Как найти длину окружности 6 класс примеры

Длина окружности

  • Длина окружности
  • Задачи на длину окружности
  • Задачи на площадь круга

Длина окружности

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в  3,14 раза.  Для обозначения этой величины используется маленькая (строчная) греческая буква  π  (пи):

Таким образом, длину окружности  (C)  можно вычислить, умножив константу  π  на диаметр  (D),  или умножив  π  на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

C = πD = 2πR,

где  C  — длина окружности,  π  — константа,  D  — диаметр окружности,  R  — радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен  5 см.

Решение: Так как длина окружности равна  π  умноженное на диаметр, то длина окружности с диаметром  5 см  будет равна:

C ≈ 3,14 · 5 = 15,7 (см).

Ответ:  15,7 см.

Задача 2. Найти длину окружности, радиус которой равен  3,5 м.

Решение: Сначала найдём диаметр окружности, умножив длину радиуса на  2:

D = 3,5 · 2 = 7 (м),

теперь найдём длину окружности, умножив  π  на диаметр:

C ≈ 3,14 · 7 = 21,98 (м).

Ответ:  21,98 м.

Задача 3. Найти радиус окружности, длина которой равна  7,85 м.

Решение: Чтобы найти радиус окружности по её длине, надо длину окружности разделить на  2π:

следовательно, радиус будет равен:

R  ≈  7,85  =  7,85  =  1,25 (м).
2 · 3,14 6,28

Ответ:  1,25 м.

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен  2 см.

Решение: Так как площадь круга равна  π  умноженное на радиус в квадрате, то площадь круга с радиусом  2 см  будет равна:

S ≈ 3,14 · 22 = 3,14 · 4 = 12,56 (см2).

Ответ:  12,56 см2.

Задача 2. Найти площадь круга, если его диаметр равен  7 см.

Решение: Сначала найдём радиус круга, разделив его диаметр на  2:

7 : 2 = 3,5 (см),

теперь вычислим площадь круга по формуле:

S = πr2 ≈ 3,14 · 3,52 = 3,14 · 12,25 = 38,465 (см2).

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D2  ≈ 3,14 ·  72  = 3,14 ·  49  =
4 4 4

153,86  =  38,465 (см2).
4

Ответ:  38,465 см2.

Задача 3. Найти радиус круга, если его площадь равна  12,56 м2.

Решение: Чтобы найти радиус круга по его площади, надо площадь круга разделить  π,  а затем из полученного результата извлечь квадратный корень:

r = √S : π ,

следовательно, радиус будет равен:

r ≈ √12,56 : 3,14 = √4 = 2 (м).

Ответ:  2 м.

Математика

6 класс

Урок № 76

Длина окружности. Площадь круга

Перечень рассматриваемых вопросов:

  • окружность, круг и их элементы: радиус, диаметр, хорда;
  • понятие длины окружности, площади круга;
  • задачи на вычисление длины окружности и площади круга.

Тезаурус

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.

Круг – это часть плоскости, ограниченная окружностью.

Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.

Хорда – это отрезок, соединяющий две точки окружности.

Диаметр – это хорда, проходящая через центр окружности.

Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Окружность

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.

Элементы окружности: центр, радиус, диаметр.

Отрезок, соединяющий две точки окружности, называется хордой.

Диаметр – это хорда, проходящая через центр окружности.

Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)

Как измерить дину окружности?

Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).

Можно прокатить кольцо по ровной поверхности, сделав полный оборот.

Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?

Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).

Результаты измерений можно записать в таблицу в тетради.

Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.

Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.

π = 3,141592653589793238…

При решении обычных задач используют приближенное значение

π ≈ 3,14

иногда используют π ≈ 3

Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:

Следовательно, справедливы формулы:

С = πd или С = 2πR

Круг – это часть плоскости, ограниченная окружностью.

С помощью числа π вычисляют площадь круга.

S = πR2

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Впишите верный ответ.

Радиус круга равен 5 см. Найдите длину окружности С, площадь круга S.

Решение

С = 2πR = 2 ∙ 3,14 ∙ 5 = 31,4 (см).

S = πR2 = 3,14 ∙ 52 = 3,14 ∙ 25 = 78,5 (см2).

Ответ: 31,4 см; 78,5 см.

Тип 2. Множественный выбор

Вычислите площади заштрихованных фигур (размер 1 клетки равен 1 см2).

Варианты ответов

34,24 см2

84,78 см2

50,24 см2

113,04 см2

Фигура 1

Из круга вырезали квадрат.

