Как найти длину отрезка на прямоугольном треугольнике

Как найти стороны прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти стороны прямоугольного треугольника

Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Катет a =
Катет b =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:

c² = a² + b²

следовательно: c = a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = 3² + 4² = 9 + 16 = 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

c = a/cos(β) = b/cos(α)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

c = a/sin(α) = b/sin(β)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Гипотенуза c =
Катет (известный) =
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула

a = c² – b²

b = c² – a²

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = 5² – 4² = 25 – 16 = 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Гипотенуза c =
Угол (прилежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула

a = c ⋅ cos(β)

b = c ⋅ cos(α)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Гипотенуза c =
Угол (противолежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула

a = c ⋅ sin(α)

b = c ⋅ sin(β)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула

a = b ⋅ tg(α)

b = a ⋅ tg(β)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула

a = b / tg(β)

b = a / tg(α)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см

См. также

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E”1 и F”1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M”1. При этом исходим из того, что M” в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N”1 и M”1 искомым отрезком. На рисунке он выделен красным цветом.

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

Отрезок. Формула длины отрезка.

Отрезком обозначают ограниченный двумя точками участок прямой. Точки – концы отрезка.

Общеизвестный факт, что каждая точка А плоскости имеет свои координаты (х, у).

В данном примере вектор AB задан координатами (х2— х1, y2— y1). Квадрат длины вектора будет равен сумме квадратов его координат. Следовательно, расстояние d между точками А и В, или, что то же самое, длина вектора АВ, вычисляется согласно формуле:

Эта формула длины отрезка предоставляет возможность рассчитывать расстояние между двумя произвольными точками плоскости, при условии, что известны координаты этих точек

Вышеуказанную формулу длины отрезка можно доказать и другим способом. В системе координат заданы координаты крайних точек отрезка координатами его концов1y1) и 22).

Прочертим прямые лини через эти точки перпендикулярно к осям координат, в результате имеем прямоугольный треугольник. Первоначальный отрезок является гипотенузой образовавшегося треугольника. Катеты треугольника сформированы отрезками, их длиной будет проекция гипотенузы на оси координат.

Установим длину этих проекций.

На ось у длина проекции равна y2 – y1, а на ось х длина проекции равна х2 – х1. На основании теоремы Пифагора видим, что |AB|² = (y2 – y1)² + (x2 – x1.

В рассмотренном случае |AB| выступает длиной отрезка.

Вычислим длину отрезка АВ, для этого извлечем квадратный корень. Результатом является все та же формула длины отрезков по известным координатам конца и начала.

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым – разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекция

Если необходимо определить угол наклона отрезка АВ к плоскости то построение прямоугольного треугольника ведется на фронтальной проекции.

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

– угол наклона к плоскости

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7)

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая – но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осивращаем отрезок ЛВ до положения параллельного плоскости(1 задача). Далее вращением вокруг осиполученный отрезок до положения перпендикулярного плоскости На отрезок с проецируется в точку

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом должно быть равно по величина находим в пересечении вертикальных линий связи и линий параллельных оси (1 задача). Далее отрезок перемещаем до положения перпендикулярного оси При этом На фронтальной проекции отрезок с проецируется в точку (2 задача).

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость заменена на новую фронтальную плоскость параллельную прямой АВ. При этом новая ось проводится параллельно проекции Линии связи проводятся перпендикулярно оси и на них от откладываются координаты z точек А и В (1 задача).

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось перпендикулярно проекции. Т.к. параллельна оси , расстояние до проекций будет одинаковое и прямая спроецируется в точку (2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Далее располагаем перпендикулярно оси Откладываем на ней отрезок и циркулем строим треугольник равный по величине На фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию расположить параллельно оси при этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось проводим перпендикулярно горизонтали тогда на новую фронтальную плоскость треугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось провести параллельно плоскости На новую плоскость треугольник спроецируется в натуральную величину.

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Метрические задачи

Метрические задачи – это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой – обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) – через точку К проведена плоскость перпендикулярно прямой АВ.

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Из приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла то искомый угол определится по формуле:

которую можно решить графически, достроив угол до 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Далее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Дополненный угол будет искомым.

Натуральную величину дополнительного угла в обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Находим линию пересечения плоскостей (линия 1-2) и точку встречи в месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Рис. 10.1. Теорема о проекциях прямого угла

Дано :BAC = 90°; AB || П’

Доказать, что C’A’A’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’П’^AA’A’B’ значит ABAA,AB плоскости CAA’C’, тогда и A’B’ CAA’C’. Следовательно,CA’A’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 – если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 h1 a h ;
б -скрещивающиеся b2 2 b

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали – линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а – плоскость общего положения; h ∈α – горизонталь плоскости а; AB h – линия наибольшего наклона;
φ = AB, AB 1 – угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня – горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция – фронтальной проекции фронтали плоскости.

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости:

б -построение плоскости, перпендикулярной прямой:

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(×h): n1h1; n22. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно – как пересекающая прямую n или параллельная ей.

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × ) ; A (A1, A2).

Построить: A ∈ β α .

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции а второй катет -разница координат концов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости так и на плоскости При правильных построениях . Углы а и -углы наклона отрезка прямой АВ к плоскости соответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон (в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.


Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.


Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая – ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).


Рисунок 5.4 – Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня в соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой .

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости

Рисунок 5.5 – Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямые– Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости


Рисунок 5.6 – Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии перпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.


Рисунок 5.7 – Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).

Рисунок 5.8 – Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Способ замены плоскостей проекций (задача 1)

Способ вращения вокруг проецирующей оси

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Способ вращения вокруг прямой уровня (горизонтали)

Способ вращения вокруг проецирующей оси i(i V)

Способ плоско-параллельного перемещения (переноса)

Определение расстояний:

1. Расстояние между точками – определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой – определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

3. Расстояние между параллельными прямыми – определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) – задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) – задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

4. Расстояние между скрещивающимися прямыми – определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций – задачи 1 и 2

5. Расстояние от точки до плоскости – определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую – задача 3)

6. Расстояние между прямой и параллельной ей плоскостью – определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями – определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

б. Способ замены плоскостей проекции

Определение величин углов:

1. Угол φ между скрещивающимися прямыми – определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b – скрещивающиеся прямые
Требуется:

φ – ?

Решение:
1.

2.φ – вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

2. Угол φ между прямой и плоскостью – определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB – прямая общего положения
Требуется:
φ – ?

Решение:
1. l α(h ∩ f);
l f”;
l h’;
2. ∠φ – вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β – определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) – угол φ определяется способом вращения вокруг линии уровня (рис. а)

Дано:
(m // h); (а
b).
Требуется:
φ – ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D”) провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ – вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) – угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://www.calc.ru/Formula-Dliny-Otrezka.html

http://www.evkova.org/reshenie-metricheskih-zadach

[/spoiler]

Длина отрезка – это то же самое, что и расстояние между двумя точками.

