§ 16.Общий перпендикуляр двух скрещивающихся прямых
Определение. Общим перпендикуляром двух скрещивающихся прямых называется отрезок, имеющий концы на данных прямых и перпендикулярный к ним.
Пусть a и b — данные скрещивающиеся прямые (рис. 108). Докажем, что существует общий перпендикуляр прямых a и b, и притом только один.
Проведём через прямые a и b параллельные плоскости соответственно α и β. Кроме того, через прямую a проведём плоскость γ, перпендикулярную плоскости β. Пусть a1 = γ ∩ β.
Рис. 108
Очевидно, плоскость γ пересекает плоскость α по прямой a, и прямая a1 является ортогональной проекцией прямой a на плоскость β.
Так как α ‖ β, а прямые a и b скрещиваются, то прямая a1 параллельна прямой a (почему?) и пересекает прямую b в некоторой точке C. Точка C является ортогональной проекцией на плоскость β некоторой точки A прямой a. Это означает, что отрезок AC перпендикулярен плоскости β. Тогда отрезок AC перпендикулярен прямым a1 и b (почему?), следовательно, он перпендикулярен прямой a (почему?). Учитывая, что A ∈ a, C ∈ b, приходим к выводу: отрезок AC — искомый перпендикуляр прямых a и b.
Докажем единственность общего перпендикуляра прямых a и b. Допустим, что существует другой общий перпендикуляр прямых a и b, например отрезок A1C1, причём A1 ∈ a, C1 ∈ b (см. рис. 108). Так как A1C1 ⊥ a, a1 ‖ a, то A1C1 ⊥ a1. Тогда по признаку перпендикулярности прямой и плоскости прямая A1C1 перпендикулярна плоскости β. Теперь имеем: AC ⊥ β, A1C1 ⊥ β ⇒ AC ‖ A1C1. Это означает, что точки A, C, A1, C1, следовательно, и данные скрещивающиеся прямые a и b, лежат в одной плоскости, что невозможно. Значит, допущение неверно, и общий перпендикуляр скрещивающихся прямых a и b единственный.
Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.
Из предыдущих рассуждений следует, что общий перпендикуляр AC двух скрещивающихся прямых a и b является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые. Следовательно, расстояние между двумя скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.
Итак, мы доказали: две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.
Среди огромного количества стереометрических
задач в учебниках геометрии, в различных
сборниках задач, пособиях по подготовке в ВУЗы
крайне редко встречаются задачи на нахождение
расстояния между скрещивающимися прямыми.
Возможно, это обусловлено как узостью их
практического применения (относительно школьной
программы, в отличие от “выигрышных” задач на
вычисление площадей и объемов), так и сложностью
данной темы.
Практика проведения ЕГЭ показывает, что многие
учащиеся вообще не приступают к выполнению
заданий по геометрии, входящих в экзаменационную
работу. Для обеспечения успешного выполнения
геометрических заданий повышенного уровня
сложности необходимо развивать гибкость
мышления, способность анализировать
предполагаемую конфигурацию и вычленять в ней
части, рассмотрение которых позволяет найти путь
решения задачи.
Школьный курс предполагает изучение четырех
способов решения задач на нахождение расстояния
между скрещивающимися прямыми. Выбор способа
обусловлен, в первую очередь, особенностями
конкретной задачи, предоставленными ею
возможностями для выбора, и, во вторую очередь,
способностями и особенностями
“пространственного мышления” конкретного
учащегося. Каждый из этих способов позволяет
решить самую главную часть задачи – построение
отрезка, перпендикулярного обеим скрещивающимся
прямым (для вычислительной же части задач
деление на способы не требуется).
Основные способы решения задач на нахождение
расстояния между скрещивающимися прямыми
Нахождение длины общего перпендикуляра двух
скрещивающихся прямых, т.е. отрезка с концами на
этих прямых и перпендикулярного каждой из этих
прямых.
Нахождение расстояния от одной из
скрещивающихся прямых до параллельной ей
плоскости, проходящей через другую прямую.