Sкруга = πR2 = 3,14 ∙ 42 = 3,14 ∙ 16 = 50,24 (см2).

Sквадрата = а2 = 42 = 16 (см2).

Sзаштрих = 50,24 – 16 = 34,24 (см2).

Фигура 2

Из круга вырезали круг.

S1 = πR2 = 3,14 ∙ 62 = 3,14 ∙ 36 = 113,04 (см2).

S2 = πR2 = 3,14 ∙ 32 = 3,14 ∙ 9 = 28,26 (см2).

Sзаштрих = 113,04 – 28,26 = 84,78 (см2).

Выбираем ответы: 34,24 см2 и 84,78 см2.

Возьмем циркуль. Установим ножку циркуля с иглой в точку «O», а ножку циркуля с
карандашом будем вращать вокруг этой точки. Таким образом, мы получим замкнутую
линию. Такую замкнутую линию называют — окружность.

Рассмотрим более подробно окружность. Разберёмся, что называют центром,
радиусом и диаметром окружности.

Окружность 6 класс. Центр, радиус и диаметр окружности

  • (·)O — называется центром окружности.
  • Отрезок, который соединяет
    центр и любую точку окружности, называется радиусом окружности.
    Радиус окружности обозначается буквой «R». На рисунке выше —
    это отрезок «OA».
  • Отрезок, который соединяет
    две точки окружности и проходит через её центр, называется
    диаметром окружности.

    Диаметр окружности обозначается буквой «D».
    На рисунке выше — это отрезок «BC».

    На рисунке также видно, что диаметр равен двум радиусам. Поэтому
    справедливо выражение «D = 2R».

Число π и длина окружности

Прежде чем разобраться, как считается длина окружности, необходимо выяснить, что
такое число π (читается как «Пи»), которое
так часто упоминают на уроках.

В далекие времена математики Древней Греции внимательно изучали окружность
и пришли к выводу, что длина окружности и её диаметр взаимосвязаны.

Запомните!
!

Отношение длины окружности к её диаметру является одинаковым
для всех
окружностей и обозначается греческой буквой π
(«Пи»).
π ≈ 3,14…

Число «Пи» относится к числам, точное значение которых записать невозможно
ни с помощью обыкновенных дробей, ни с помощью десятичных дробей. Нам
для наших вычислений достаточно использовать значение π,

округленное до разряда сотых
π ≈ 3,14…

Теперь, зная, что такое число π, мы
можем записать формулу длины окружности.

Запомните!
!

Длина окружности
— это произведение числа π
и диаметра окружности.
Длина окружности обозначается буквой «С» (читается как «Це»).

C = πD
C = 2πR

, так как D = 2R

Как найти длину окружности

Чтобы закрепить полученные знания, решим задачу на окружности.

Разбор примера

Условие задачи:

Найдите длину окружности, радиус которой равен 24 см. Число
π
округлите до сотых.

Воспользуемся формулой длины окружности:

C = 2πR
≈ 2 · 3,14 · 24 ≈ 150,72 см

Разберем обратную задачу, когда мы знаем длину
окружности, а нас просят найти её диаметр.

Разбор примера

Условие задачи:

Определите диаметр окружности, если
её длина равна 56,52 дм.
(π ≈ 3,14).

Выразим из формулы длины окружности диаметр.

C = πD
D = С / π

D = 56,52 / 3,14 = 18
дм

Хорда и дуга окружности

На рисунке ниже отметим на окружности две точки «A» и «B». Эти точки делят окружность
на две части, каждую из которых называют дугой.
Это синяя дуга «AB» и черная дуга «AB».
Точки «A» и «B» называют концами дуг.

Соединим точки «A» и «B» отрезком. Полученный отрезок называют
хордой.

Дуга и хорда окружности

Важно!
Галка

Точки «A» и «B» делят окружность на две дуги. Поэтому важно
понимать, какую дугу вы имеете в виду, когда пишите дуга «AB».

Для того чтобы избежать путаницы, часто вводят дополнительную точку на
нужной дуге и обращаются к ней по трем точкам.

Дуга по трем точкам


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 мая 2020 в 10:27

Владислав Заступневич
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Владислав Заступневич
Профиль
Благодарили: 0

Сообщений: 1

, Радиус одной окружности равен 12 см, а второй-36см.Чему равно отношения длины первой окружности к длине второй окружности?