Можно рассмотреть несколько случаев, когда эта длина неизвестна

пример 1

есть на прямой три точки, которые образуют три отрезка

Чтобы найти отрезок побольше, нужно два меньших сложить.

Чтобы найти меньший отрезок, нужно от большого отнять другой меньший

АС=АВ-СВ или СВ=АВ-АС

пример 2

найдем длину отрезка на координатной прямой.

отрезок лежит между точками А(-5) и В(9), тогда его длина 9-(-5)=14

пример 3

найдем длину отрезка на координатной плоскости.

здесь тоже все просто – по координатам находим длину условных катетов прямоугольного треугольника а дальше по формуле Пифагора находим длину.

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

a, b, c – стороны произвольного треугольника

α, β, γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), (a):

Формула  стороны треугольника по теореме косинусов

* Внимательно, при подстановке в формулу, для тупого угла (α>90), cosα принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), (a):

Формула  стороны по теореме синусов

Есть следующие формулы для определения катета или гипотенузы

Формулы для прямоугольного треугольника

a, b – катеты

c – гипотенуза

α, β – острые углы

Формулы для катета, (a):

Формулы катета прямоугольного треугольника

Формулы для катета, (b):

Формулы катета прямоугольного треугольника

Формулы для гипотенузы, (c):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

Формулы сторон по теореме Пифагора, (a,b):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

Найти длину высоты треугольникаH – высота треугольника

a – сторона, основание

b, c – стороны

β, γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через сторону и угол, (H):

Формула длины высоты через сторону и угол

Формула длины высоты через сторону и площадь, (H):

Формула длины высоты через сторону и площадь

Формула длины высоты через стороны и радиус, (H):

Формула длины высоты через стороны и радиус

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр – точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H – высота из прямого угла

a, b – катеты

с – гипотенуза

c1 , c2 – отрезки полученные от деления гипотенузы, высотой

α, β – углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы

Найти длину биссектрисы в треугольнике

L– биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b – стороны треугольника

с – сторона на которую опущена биссектриса

d, e – отрезки полученные делением биссектрисы

γ – угол ABC , разделенный биссектрисой пополам

p – полупериметр, p=(a+b+c)/2

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

L – биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b – катеты прямоугольного треугольника

с – гипотенуза

α – угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

L – биссектриса, отрезок ME , исходящий из острого угла

a, b – катеты прямоугольного треугольника

с – гипотенуза

α, β – углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула длины биссектрисы через катет и гипотенузу, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

Длина биссектрисы равнобедренного треугольника

L – высота = биссектриса = медиана

a – одинаковые стороны треугольника

b – основание

α – равные углы при основании

β – угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула высоты, биссектрисы и медианы, через стороны, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L – высота=биссектриса=медиана

a – сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M – медиана, отрезок |AO|

c – сторона на которую ложится медиана

a, b – стороны треугольника

γ – угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам.

Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

Длина медианы прямоугольного треугольника

M – медиана

R – радиус описанной окружности

O – центр описанной окружности

с – гипотенуза

a, b – катеты

α – острый угол CAB

Медиана равна радиусу и половине гипотенузы, (M):

Медиана равна радиусу и половине гипотенузы

Формула длины через катеты, (M):

Формула медианы через катеты

Формула длины через катет и острый угол, (M):

Формула медианы через катет и острый угол

Содержание:

В этой лекции вы ознакомитесь со знаменитой теоремой Пифагора. Вы научитесь по известным сторонам и углам прямоугольного треугольника находить его неизвестные стороны и углы.

Метрические соотношения в прямоугольном треугольнике

На рисунке 173 отрезок CD — высота прямоугольного треугольника ABC Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Отрезки AD и DB называют проекциями катетов АС и СВ соответственно на гипотенузу.

Лемма. Высота прямоугольного треугольника, проведенная к гипотенузе делит треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

Докажите лемму самостоятельно.

Теорема 15.1. Квадрат высоты прямоугольного треугольника, проведенной к гипотенузе, равен произведению проекций катетов на гипотенузу. Квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу.

Доказательство. На рисунке 173 отрезок CD — высота прямоугольного треугольника ABC Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления

Если длины отрезков на рисунке 173 обозначить так:

АС = Ь, Решение прямоугольных треугольников с формулами и примерами вычисления то доказанные соотношения принимают вид:
Решение прямоугольных треугольников с формулами и примерами вычисления
Эти равенства называют метрическими соотношениями в прямоугольном треугольнике.

Пример:

Даны два отрезка, длины которых равны а и b (рис. 174). Постройте третий отрезок, длина которого равна Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим треугольник ADC Решение прямоугольных треугольников с формулами и примерами вычисления в котором отрезок DB является высотой (рис. 175). Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления Если обозначить Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведенный анализ показывает, как провести построение.

На произвольной прямой отметим точку А и отложим последовательно отрезки АВ и ВС так, чтобы АВ = а, ВС = b. Построим окружность с диаметром АС. Через точку В проведем прямую, перпендикулярную прямой АС (рис. 175). 

Докажем, что отрезок DB искомый. Действительно, Решение прямоугольных треугольников с формулами и примерами вычисления как вписанный угол, опирающийся на диаметр АС. Тогда по теореме 15.1 Решение прямоугольных треугольников с формулами и примерами вычисления 

Теорема Пифагора

Теорема 16.1 (теорема Пифагора). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Доказательство. На рисунке 176 изображен прямоугольный треугольник ABC Решение прямоугольных треугольников с формулами и примерами вычисления Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления  
Проведем высоту CD. Применив теорему 15.1 для катетов АС и ВС, получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления Сложив почленно эти равенства, получим:
Решение прямоугольных треугольников с формулами и примерами вычисления

Далее имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Если в прямоугольном треугольнике длины катетов равны а и b, а длина гипотенузы равна с, то теорему Пифагора можно выразить следующим равенством: Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема Пифагора позволяет по двум сторонам прямоугольного треугольника найти его третью сторону: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Из равенства Решение прямоугольных треугольников с формулами и примерами вычисления также следует, что Решение прямоугольных треугольников с формулами и примерами вычисления отсюда Решение прямоугольных треугольников с формулами и примерами вычислениято есть гипотенуза больше любого из катетов1.

1Другим способом этот факт был установлен в курсе геометрии 7 класса.

Пифагор:

Вы изучили знаменитую теорему, которая носит имя выдающегося древнегреческого ученого Пифагора.

Исследования древних текстов свидетельствуют о том, что утверждение этой теоремы было известно задолго до Пифагора. Почему же ее приписывают Пифагору? Скорее всего потому, что именно Пифагор нашел доказательство этого утверждения.

Решение прямоугольных треугольников с формулами и примерами вычисления

О жизни Пифагора мало что известно достоверно. Он родился на греческом острове Самос. По преданиям, он много путешествовал, приобретая знания и мудрость.