Нахождение расстояния между двумя
параллельными плоскостями, проходящими через
заданные скрещивающиеся прямые.
Нахождение расстояния от точки, являющейся
проекцией одной из скрещивающихся прямых, на
перпендикулярную ей плоскость (так называемый
“экран”) до проекции другой прямой на ту же
самую плоскость.
Проведем демонстрацию всех четырех способов на
следующей простейшей задаче: “В кубе с
ребром а найти расстояние между любым ребром
и диагональю не пересекающей его грани”. Ответ: .
1 способ.
Рисунок 1
hскр перпендикулярна плоскости боковой
грани, содержащей диагональ d и
перпендикулярна ребру, следовательно, hскр
и является расстоянием между ребром а и
диагональю d.
2 способ.
Рисунок 2
Плоскость A параллельна ребру и проходит через
данную диагональ, следовательно, данная hскр
является не только расстоянием от ребра до
плоскости A, но и расстоянием от ребра до данной
диагонали.
3 способ.
Рисунок 3
Плоскости A и B параллельны и проходят через две
данные скрещивающиеся прямые, следовательно,
расстояние между этими плоскостями равно
расстоянию между двумя скрещивающимися прямыми.
4 способ.
Рисунок 4
Плоскость A перпендикулярна ребру куба. При
проекции на A диагонали d данная диагональ
обращается в одну из сторон основания куба.
Данная hскр является расстоянием между
прямой, содержащей ребро, и проекцией диагонали
на плоскость C, а значит и между прямой,
содержащей ребро, и диагональю.
Остановимся подробнее на применении каждого
способа для изучаемых в школе многогранников.
СПОСОБ I.
Применение первого способа достаточно
ограничено: он хорошо применяется лишь в
некоторых задачах, так как достаточно сложно
определить и обосновать в простейших задачах
точное, а в сложных – ориентировочное
местоположение общего перпендикуляра двух
скрещивающихся прямых. Кроме того, при
нахождении длины этого перпендикуляра в сложных
задачах можно столкнуться с непреодолимыми
трудностями.
Примеры
Задача 1. В прямоугольном параллелепипеде с
размерами a, b, h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю основания.
Рисунок 5
Пусть AHBD.
Так как А1А перпендикулярна плоскости АВСD ,
то А1А
AH.
AH перпендикулярна обеим из двух скрещивающихся
прямых, следовательно AH?- расстояние между
прямыми А1А и BD. В прямоугольном
треугольнике ABD, зная длины катетов AB и AD, находим
высоту AH, используя формулы для вычисления
площади прямоугольного треугольника. Ответ:
Задача 2. В правильной 4-угольной пирамиде с
боковым ребром L и стороной основания a
найти расстояние между апофемой и стороной
основания, пересекающей боковую грань,
содержащую эту апофему.
Рисунок 6
SHCD как
апофема, ADCD,
так как ABCD – квадрат. Следовательно, DH –
расстояние между прямыми SH и AD. DH равно половине
стороны CD. Ответ:
СПОСОБ II
Применение этого способа также ограничено в
связи с тем, что если можно быстро построить (или
найти уже готовую) проходящую через одну из
скрещивающихся прямых плоскость, параллельную
другой прямой, то затем построение
перпендикуляра из любой точки второй прямой к
этой плоскости (внутри многогранника) вызывает
трудности. Однако в несложных задачах, где
построение (или отыскивание) указанного
перпендикуляра трудностей не вызывает, данный
способ является самым быстрым и легким, и поэтому
доступен.
Примеры
Задача 2. Решение уже указанной выше задачи
данным способом особых трудностей не вызывает.
Рисунок 7
Плоскость EFM параллельна прямой AD, т. к AD || EF.
Прямая MF лежит в этой плоскости, следовательно,
расстояние между прямой AD и плоскостью EFM равно
расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO,
следовательно, OH(EFM),
следовательно, OH – расстояние между прямой AD и
плоскостью EFM, а значит, и расстояние между прямой
AD и прямой MF. Находим OH из треугольника AOD.
