2) По формуле расстояния между точками

    [AF = sqrt {(x_F - x_A )^2 + (y_F - y_A )^2 } ]

    [AF = sqrt {(1 - ( - 11))^2 + (7 - 12)^2 } = ]

    [= sqrt {12^2 + ( - 5)^2 } = sqrt {144 + 25} = sqrt {169} = 13.]

Ответ: 13.

Аналитическая геометрия

Задача 3. Даны вершины треугольника ABC (рис. 1): А(-4,8), В(5,-4), С(10, 6).

1) длину стороны АВ;

2) уравнение высоты СД и ее длину;

3) уравнение медианы, проведенной из вершины А;

4) записать уравнение прямой, проходящей через точку С параллельно стороне АВ.

1. Расстояние d между точками М1(x1у1) и М2(х2у2) определя­ется по формуле

(1)

Подставим в формулу (1) координаты точек А и В, получим

.

2. Уравнение прямой, проходящей через точки М1(x1у1) и М2(х2у2), имеет вид

(2)

Подставив в формулу (2) координаты точек А и В, получим уравнение пря­мой АВ:

Для нахождения углового коэффициента КАВ прямой АВ разрешим полученное уравнение относительно у: .

Отсюда . Т. к. высота СD перпендикулярна АВ, то угловой коэффициент будет равен , .

Искомая высота проходит через точку С(10,6). Воспользуемся уравнением прямой, проходящей через данную точку, с заданным угловым коэффициентом:

Y-6= (x-10), 3x-4y-6=0 (СD)

Для нахождения длины СD определим координаты точки D, решив систему уравнений (АВ) и (СD): , откуда х=2, у=0, т. е. D(2,0).

Подставив в формулу (1) координаты точек С и Д, находим

3. Обозначим основание искомой медианы через М. По определению медианы М делит сторону ВС пополам. Координаты точки М най­дем по формуле

(4)

Чтобы записать уравнение медианы AM, воспользуемся форму­лой (2). , , , (АМ)

4. Обозначим искомую прямую СР. Угловой коэффициент , т. к. АВ и СР параллельны, то искомая прямая проходит через точку С (10,6). Воспользуемся уравнением (3)

, , (СP)

Задача 4. Расходы на автомобильном транспорте выражаются формулой у=120+30х, а на железнодорожном – у=160+20х, где х – расстояние в километрах, у – транспортные расходы на 1 км. (в усл. ден. ед.).

Построить графики функций, произвести экономический анализ, рассчитать транспортные расходы при х=200 км.

1. Построим прямые у=120+30х (I) и у=160+20х (II) (рис. 4).

Рис.4

Найдем точку пересечения двух прямых

х0=4 у0=240

Если х=4, оба вида транспорта эквивалентны по затратам.

Если х 4 выгоднее становятся же­лезнодорожные перевозки.

Рассчитаем транспортные расходы при х=200 км.
у=120+30∙200=6120 (усл. ден. ед.) – затраты на автомобильном

У=160+4000=4150 (усл. ден. ед.) – затраты на железнодорожном транспорте.

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

Уравнение медианы треугольника

Как составить уравнение медианы треугольника по координатам его вершин?

Медиана соединяет вершину треугольника с серединой противолежащей стороны. Следовательно, при решении задачи составления уравнения медианы нужно:

  1. Найти координаты середины отрезка по координатам его концов.
  2. Составить уравнение прямой, проходящей через две точки: найденную середину отрезка и противолежащую вершину.

Дано: ΔABC, A(3;1), B(6;-3), C(-3;-7).

Найти уравнения медиан треугольника.

Обозначим середины сторон BC, AC, AB через A1, B1, C1.

Уравнение медианы AA1 будем искать в виде y=kx+b.

Найдём уравнение прямой, проходящей через точки A(3;1) и A1(1,5;-5). Составляем и решаем систему уравнений:

Отсюда k= 4; b= -11.

Уравнение медианы AA1: y=4x-11.

2) Аналогично, координаты точки B1 — середины отрезка AC

Можно в уравнение y=kx+b подставить координаты точек B(6;-3) и B1(0;-3) и найти k и b. Но так как ординаты обеих точек равны, уравнение медианы BB1 можно найти ещё быстрее: y= -3.