Поселившись в греческой колонии Кротон (на юге Италии), он окружил себя преданными учениками и единомышленниками. Так возник пифагорейский союз (или кротонское братство). Влияние этого союза было столь велико, что даже спустя столетия после смерти Пифагора многие выдающиеся математики Древнего мира Пифагор называли себя пифагорейцами. 

Тригонометрические функции острого угла прямоугольного треугольника

На рисунке 180 изображен прямоугольный треугольник АВС Решение прямоугольных треугольников с формулами и примерами вычисления Напомним, что катет ВС называют противолежащим углу А, а катет АС — прилежащим к этому углу.

Определение. Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Синус угла А обозначают так: sin А (читают: «синус А»). Для острых углов А и В прямоугольного треугольника АВС имеем:
Решение прямоугольных треугольников с формулами и примерами вычисления
Для прямоугольного треугольника, изображенного на рисунке 181, можно записать: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим прямоугольный равнобедренный треугольник АВС Решение прямоугольных треугольников с формулами и примерами вычисления в котором АС = ВС = а (рис. 182).

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
По определению Решение прямоугольных треугольников с формулами и примерами вычисления отсюда Решение прямоугольных треугольников с формулами и примерами вычисления Видим, что синус острого угла прямоугольного равнобедренного треугольника не зависит от размеров треугольника, так как полученное значение синуса одинаково для всех значений а. Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления Эту запись не связывают с конкретным прямоугольным равнобедренным треугольником.

Вообще, если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны.

Действительно, эти прямоугольные треугольники подобны по первому признаку подобия треугольников. Поэтому отношение катета к гипотенузе одного треугольника равно отношению соответственного катета к гипотенузе другого треугольника.

Например, запись sin 17° можно отнести ко всем углам, градусные меры которых равны 17°. Значение этого синуса можно вычислить один раз, выбрав произвольный прямоугольный треугольник с острым углом 17°.
Следовательно, синус острого угла зависит только от величины этого угла.

Определение. Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Косинус угла А обозначают так: cos А (читают: «косинус А»).
Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать: Решение прямоугольных треугольников с формулами и примерами вычисления

Отметим, что катет прямоугольного треугольника меньше его гипотенузы, а поэтому синус и косинус острого угла меньше 1.

Определение. Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Тангенс угла А обозначают так: tg А (читают: «тангенс А»).
Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать:
Решение прямоугольных треугольников с формулами и примерами вычисления

Определение. Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему.

Котангенс угла А обозначают так: ctg А (читают: «котангенс А»). Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать:
Решение прямоугольных треугольников с формулами и примерами вычисления
Для прямоугольного треугольника, изображенного на рисунке 181, записывают: Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Как было установлено, синус угла зависит только от величины угла. Рассуждая аналогично, можно прийти к следующему выводу: косинус, тангенс и котангенс острого угла зависят только от величины этого угла.

Вообще, каждому острому углу а соответствует единственное число — значение синуса (косинуса, тангенса, котангенса) этого угла. Поэтому зависимость значения синуса (косинуса, тангенса, котангенса) острого угла от величины этого угла является функциональной. Функцию, соответствующую этой зависимости, называют тригонометрической. Так, Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления — тригонометрические функции, аргументами которых являются острые углы.

С древних времен люди составляли таблицы приближенных значений тригонометрических функции с некоторым шагом, один раз вычисляя значения тригонометрических функций для конкретного аргумента. Затем эти таблицы широко использовались во многих областях науки и техники.

В наше время значения тригонометрических функций острых углов удобно находить с помощью микрокалькулятора.

Тангенс и котангенс острого угла можно выразить через синус и косинус этого же угла. Рассмотрим прямоугольный треугольник (рис. 181).

Запишем: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, получаем такие формулы: Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что тангенс и котангенс одного и того же острого угла являются взаимно обратными числами, то есть имеет место равенство:

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Обе части этого равенства делим на Решение прямоугольных треугольников с формулами и примерами вычисления Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления Учитывая, что Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления получим:Решение прямоугольных треугольников с формулами и примерами вычисления 

Принято записывать: Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
Эту формулу называют основным тригонометрическим тождеством.

Отметим, что Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияПоскольку Решение прямоугольных треугольников с формулами и примерами вычисления то получаем такие формулы:

Решение прямоугольных треугольников с формулами и примерами вычисления

Мы уже знаем, что Решение прямоугольных треугольников с формулами и примерами вычисления Найдем теперь cos 45°, tg 45° и ctg 45°.

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
 

Найдем синус, косинус, тангенс и котангенс углов 30° и 60°. Рассмотрим прямоугольный треугольник АВС, в котором Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 183).

Решение прямоугольных треугольников с формулами и примерами вычисления

Пусть ВС = а. Тогда по свойству катета, лежащего против угла 30°, получаем, что АВ = 2а. Из теоремы Пифагора следует, что Решение прямоугольных треугольников с формулами и примерами вычисления

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
Отсюда находим: Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку 60° = 90° – 30°, то получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления

Значения синуса, косинуса, тангенса и котангенса для углов 30°, 45° и 60° полезно запомнить.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников

На рисунке 185 изображен прямоугольный треугольник с острыми углами Решение прямоугольных треугольников с формулами и примерами вычисления катеты которого равны а и b, а гипотенуза равна с.
По определению синуса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению гипотенузы на синус угла, противолежащего этому катету.    

По определению косинуса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению гипотенузы на косинус угла, прилежащего к этому катету.

Решение прямоугольных треугольников с формулами и примерами вычисления

По определению тангенса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению второго катета на тангенс угла, противолежащего первому катету.

По определению котангенса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления
Следовательно, катет прямоугольного треугольника равен произведению второго катета на котангенс угла, прилежащего к первому катету.
Из равенств Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления
Следовательно, гипотенуза прямоугольного треугольника равна частному от деления катета на синус противолежащего ему угла;

  • гипотенуза прямоугольного треугольника равна частному от деления катета на косинус прилежащего к нему угла.

Решить прямоугольный треугольник означает найти его стороны и углы по известным сторонам и углам.

Приведенные выше правила позволяют решать прямоугольный треугольник по одной стороне и одному острому углу.

В задачах на решение прямоугольных треугольников, если не обусловлено иначе, приняты такие обозначения (см. рис. 185): с — гипотенуза, а и b — катеты, Решение прямоугольных треугольников с формулами и примерами вычисления — углы, противолежащие катетам а и b соответственно.

Пример №1

Решите прямоугольный треугольник по катету и острому углу: a = 14 см, Решение прямоугольных треугольников с формулами и примерами вычисления = 38°. (Значения тригонометрических функций найдите с помощью микрокалькулятора и округлите их до сотых. Значения длин сторон округлите до десятых.)

Решение:

Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Отметим, что эту задачу можно было решить и другим способом: например, найти гипотенузу, используя теорему Пифагора.