0
Спасибоthanks
Ответить

6 мая 2020 в 15:48
Ответ для Владислав Заступневич

Галина Федотова
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Галина Федотова
Профиль
Благодарили: 0

Сообщений: 3


С=2πR
если длину одной окружности разделить на дилну другой, то 2π сократится, следовательно длины будут относится так же как радиусы, то есть 12:36=  

0
Спасибоthanks
Ответить

22 сентября 2016 в 19:03

Вика Камалова
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Вика Камалова
Профиль
Благодарили: 0

Сообщений: 2

Помогите 2) чему равен деаметр если радиус равен а)12см б)10 децеметров 
1) начертить окружность радиусом а)2 см пот буквой б)4см 5мм (начертиь!)
3)Чему равен радиус если деаметр равен а)6см б)9см в)12м
СРОЧНО СЕГОДНЯ! ПРОШУ!!!

0
Спасибоthanks
Ответить

23 сентября 2016 в 14:51
Ответ для Вика Камалова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Радиус равен половине диаметра. Обратно диаметр равен двум радиусам. Подробнее здесь. 
1) а) 12см · 2=24см б)10дм · 2 = 20дм
2) ответил в теме. 
3) а) 6см: 2 = 3см б) 9см: 2 = 4см 5 мм в)12м: 2 = 6м

0
Спасибоthanks
Ответить

22 сентября 2016 в 18:54

Вика Камалова
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Вика Камалова
Профиль
Благодарили: 0

Сообщений: 2

1)Начертить окружность  радиусом а)2 см пот буквой б)4 см 5 мм
cry

0
Спасибоthanks
Ответить

23 сентября 2016 в 14:46
Ответ для Вика Камалова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Радиус окружности это расстояние от центра до любой точки окружности. Подробнее можно посмотреть вот здесь. На линейке циркулем отмеряем необходимый радиус и чертим окружность.

0
Спасибоthanks
Ответить

24 января 2016 в 13:45

Инна Шабрашина
(^-^)
Профиль
Благодарили: 0

Сообщений: 5

(^-^)
Инна Шабрашина
Профиль
Благодарили: 0

Сообщений: 5

Длина окружности и площадь круга.
 Я не понимаю как найти площадь круга.

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:56
Ответ для Инна Шабрашина

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197

0
Спасибоthanks
Ответить

7 сентября 2015 в 21:08

Игорь Желтоновский
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Игорь Желтоновский
Профиль
Благодарили: 0

Сообщений: 1

радиус — 2,1 м.Найти длинну круга и его площадь(помогите плз)

0
Спасибоthanks
Ответить

2 сентября 2016 в 15:18
Ответ для Игорь Желтоновский

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Длина окружности(l) вычисляется по формуле: l=2?r
Площадь круга(S) вычисляется по формуле: S=?r2
Подставляем значения и считаем, приняв ?=3,14
l=2 · 3,14 · 2,1 = 13,188
S = 3,14 · 2,12=13,8474

Более подробно можно прочитать здесь: math-prosto.ru/index.php?page=pages/circle/square_of_circle.php

0
Спасибоthanks
Ответить


8 способов найти длину окружности

Выбирайте формулу, ориентируясь на известные величины.

8 способов найти длину окружности

1. Как найти длину окружности через диаметр

Просто умножьте диаметр на число пи.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • d —диаметр окружности.

2. Как найти длину окружности через радиус

Умножьте число пи на два радиуса.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • r — радиус окружности.

3. Как вычислить длину окружности через площадь круга

Умножьте число пи на четыре площади круга.

Найдите корень из результата.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • S – площадь круга. Напомним, кругом называют плоскость внутри окружности.
  • π (пи) — константа, равная 3,14.

4. Как найти длину окружности через диагональ вписанного прямоугольника

Умножьте число пи на диагональ.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • d – любая диагональ прямоугольника.

5. Как вычислить длину окружности через сторону описанного квадрата

Умножьте число пи на сторону квадрата.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • a – любая сторона квадрата.

6. Как найти длину окружности через стороны и площадь вписанного треугольника

Перемножьте стороны треугольника.

Поделите результат на площадь и на два.

Умножьте полученное число на пи.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • S – площадь треугольника.
  • a, b, c – стороны треугольника.

7. Как найти длину окружности через площадь и полупериметр описанного треугольника

Поделите площадь треугольника на его полупериметр.

Умножьте результат на число пи и на два.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • π (пи) — константа, равная 3,14.
  • S – площадь треугольника.
  • p – полупериметр треугольника (равен половине от суммы всех сторон).

8. Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разделите 180 градусов на количество сторон многоугольника.