Ответ:
Задача 3. В прямоугольном параллелепипеде с
размерами a,b и h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю параллелепипеда.
Рисунок 8
Прямая AA1 параллельна плоскости BB1D1D,
B1D принадлежит этой плоскости,
следовательно расстояние от AA1 до
плоскости BB1D1D равно расстоянию между
прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B,
следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH –
искомое расстояние. Находим AH из прямоугольного
треугольника ABD.
Ответ:
Задача 4. В правильной шестиугольной призме
A:F1 c высотой h и стороной основания a
найти расстояние между прямыми:
Рисунок 9 Рисунок 10
а) AA1 и ED1.
Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1,
следовательно
A1E1 (E1EDD1). Также A1E1 AA1.
Следовательно, A1E1 является
расстоянием от прямой AA1 до плоскости E1EDD1.
ED1(E1EDD1).,
следовательно AE1 – расстояние от прямой AA1
до прямой ED1. Находим A1E1 из
треугольника F1A1E1 по теореме
косинусов. Ответ:
б) AF и диагональю BE1.
Проведем из точки F прямую FH перпендикулярно BE.
EE1FH, FHBE, следовательно
FH(BEE1B1),
следовательно FH является расстоянием между
прямой AF и (BEE1B1), а значит и
расстоянием между прямой AF и диагональю BE1.
Ответ:
СПОСОБ III
Применение этого способа крайне ограничено,
так как плоскость, параллельную одной из прямых
(способ II) строить легче, чем две параллельные
плоскости, однако способ III можно использовать в
призмах, если скрещивающиеся прямые принадлежат
параллельным граням, а также в тех случаях, когда
в многограннике несложно построить параллельные
сечения, содержащие заданные прямые.
Примеры
Задача 4.
Рисунок 11
а) Плоскости BAA1B1 и DEE1D1
параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1,
AA1(BAA1B1),
следовательно, расстояние между прямыми AA1
и ED1 равно расстоянию между плоскостями BAA1B1
и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1.
Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1
является расстоянием между плоскостями BAA1B1
и DEE1D1, а значит, и между прямыми AA1
и ED1. Находим A1E1 из треугольника
A1F1E1, который является
равнобедренным с углом A1F1E1,
равным .
Ответ:
Рисунок 12
б) Расстояние между AF и диагональю BE1
находится аналогично.
Ответ:.
Задача 5. В кубе с ребром а найти
расстояние между двумя непересекающимися
диагоналями двух смежных граней.
Данная задача рассматривается как
классическая в некоторых пособиях, но, как
правило, ее решение дается способом IV, однако
является вполне доступной для решения с помощью
способа III.
Рисунок 13
Некоторую трудность в данной задаче вызывает
доказательство перпендикулярности диагонали A1C
обеим параллельным плоскостям (AB1D1 ||
BC1D). B1CBC1 и BC1A1B1, следовательно,
прямая BC1 перпендикулярна плоскости A1B1C,
и следовательно, BC1A1C. Также, A1CBD.
Следовательно, прямая A1C перпендикулярна
плоскости BC1D. Вычислительная же часть
задачи особых трудностей не вызывает, так как hскр
= EF находится как разность между диагональю куба
и высотами двух одинаковых правильных пирамид A1AB1D1
и CC1BD.
Ответ:
СПОСОБ IV.
Данный способ имеет достаточно широкое
применение. Для задач средней и повышенной
трудности его можно считать основным. Нет
необходимости применять его только тогда, когда
один из трех предыдущих способов работает проще
и быстрее, так как в таких случаях способ IV может
только усложнить решение задачи, или сделать его
труднодоступным. Данный способ очень выгодно
использовать в случае перпендикулярности
скрещивающихся прямых, так как нет необходимости
построения проекции одной из прямых на “экран”
Примеры.
Задача 5. Все та же “классическая” задача
(с непересекающимися диагоналями двух смежных
граней куба) перестает казаться сложной, как
только находится “экран” – диагональное
сечение куба.