Пример №2

Решите прямоугольный треугольник по катету и гипотенузе:

a = 26 см, с = 34 см.

Решение:

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Вычисляем угол Решение прямоугольных треугольников с формулами и примерами вычисления с помощью микрокалькулятора: Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления
Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №3

Высота AD треугольника АВС (рис. 186) делит его сторону ВС на отрезки BD и CD такие, что Решение прямоугольных треугольников с формулами и примерами вычисленияНайдите стороны АВ и АС, если Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем:Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №4

Боковая сторона равнобедренного треугольника равна b, угол при основании равен Решение прямоугольных треугольников с формулами и примерами вычисления Найдите радиус окружности, вписанной в треугольник.

Решение:

В треугольнике АВС (рис. 187) Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем высоту BD.

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления

Точка О — центр окружности, вписанной в треугольник АВС. Следовательно, точка О принадлежит высоте ВD и биссектрисе АО угла ВАС. Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления то вписанная окружность касается стороны АС в точке D. Таким образом, OD — радиус вписанной окружности. Отрезок АО — биссектриса угла BAD, поэтому
Решение прямоугольных треугольников с формулами и примерами вычисления

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Напомню:

Метрические соотношения в прямоугольном треугольнике

  • Квадрат высоты прямоугольного треугольника, проведенной к гипотенузе, равен произведению проекций катетов на гипотенузу.
  • Квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу.

Теорема Пифагора

  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Синус острого угла прямоугольного треугольника

  • Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника

  • Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника

  • Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Котангенс острого угла прямоугольного треугольника

  • Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему.

Тригонометрические формулы

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления – основное тригонометрическое тождество

Решение прямоугольных треугольников с формулами и примерами вычисления

Соотношения между сторонами и значениями тригонометрических функций углов в прямоугольном треугольнике

  • Катет прямоугольного треугольника равен произведению гипотенузы на синус угла, противолежащего этому катету.
  • Катет прямоугольного треугольника равен произведению гипотенузы на косинус угла, прилежащего к этому катету.
  • Катет прямоугольного треугольника равен произведению второго катета на тангенс угла, противолежащего первому катет>г.
  • Катет прямоугольного треугольника равен произведению второго катета на котангенс угла, прилежащего к первому’ катету.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на синус противолежащего ему угла.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на косинус прилежащего к нему угла.

Четырехугольник, его элементы. Сумма углов четырехугольника

Рассмотрим одну из важнейших теорем геометрии, которая показывает зависимость между катетами и гипотенузой прямоугольного треугольника.

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

На сегодняшний день известны более ста доказательств этой теоремы. Рассмотрим одно из них.

Доказательство:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления -данный прямоугольный треугольник, у которого Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 172). Докажем, что

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

1) Проведем высоту Решение прямоугольных треугольников с формулами и примерами вычисления
2) По теореме о средних пропорциональных отрезках в прямоугольном треугольнике имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

3) Сложим эти два равенства почленно. Учитывая, что Решение прямоугольных треугольников с формулами и примерами вычисления получим:

 Решение прямоугольных треугольников с формулами и примерами вычисления

4) Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления 

Решение прямоугольных треугольников с формулами и примерами вычисления

Если в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления обозначить Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 173), то теорему Пифагора можно записать формулой:

Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, зная две стороны прямоугольного треугольника, с помощью теоремы Пифагора можно найти третью. В этом нам поможет следующая схема:

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №5

Катеты прямоугольного треугольника равны 7 см и 24 см. Найдите гипотенузу.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 25 см.

Пример №6

Гипотенуза прямоугольного треугольника равна 17 см, а один из катетов – 15 см. Найдите второй катет.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 8 см.

Пример №7

Найдите диагональ квадрата, сторона которого равнаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим квадрат Решение прямоугольных треугольников с формулами и примерами вычисленияу которого Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 174). Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №8

Найдите медиану равностороннего треугольника со стороной Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим равносторонний треугольник Решение прямоугольных треугольников с формулами и примерами вычисления со стороной Решение прямоугольных треугольников с формулами и примерами вычисления– его медиана (рис. 175).

Решение прямоугольных треугольников с формулами и примерами вычисления

Так как Решение прямоугольных треугольников с формулами и примерами вычисления – медиана равностороннего треугольника, то она является и его высотой.

Из Решение прямоугольных треугольников с формулами и примерами вычисления Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №9

Основания равнобокой трапеции равны 12 см и 22 см, а боковая сторона – 13 см. Найдите высоту трапеции.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления – данная трапеция, Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 176).

Решение прямоугольных треугольников с формулами и примерами вычисления

1) Проведем высоты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

2) Решение прямоугольных треугольников с формулами и примерами вычисления (по катету и гипотенузе), поэтому

Решение прямоугольных треугольников с формулами и примерами вычисления

3) Из Решение прямоугольных треугольников с формулами и примерами вычисления по теореме Пифагора имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 12 см.

Пример №10

Один из катетов прямоугольного треугольника равен 8 см, а второй на 2 см меньше гипотенузы. Найдите неизвестный катет треугольника.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления см и Решение прямоугольных треугольников с формулами и примерами вычисления см- катеты треугольника, тогда Решение прямоугольных треугольников с формулами и примерами вычисления см – его гипотенуза.

Так как по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления получим уравнение: Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления (см).

Следовательно, неизвестный катет равен 15 см.

Ответ. 15 см.

Верно и утверждение, обратное теореме Пифагора.

Теорема 2 (обратная теореме Пифагора). Если для треугольника Решение прямоугольных треугольников с формулами и примерами вычисления справедливо равенство Решение прямоугольных треугольников с формулами и примерами вычисления то угол Решение прямоугольных треугольников с формулами и примерами вычисления этого треугольника — прямой.

Доказательство:

Пусть в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 177).

Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисления у которого Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияТогда по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления а следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Но Решение прямоугольных треугольников с формулами и примерами вычисления по условию, поэтому Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, Решение прямоугольных треугольников с формулами и примерами вычисления (по трем сторонам), откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Так как Решение прямоугольных треугольников с формулами и примерами вычислениято треугольник со сторонами 3, 4 и 5 является прямоугольным. Такой треугольник часто называют египетским, потому что о том, что он прямоугольный, было известно еще древним египтянам.

Тройку целых чисел, удовлетворяющую теореме Пифагора, называют пифагоровой тройкой чисел, а треугольник, стороны которого равны этим числам, – пифагоровым треугольником. Например, пифагоровой является не только тройка чисел 3, 4, 5, но и 7, 24, 25 или 9, 40, 41 и т. п.

Заметим, что из теоремы Пифагора и теоремы, ей обратной, следует, что

треугольник является прямоугольным тогда и только тогда, когда квадрат наибольшей стороны треугольника равен сумме квадратов двух других его сторон.

Пример №11

Является ли прямоугольным треугольник со сторонами: 1) 6; 8; 10; 2) 5; 7; 9?