3) Координаты точки C1 — середины отрезка BC:

Отсюда уравнение медианы CC1 : y=0,8x-4,6.

[spoiler title=”источники:”]

http://www.matburo.ru/ex_ag.php?p1=agtr

[/spoiler]

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

1) Зная координаты вершин Можем узнать координаты вектора BC (2-3; -3-1) = BC(-1; -4)

Прямая проходящая через точку A должна идти коллинеарно вектору BC, то есть

(х-0) = k•(-1)

(y-4) = k•(-4)

откуда получаем -х=k и -y/4 +1 = k, приравниваем k

-x = -y/4 + 1 или

4x – y = -4

2) Медиана треугольника приходит в середину противоположной стороны. То есть в точку М – середина AС. Её координаты х = (0+2)/2 = 1; y = (4+(-3))/2 = 0,5; M(1; 0,5)

Получаем медиана идет из точки B в направлении вектора MB (3-1; 1-0,5) = MB (2; 0,5)

Получаем (x-3)/2 = (y-1)/0,5

0,5х – 1,5 = 2y – 2

x – 4y = -1

3) Высота из вершины С перпендикулярна стороне AB. То есть Вектора AB и CH ортогональны и их скалярное произведение = 0

AB (3-0; 1-4) = AB(3; -3)

CH (x-2; y-(-3))

<AB•СH> = 3•(х-2) + (-3)•(y+3) = 0

3x-6 – 3y – 9 = 0

x-y = 5 – получили уравнение прямой высоты CH

Уравнение прямой AB: (х-0)/3 = (y-4)/(-3)

x+y = 4

Точка Н – пересечение этих двух прямых:

Решая систему уравнений подстановкой, находим х=4,5; y=-0,5

CH (4,5-2; -0,5+3) = CH(2,5; 2,5)

|CH| = √(2,5² + 2,5²) = 2,5•√2

Ответ:

1) 4x – y = -4;

2) x – 4y = -1;

3) 2,5•√2

Даны вершины А(х11),
В(х22), С(х33) треугольника
АВС.
Требуется найти:
1) уравнение стороны АВ;
2) уравнение высоты СН и длину
этой высоты;
3) уравнение медианы АМ;
4) точку N пересечения медианы АМ и СН;
5) уравнение прямой, параллельной
стороне АВ и проходящей через вершину С;
6) внутренний угол при вершине А и внешний угол при вершине С.

А(1;7), В(-3;-1), С(11;-3)

Решение

1)      Уравнение
прямой АВ:

4(y-7)=8(x-1)

8x-4y+20=0

2xy+5=0– общее уравнение прямой АВ

2) СНАВ =>

2xy+5=0=>  и

Уравнение высоты CH:

y+3= (x-11)

2у+6= -х+11

x+2y-5=0 – общее уравнение высоты CH.

Найдем длину высоты CH как
расстояние от точки С до прямой АВ, общее уравнение
которой Ax+By+C=0, 
А=2, В=-1, С=5

CH=

CH=

1)      Найдем
координаты точки М как середины отрезка ВС:

,

М()

Уравнение медианы АМ

3(y-7)= -9(x-1)

9x+3y-30=0

3х+y-10=0- 
общее уравнение медианы АМ

2)      Найдем
точку пересечения N медианы АМ и высоты CH:

N(3;1)

5) Так как прямая
параллельна АВ, то её угловой коэффициент равен . Найдем её уравнение по формуле:

y+3=2 (x-11)

2xy-25=0 – общее уравнение прямой,
параллельной прямой АВ и проходящей через точку С.

3)      Косинус
внутреннего угла при вершине А:

(-3-1;-1-7)=(-4;-8)

(11-1;-3-7)=(10;10)

Косинус внешнего угла при вершине С:

(-10,10)

(-311;-1+3)=(-14;2)

Ответ:

1) 2xy+5=0

2) x+2y-5=0,  CH=

3) 3х+y-10=0

4) 2xy-25=0

5) ,

Добавить комментарий