Рисунок 14
Экран:
Рисунок 15
Рассмотрим плоскость A1B1CD. C1F (A1B1CD),
т. к. C1FB1C
и C1FA1B1.
Тогда проекцией C1D на “экран” будет
являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием
между двумя непересекающимися диагоналями двух
смежных граней. Находим EM из прямоугольного
треугольника EDF. Ответ:.
Задача 6. В правильной треугольной пирамиде
найти расстояние и угол между скрещивающимися
прямыми: боковым ребром l и стороной
основания a.
Рисунок 16
В данной и аналогичных ей задачах способ IV
быстрее других способов приводит к решению, так
как построив сечение, играющее роль “экрана”,
перпендикулярно AC (треугольник BDM), видно, что
далее нет необходимости строить проекцию другой
прямой (BM) на этот экран. DH – искомое расстояние. DH
находим из треугольника MDB, используя формулы
площади. Ответ: .
11
Авг 2013
Категория: Справочные материалы
Скрещивающиеся прямые
2013-08-11
2013-08-11
Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.
Признак скрещивающихся прямых
Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся.
Расстояние между скрещивающимися прямыми
Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).
Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.
Общий перпендикуляр к двум скрещивающимся прямым
Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.
Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.
Угол между скрещивающимися прямыми
Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.
(Одну из прямых можно вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).
Автор: egeMax |
Нет комментариев
5.5.3. Как найти прямую, содержащую общий перпендикуляр?
в) Эта задачка посложнее будет. «Чайникам» рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к
аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить – дело в том, что по сложности эту задачу
надо бы поставить последней в параграфе, но по логике изложения она должна располагаться здесь. …Впрочем, танцуйте читайте все! 🙂
Итак, требуется найти уравнения прямой , которая содержит общий
перпендикуляр скрещивающихся прямых.
Общий перпендикуляр скрещивающихся прямых – это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:
Вот наш красавец: – общий перпендикуляр прямых . Он
единственный. Другого такого нет. Нам же требуется составить уравнения прямой ,
которая содержит данный отрезок.
Что известно о прямой «эм»? Известен её направляющий вектор , найденный
в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в
Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу….
Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.
Решение оформим по пунктам:
1) Перепишем уравнения первой прямой в параметрической форме:
Рассмотрим точку . Координат мы не знаем. НО. Если точка
принадлежит данной прямой, то её координатам соответствует вполне
конкретное значение параметра, обозначим его через . Тогда координаты
точки запишутся в виде:
, или:
Жизнь налаживается, одна неизвестная – это всё-таки не три неизвестных.
2) Аналогичные действия проведём со второй прямой. Перепишем её уравнения в параметрическом
виде:
Если точка принадлежит данной прямой, то при вполне конкретном
значении её координаты должны удовлетворять
параметрическим уравнениям:
, или:
3) Запишем вектор . Ну и что, что нам не известны координаты точек – это же не
мешает из координат конца вектора вычесть соответствующие координаты начала :
4) Вектор , как и ранее найденный вектор , является направляющим вектором прямой . Таким образом, они коллинеарны, и один вектор можно линейно
выразить через другой с некоторым коэффициентом пропорциональности «лямбда»:
или покоординатно:
Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера. Но так извращаться мы, конечно, не будем. Выразим из
3-го уравнения и подставим эту «лямбду» в первые два уравнения:
Из 2-го уравнения выразим и подставим в 1-е уравнение:
, а «лямбда» нам не потребуется.
То, что значения параметров получились одинаковыми – чистая случайность.
5) Небо полностью проясняется, подставим найденные значения в наши
точки:
Сам вектор нам не нужен, так как уже найден его коллега .
И после длинного пути всегда интересно выполнить проверку. Подставим координаты точки в уравнения :
– получены верные равенства.
Подставим координаты в уравнения :
– получены верные равенства.
Вывод: найденные точки действительно принадлежат соответствующим прямым.
6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :
В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.
5.5.4. Как найти расстояние между скрещивающимися прямыми?
5.5.2. Скрещивающиеся прямые
| Оглавление |
Автор: Aлeксaндр Eмeлин