Решение:

1) Так как Решение прямоугольных треугольников с формулами и примерами вычислениято треугольник является прямоугольным.

2) Так как Решение прямоугольных треугольников с формулами и примерами вычисления то треугольник не является прямоугольным.

Ответ. 1) Да; 2) нет.

А еще раньше…

Теорема, названная в честь древнегреческого философа и математика Пифагора, была известна задолго до него. В текстах давних вавилонян о ней вспоминалось еще за 1200 лет до Пифагора. Скорее всего, доказывать эту теорему вавилоняне не умели, а зависимость между катетами и гипотенузой прямоугольного треугольника установили опытным путем. Также эта теорема была известна в Древнем Египте и Китае.

Решение прямоугольных треугольников с формулами и примерами вычисления

Считается, что Пифагор – первый, кто предложил строгое доказательство теоремы. Он сформулировал теорему так: «Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах». Именно в такой формулировке она и была доказана Пифагором.

Решение прямоугольных треугольников с формулами и примерами вычисления

Рисунок к этому доказательству еще называют «пифагоровыми штанами».

Зная, что треугольник со сторонами 3, 4 и 5 является прямоугольным, землемеры Древнего Египта использовали его для построения прямого угла. Бечевку делили узлами на 12 равных частей и соединяли ее концы. Потом веревку растягивали и с помощью колышков фиксировали на земле в виде треугольника со сторонами 3; 4; 5. В результате угол, противолежащий стороне, длина которой 5, был прямым.

Решение прямоугольных треугольников с формулами и примерами вычисления

Перпендикуляр и наклонная, их свойства

Пусть Решение прямоугольных треугольников с формулами и примерами вычисленияперпендикуляр, проведенный из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 185). Точку Решение прямоугольных треугольников с формулами и примерами вычисления называют основанием перпендикуляра Решение прямоугольных треугольников с формулами и примерами вычисленияПусть Решение прямоугольных треугольников с формулами и примерами вычисления – произвольная точка прямой Решение прямоугольных треугольников с формулами и примерами вычисления отличающаяся от Решение прямоугольных треугольников с формулами и примерами вычисления Отрезок Решение прямоугольных треугольников с формулами и примерами вычисления называют наклонной, проведенной из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления а точку Решение прямоугольных треугольников с формулами и примерами вычисления основанием наклонной. Отрезок Решение прямоугольных треугольников с формулами и примерами вычисления называют проекцией наклонной Решение прямоугольных треугольников с формулами и примерами вычисления на прямую Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим свойства перпендикуляра и наклонной.

1. Перпендикуляр, проведенный из точки к прямой, меньше любой наклонной, проведенной из этой точки к этой прямой.

Действительно, в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления -катет, Решение прямоугольных треугольников с формулами и примерами вычисления – гипотенуза (рис. 185). Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

2. Если две наклонные, проведенные к прямой из одной точки, равны, то равны и их проекции.

Пусть из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления проведены наклонные Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и перпендикуляр Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (по катету и гипотенузе), поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Верно и обратное утверждение.

3. Если проекции двух наклонных, проведенных из точки к прямой, равны, то равны и сами наклонные.

Решение прямоугольных треугольников с формулами и примерами вычисления (по двум катетам), поэтому Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186).

4. Из двух наклонных, проведенных из точки к прямой, большей является та, у которой больше проекция.

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления – наклонные, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 187). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления), Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления). Но Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Свойство справедливо и в случае, когда точки Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления лежат на прямой по одну сторону от точки Решение прямоугольных треугольников с формулами и примерами вычисления

Верно и обратное утверждение.

5. Из двух наклонных, проведенных из точки к прямой, большая наклонная имеет большую проекцию.

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления– наклонные, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 187).

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления(из Решение прямоугольных треугольников с формулами и примерами вычисления),

Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления). Но Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №12

Из точки к прямой проведены две наклонные. Длина одной из них равна 10 см, а ее проекции – 6 см. Найдите длину второй наклонной, если она образует с прямой угол 30°.

Решение:

Пусть на рисунке 187 Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления

1) Из Решение прямоугольных треугольников с формулами и примерами вычисления (см).

2) Из Решение прямоугольных треугольников с формулами и примерами вычисления по свойству катета, противолежащего углу 30°,

будем иметь: Решение прямоугольных треугольников с формулами и примерами вычисления

Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 16 см.

Пример №13

Из точки Решение прямоугольных треугольников с формулами и примерами вычисления прямой проведены две наклонные, проекции которых равны 30 см и 9 см. Найдите длины наклонных, если их разность равна 9 см.

Решение:

Пусть на рисунке 187 Решение прямоугольных треугольников с формулами и примерами вычисленияПо свойству 4: Решение прямоугольных треугольников с формулами и примерами вычисления Обозначим Решение прямоугольных треугольников с формулами и примерами вычисления см. Тогда Решение прямоугольных треугольников с формулами и примерами вычисления см.

Из Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Из Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Левые части полученных равенств равны, следовательно, равны и правые их части.

Имеем уравнение: Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисленияСледовательно, Решение прямоугольных треугольников с формулами и примерами вычисления см, Решение прямоугольных треугольников с формулами и примерами вычисления (см).

Ответ. 41 см, 50 см.

Синус, косинус и тангенс острого угла прямоугольного треугольника. Соотношения между сторонами и углами в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с прямым углом Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). Для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления катет Решение прямоугольных треугольников с формулами и примерами вычисления является противолежащим катетом, а катет Решение прямоугольных треугольников с формулами и примерами вычисления – прилежащим катетом. Для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления катет Решение прямоугольных треугольников с формулами и примерами вычисления является противолежащим, а катет Решение прямоугольных треугольников с формулами и примерами вычисления – прилежащим.

Решение прямоугольных треугольников с формулами и примерами вычисления

Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Синус угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления
Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Косинус угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления

Так как катеты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления меньше гипотенузы Решение прямоугольных треугольников с формулами и примерами вычисления то синус и косинус острого угла прямоугольного треугольника меньше единицы.

Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Тангенс угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Рассмотрим прямоугольные треугольники Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления у которых Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 191). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (по острому углу). Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления 

Решение прямоугольных треугольников с формулами и примерами вычисления

Из этого следует, что Решение прямоугольных треугольников с формулами и примерами вычисления и поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Аналогично Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, приходим к выводу: синус, косинус и тангенс острого угла прямоугольного треугольника зависят только от градусной меры угла.

Из определений синуса, косинуса и тангенса угла получаем следующие соотношения между сторонами и углами в прямоугольном треугольнике.