Найдите синус полученного числа.

Разделите сторону многоугольника на результат.

Умножьте получившееся число на пи.

Иллюстрация: Лайфхакер
  • O — искомая длина окружности.
  • a — сторона правильного многоугольника. Напомним, в правильном многоугольнике все стороны равны.
  • π (пи) — константа, равная 3,14.
  • N — количество сторон многоугольника. К примеру, если в задаче фигурирует пятиугольник, как на изображении выше, N будет равняться 5.

Читайте также 📐✏️🎓

  • Как найти периметр прямоугольника
  • 8 способов найти периметр треугольника
  • 7 способов найти площадь прямоугольника
  • Как перевести обычную дробь в десятичную
  • Как освоить устный счёт школьникам и взрослым

Длина окружности

Длина окружности

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Решение: Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

C ≈ 3,14 · 5 = 15,7 (см).

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Решение: Сначала найдём диаметр окружности, умножив длину радиуса на 2:

теперь найдём длину окружности, умножив π на диаметр:

C ≈ 3,14 · 7 = 21,98 (м).

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Решение: Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π:

следовательно, радиус будет равен:

R 7,85 = 7,85 = 1,25 (м).
2 · 3,14 6,28

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Решение: Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2 ).

Ответ: 12,56 см 2 .

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Решение: Сначала найдём радиус круга, разделив его диаметр на 2:

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2 ).

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D 2 ≈ 3,14 · 7 2 = 3,14 · 49 =
4 4 4
= 153,86 = 38,465 (см 2 ).
4

Ответ: 38,465 см 2 .

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Решение: Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

Математика. 6 класс

Конспект урока

Длина окружности. Площадь круга

Перечень рассматриваемых вопросов:

  • окружность, круг и их элементы: радиус, диаметр, хорда;
  • понятие длины окружности, площади круга;
  • задачи на вычисление длины окружности и площади круга.

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.

Круг – это часть плоскости, ограниченная окружностью.

Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.

Хорда – это отрезок, соединяющий две точки окружности.

Диаметр – это хорда, проходящая через центр окружности.

Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.

Элементы окружности: центр, радиус, диаметр.

Отрезок, соединяющий две точки окружности, называется хордой.

Диаметр – это хорда, проходящая через центр окружности.

Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)

Как измерить дину окружности?

Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).

Можно прокатить кольцо по ровной поверхности, сделав полный оборот.

Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?

Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).

Результаты измерений можно записать в таблицу в тетради.

Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.

Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.

При решении обычных задач используют приближенное значение

иногда используют π ≈ 3

Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:

Следовательно, справедливы формулы:

С = πd или С = 2πR

Круг – это часть плоскости, ограниченная окружностью.

С помощью числа π вычисляют площадь круга.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Впишите верный ответ.

Радиус круга равен 5 см. Найдите длину окружности С, площадь круга S.

С = 2πR = 2 ∙ 3,14 ∙ 5 = 31,4 (см).

S = πR 2 = 3,14 ∙ 5 2 = 3,14 ∙ 25 = 78,5 (см 2 ).

Ответ: 31,4 см; 78,5 см.

Тип 2. Множественный выбор

Вычислите площади заштрихованных фигур (размер 1 клетки равен 1 см 2 ).

Из круга вырезали квадрат.

Sкруга = πR 2 = 3,14 ∙ 4 2 = 3,14 ∙ 16 = 50,24 (см 2 ).

Sквадрата = а 2 = 4 2 = 16 (см 2 ).

Sзаштрих = 50,24 – 16 = 34,24 (см 2 ).

Из круга вырезали круг.

S1 = πR 2 = 3,14 ∙ 6 2 = 3,14 ∙ 36 = 113,04 (см 2 ).

S2 = πR 2 = 3,14 ∙ 3 2 = 3,14 ∙ 9 = 28,26 (см 2 ).

Sзаштрих = 113,04 – 28,26 = 84,78 (см 2 ).

Длина окружности. Площадь круга (Вольфсон Г.И.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке вы вспомните, что такое окружность и круг, а также некоторые их элементы. Кроме того, вы познакомитесь с числом и двумя новыми формулами: формулой длины окружности и формулой площади круга, научитесь применять их при решении задач.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Точность и округление»

[spoiler title=”источники:”]

http://resh.edu.ru/subject/lesson/6913/conspect/

http://interneturok.ru/lesson/matematika/6-klass/otnosheniya-i-proporcii/dlina-okruzhnosti-ploschad-kruga

[/spoiler]

Добавить комментарий