1. Катет равен гипотенузе, умноженной на синус противолежащего ему угла или на косинус прилежащего: Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления
2. Гипотенуза равна катету, деленному на синус противолежащего ему угла или на косинус прилежащего:

Решение прямоугольных треугольников с формулами и примерами вычисления

3. Катет, противолежащий углу Решение прямоугольных треугольников с формулами и примерами вычисления равен произведению второго катета на тангенс этого угла: Решение прямоугольных треугольников с формулами и примерами вычисления
4. Катет, прилежащий к углу Решение прямоугольных треугольников с формулами и примерами вычисления равен частному от деления другого катета на тангенс этого угла: Решение прямоугольных треугольников с формулами и примерами вычисления

Значения Решение прямоугольных треугольников с формулами и примерами вычисления можно находить с помощью специальных таблиц, калькулятора или компьютера. Для вычислений используем клавиши калькулятора Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления (на некоторых калькуляторах Решение прямоугольных треугольников с формулами и примерами вычисленияПоследовательность вычислений у разных калькуляторов может быть разной. Поэтому советуем внимательно познакомиться с инструкцией к калькулятору.

Пример №14

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления Найдите Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). Решение прямоугольных треугольников с формулами и примерами вычисления(см).

Ответ. 16 см.

Пример №15

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияНайдите Решение прямоугольных треугольников с формулами и примерами вычисления (с точностью до десятых сантиметра).

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). С помощью таблиц или калькулятора находим Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления 2,9 см.

С помощью таблиц, калькулятора или компьютера можно по данному значению Решение прямоугольных треугольников с формулами и примерами вычисления или Решение прямоугольных треугольников с формулами и примерами вычисления находить угол Решение прямоугольных треугольников с формулами и примерами вычисления Для вычислений используем клавиши калькулятора Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №16

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления 

Найдите острые углы треугольника.

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). С помощью калькулятора находим значение угла Решение прямоугольных треугольников с формулами и примерами вычисления в градусах: 51,34019. Представим его в градусах и минутах (в некоторых калькуляторах это возможно сделать с помощью специальной клавиши): Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Найдем синус, косинус и тангенс углов 30° и 60°. Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисленияу которого Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 192).

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда по свойству катета, противолежащего углу 30°, Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Найдем синус, косинус и тангенс угла 45°.

Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисления у которого Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 193). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления По теореме Пифагора:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Систематизируем полученные данные в таблицу:

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №17

Найдите высоту равнобедренного треугольника, проведенную к основанию, если основание равно 12 см, а угол при вершине треугольника равен 120°.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления – данный треугольник, Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 194).

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем к основанию Решение прямоугольных треугольников с формулами и примерами вычисления высоту Решение прямоугольных треугольников с формулами и примерами вычисления являющуюся также медианой и биссектрисой. Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Из Решение прямоугольных треугольников с формулами и примерами вычисления

отсюда Решение прямоугольных треугольников с формулами и примерами вычисления (см). 

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления см. 

Вычисление прямоугольных треугольников

Решить треугольник – значит найти все неизвестные его стороны и углы по известным сторонам и углам.

Для того чтобы можно было решить прямоугольный треугольник, известными должны быть или две стороны треугольника или одна из сторон и один из острых углов треугольника.

Используя в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияобозначение Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 198) и соотношение между его сторонами и углами:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления (теорема Пифагора);

Решение прямоугольных треугольников с формулами и примерами вычисления

можно решить любой прямоугольный треугольник.

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим четыре вида задач на решение прямоугольных треугольников.

Образцы записи их решения в общем виде и примеры задач представлены в виде таблиц.

Решение прямоугольных треугольников по гипотенузе и острому углу

Пример:

Дано гипотенузу Решение прямоугольных треугольников с формулами и примерами вычисления и острый угол Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй острый угол треугольника и его катеты.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по катету и острому углу

Пример:

Дано катет Решение прямоугольных треугольников с формулами и примерами вычисления и острый угол Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй острый угол треугольника, второй катет и гипотенузу.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по двум катетам

Пример:

Дано катеты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите гипотенузу и острые углы треугольника.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по катету и гипотенузе

Пример:

Дано катет Решение прямоугольных треугольников с формулами и примерами вычисления и гипотенуза Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй катет и острые углы треугольника.

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример:

Найдите высоту дерева Решение прямоугольных треугольников с формулами и примерами вычисленияоснование Решение прямоугольных треугольников с формулами и примерами вычисления которого является недоступным (рис. 199).

Решение:

Обозначим на прямой, проходящей через точку Решение прямоугольных треугольников с формулами и примерами вычисления – основание дерева, точки Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и измеряем отрезок Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

1) В  Решение прямоугольных треугольников с формулами и примерами вычисления

2) В  Решение прямоугольных треугольников с формулами и примерами вычисления

3) Так как Решение прямоугольных треугольников с формулами и примерами вычисления имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Определение прямоугольных треугольников

Из этой главы вы узнаете, как решать прямоугольные треугольники, т. е. находить их неизвестные стороны и углы по известным. Необходимые для этого теоретические знания можно почерпнуть из раздела математики, родственного как с геометрией, так и с алгеброй, — из тригонометрии. Собственно, само слово «тригонометрия» в переводе с греческого означает «измерение треугольников». Поэтому отношения сторон прямоугольного треугольника, с которыми вы познакомитесь далее, получили название тригонометрических функций.

Соотношения, которые будут применяться в этой главе, в полной мере можно считать проявлением подобия треугольников. Вообще, подобие треугольников, теорема Пифагора и площадь — это те три кита, на которых держится геометрия многоугольника. Именно исследование взаимосвязей между этими теоретическими фактами и составляет основное содержание курса геометрии в восьмом классе.

Синус, косинус и тангенс

Как уже было доказано, все прямоугольные треугольники, имеющие по равному острому углу, подобны. Свойство подобия обусловливает не только равенство отношений пропорциональных сторон этих треугольников, но и равенство отношений между катетами и гипотенузой каждого из этих треугольников. Именно эти отношения и будут предметом дальнейшего рассмотрения.

Пусть дан прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления и острым углом Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 168).

Решение прямоугольных треугольников с формулами и примерами вычисления

Определение

Синусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к гипотенузе:

Решение прямоугольных треугольников с формулами и примерами вычисления

Косинусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета к гипотенузе:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисленияназывается отношение противолежащего катета к прилежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Кроме синуса, косинуса и тангенса, рассматривают также котангенс острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления который равен отношению прилегающего катета к противолежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку катет прямоугольного треугольника меньше гипотенузы, то синус и косинус острого угла меньше единицы.

Покажем, что значения тригонометрических функций зависят только от величины угла. Пусть прямоугольные треугольники Решение прямоугольных треугольников с формулами и примерами вычисления имеют равные острые углы Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 169).

Решение прямоугольных треугольников с формулами и примерами вычисления

Эти треугольники подобны, отсюда Решение прямоугольных треугольников с формулами и примерами вычисления или по основному свойству пропорции, Решение прямоугольных треугольников с формулами и примерами вычисления

Правая и левая части этого равенства по определению равны синусам острых углов Решение прямоугольных треугольников с формулами и примерами вычисления соответственно. Имеем: 

Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. синус угла Решение прямоугольных треугольников с формулами и примерами вычисления не зависит от выбора треугольника. Аналогичные рассуждения можно провести и для других тригонометрических функций (сделайте это самостоятельно). Таким образом, тригонометрические функции острого угла зависят только от величины угла.

Имеет место еще один важный факт: если значения некоторой тригонометрической функции для острых углов Решение прямоугольных треугольников с формулами и примерами вычисления равны, то Решение прямоугольных треугольников с формулами и примерами вычисленияИначе говоря, каждому значению тригонометрической функции соответствует единственный острый угол.

Пример №18

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Решение:

Пусть в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления(рис. 170).

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку в треугольнике наименьший угол лежит против наименьшей стороны, то угол Решение прямоугольных треугольников с формулами и примерами вычисления — наименьший угол треугольника Решение прямоугольных треугольников с формулами и примерами вычисления По определению Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Тригонометрические тождества

Выведем соотношения (тождества), которые выражают зависимость между тригонометрическими функциями одного угла.

Теорема (основное тригонометрическое тождество)

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство:

 По определению синуса и косинуса острого угла прямоугольного треугольника (см. рис. 168) имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора числитель этой дроби равен Решение прямоугольных треугольников с формулами и примерами вычисления

Следствие

Для любого острого углаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем еще несколько тригонометрических тождеств.

Непосредственно из определений синуса

sin a а b ас а и косинуса имеем: Решение прямоугольных треугольников с формулами и примерами вычисления т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Аналогично доказывается, что Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда следует, что Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №19

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен 0,8.

Решение:

Пусть для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Вычисление значений тригонометрических функций. Формулы дополнения

Тригонометрические тождества, которые мы рассмотрели, устанавливают взаимосвязь между разными тригонометрическими функциями одного угла. Попробуем установить связь между функциями двух острых углов прямоугольного треугольника.

Теорема (формулы дополнения)

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство:

 Рассмотрим прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 172).

Решение прямоугольных треугольников с формулами и примерами вычисления

Если Решение прямоугольных треугольников с формулами и примерами вычисления Выразив синусы и косинусы острых углов треугольника, получим:

Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема доказана. 

Следствие

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что название «формулы дополнения», как и название «косинус», в котором префикс «ко» означает «дополнительный», объясняется тем, что косинус является синусом угла, который дополняет данный угол до Решение прямоугольных треугольников с формулами и примерами вычисленияАналогично объясняется и название «котангенс».

Значения тригонометрических функций углов 30 45 60

Вычислим значения тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления Для этого в равностороннем треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления со стороной Решение прямоугольных треугольников с формулами и примерами вычисления проведем высоту Решение прямоугольных треугольников с формулами и примерами вычисления которая является также биссектрисой и медианой (рис. 173).

Решение прямоугольных треугольников с формулами и примерами вычисления

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления и по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления
С помощью формул дополнения получаем значения тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Для вычисления значений тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления рассмотрим равнобедренный прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с катетами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 174).

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

Представим значения тригонометрических функций углов Решение прямоугольных треугольников с формулами и примерами вычисления в виде таблицы.

Решение прямоугольных треугольников с формулами и примерами вычисления

Значения тригонометрических функций других углов можно вычислить с помощью калькулятора или специальных таблиц (см. Приложение 3).

Решение прямоугольных треугольников

Нахождение неизвестных сторон прямоугольного треугольника

Пусть дан прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления  гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления и острыми углами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 175).

Решение прямоугольных треугольников с формулами и примерами вычисления

Зная градусную меру угла Решение прямоугольных треугольников с формулами и примерами вычисления и длину любой из сторон треугольника, мы имеем возможность найти две другие его стороны. Правила нахождения неизвестных сторон прямоугольного треугольника непосредственно следуют из определений тригонометрических функций и могут быть обобщены в виде справочной таблицы.

Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что для нахождения неизвестных сторон прямоугольного треугольника можно использовать и Решение прямоугольных треугольников с формулами и примерами вычисления (соответствующие правила и формулы получите самостоятельно).

Запоминать содержание справочной таблицы не обязательно. Для нахождения неизвестной стороны прямоугольного треугольника можно действовать по такому плану.

1. Выбрать формулу определения той тригонометрической функции данного угла, которая связывает искомую сторону с известной (этот этап можно выполнить устно).

2. Выразить из этой формулы искомую сторону.

3. Провести необходимые вычисления.

Пример №20

В прямоугольном треугольнике с гипотенузой 12 м найдите катет, прилежащий к углу Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть в прямоугольном треугольнике (см. рисунок) Решение прямоугольных треугольников с формулами и примерами вычисления Найдем катет Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Ответ: 6 м.

Примеры решения прямоугольных треугольников

Решить треугольник означает найти его неизвестные стороны и углы по известным сторонам и углам. Прямоугольный треугольник можно решить по стороне и острому углу или по двум сторонам. Рассмотрим примеры конкретных задач на решение прямоугольных треугольников, пользуясь обозначениями рисунка 175. При этом договоримся округлять значения тригонометрических функций до тысячных, длины сторон — до сотых, а градусные меры углов — до единиц.

Пример №21

Решите прямоугольный треугольник по гипотенузе Решение прямоугольных треугольников с формулами и примерами вычисления и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления 

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №22

Решите прямоугольный треугольник по катету Решение прямоугольных треугольников с формулами и примерами вычисления и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления 

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №23

Решите прямоугольный треугольник по гипотенузе Решение прямоугольных треугольников с формулами и примерами вычисления и катету Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №24

Решите прямоугольный треугольник по катетам Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления

На отдельных этапах решения задач 1—4 можно использовать другие способы. Но следует заметить, что в том случае, когда одна из двух сторон треугольника найдена приближенно, для более точного нахождения третьей стороны целесообразно использовать определения тригонометрических функций.

Рассмотрим примеры применения решения треугольников в практических задачах.

Пример №25

Найдите высоту данного предмета (рис. 176).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На определенном расстоянии от данного предмета выберем точку Решение прямоугольных треугольников с формулами и примерами вычисления и измерим угол Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Для определения высоты предмета необходимо прибавить к Решение прямоугольных треугольников с формулами и примерами вычисления высоту Решение прямоугольных треугольников с формулами и примерами вычисления прибора, с помощью которого измерялся угол. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №26

Насыпь шоссейной дороги имеет ширину 60 м в верхней части и 68 м в нижней. Найдите высоту насыпи, если углы наклона откосов к горизонту равны Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим равнобедренную трапецию Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 177), в которой Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем высоты Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления (докажите это самостоятельно), то Решение прямоугольных треугольников с формулами и примерами вычисления В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Итоги главы IV

Синусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к гипотенузе: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Косинусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Тангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к прилежащему: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Котангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета к противолежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Тригонометрические тождества

Решение прямоугольных треугольников с формулами и примерами вычисления

Значения тригонометрических функций некоторых углов

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Историческая справка

Умение решать треугольники необходимо при рассмотрении многих практических задач, возникающих в связи с потребностями географии, астрономии, навигации. Поэтому элементы тригонометрии появились еще в Древнем Вавилоне в период интенсивного развития астрономии. В работе греческого ученого Птолемея «Альмагест» (II в. н. где изложена античная система мира, содержатся элементы сферической тригонометрии.

В Древней Греции вместо синуса угла Решение прямоугольных треугольников с формулами и примерами вычисления рассматривали длину хорды, соответствующей центральному углу Решение прямоугольных треугольников с формулами и примерами вычисления Действительно, если радиус окружности равен единице, то Решение прямоугольных треугольников с формулами и примерами вычисления измеряется половиной такой хорды (проверьте это самостоятельно). Первые тригонометрические таблицы были составлены Гиппархом во II в. н.э.

Синус и косинус как вспомогательные величины использовались индийскими математиками в V в., а тангенс и котангенс впервые появились в работах арабского математика X в. Абу-аль-Вефы.

Как отдельный раздел математики тригонометрия выделилась в произведениях персидского ученого Насреддина Туси (1201-1274), а системное изложение тригонометрии первым из европейцев представил немецкий математик и механик Иоганн Мюллер (1436-1476), более известный под псевдонимом Региомонтан.

Современную форму изложения и современную символику тригонометрия приобрела благодаря Леонарду Эйлеру в XVIII в. Кроме известных вам четырех тригонометрических  функций иногда рассматриваются еще две:

секанс Решение прямоугольных треугольников с формулами и примерами вычисления

и косеканс Решение прямоугольных треугольников с формулами и примерами вычисления

Приложения

Обобщенная теорема Фалеса и площадь прямоугольника

В ходе доказательства некоторых геометрических теорем используется процедура деления отрезка на некоторое количество равных частей. Это позволяет дать числовые оценки в виде неравенств и с их помощью получить противоречие.

В курсе геометрии 8 класса такой подход целесообразно применить для доказательства двух приведенных ниже теорем.

Теорема (обобщенная теорема Фалеса)

Параллельные прямые, пересекающие стороны угла, отсекают на сторонах этого угла пропорциональные отрезки.

Доказательство:

 По данным рисунка 180 докажем три формулы:

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Докажем сначала формулу 1. Пусть отрезок Решение прямоугольных треугольников с формулами и примерами вычисления можно разделить на Решение прямоугольных треугольников с формулами и примерами вычисления равных отрезков так, что одна из точек деления совпадет с точкой Решение прямоугольных треугольников с формулами и примерами вычисления причем на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления будут лежать Решение прямоугольных треугольников с формулами и примерами вычисления точек деления. Тогда, проведя через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления по теореме Фалеса получим деление отрезков Решение прямоугольных треугольников с формулами и примерами вычисления соответственно наРешение прямоугольных треугольников с формулами и примерами вычисления равных отрезков. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления что и требовалось доказать.

Если описанное деление отрезка Решение прямоугольных треугольников с формулами и примерами вычисления невозможно, то докажем формулу 1 от противного. Пусть Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим случай, когда Решение прямоугольных треугольников с формулами и примерами вычисления (другой случай рассмотрите самостоятельно).

Отложим на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления отрезок Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 181).

Решение прямоугольных треугольников с формулами и примерами вычисления

Разобьем отрезок Решение прямоугольных треугольников с формулами и примерами вычисления на такое количество равных отрезков чтобы одна из точек деления Решение прямоугольных треугольников с формулами и примерами вычисления попала на отрезок Решение прямоугольных треугольников с формулами и примерами вычисления Проведем через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления Пусть прямая,   проходящая через точку Решение прямоугольных треугольников с формулами и примерами вычисленияпересекает луч Решение прямоугольных треугольников с формулами и примерами вычисления в точке Решение прямоугольных треугольников с формулами и примерами вычисления Тогда по доказанному Решение прямоугольных треугольников с формулами и примерами вычисления Учитывая, что в этой пропорции Решение прямоугольных треугольников с формулами и примерами вычисления имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Это неравенство противоречит выбору длины отрезка Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, формула 1 доказана полностью.

Докажем формулы 2 и 3. Пользуясь обозначениями рисунка 180,
по формуле 1 имеем Решение прямоугольных треугольников с формулами и примерами вычисления Разделив в каждом из этих равенств числитель на знаменатель, получим: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Откуда Решение прямоугольных треугольников с формулами и примерами вычисления Таким образом, доказано, что Решение прямоугольных треугольников с формулами и примерами вычисления т.е. формулы 2 и 3 выполняются.

Теорема доказана полностью. 

Из курса математики 5 класса известно, что площадь прямоугольника равна произведению двух его соседних сторон. Так, на рисунке 182 дан прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления который делится на 15 квадратов площадью 1. Следовательно, по аксиомам площади, его площадь равна 15 кв. ед., то есть Рис- 182. Решение прямоугольных треугольников с формулами и примерами вычисления кв. ед.

Решение прямоугольных треугольников с формулами и примерами вычисления

Таким способом легко найти площадь прямоугольника, у которого длины сторон выражены любыми целыми числами. Но справедливость этой формулы при условии, что длины сторон прямоугольника не являются целыми числами,— совсем неочевидная теорема. Докажем ее.

Теорема (формула площади прямоугольника)

Площадь прямоугольника равна произведению его соседних сторон:

Решение прямоугольных треугольников с формулами и примерами вычисления — стороны прямоугольника.

Доказательство:

 Докажем сначала, что площади прямоугольников с одним равным измерением относятся как длины других измерений.

Пусть прямоугольники Решение прямоугольных треугольников с формулами и примерами вычисления имеют общую сторону Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 183,
Решение прямоугольных треугольников с формулами и примерами вычисления

Разобьем сторону Решение прямоугольных треугольников с формулами и примерами вычисления равных частей. Пусть на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления лежит Решение прямоугольных треугольников с формулами и примерами вычисления точек деления, причем точка деления Решение прямоугольных треугольников с формулами и примерами вычисления имеет номер Решение прямоугольных треугольников с формулами и примерами вычисления а точка Решение прямоугольных треугольников с формулами и примерами вычисления —номер Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления откуда — Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Теперь проведем через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления Они разделят прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления равных прямоугольников (т. е. таких, которые совмещаются при наложении). Очевидно, что прямоугольник Решение прямоугольных треугольников с формулами и примерами вычислениясодержится внутри прямоугольника Решение прямоугольных треугольников с формулами и примерами вычисления а прямоугольник Решение прямоугольных треугольников с формулами и примерами вычислениясодержит прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Сравнивая выражения для Решение прямоугольных треугольников с формулами и примерами вычисления убеждаемся, что оба эти отношения расположены между Решение прямоугольных треугольников с формулами и примерами вычисления т.е. отличаются не больше чем на Решение прямоугольных треугольников с формулами и примерами вычисления натуральное число). Докажем от противного, что эти отношения  равны.

Действительно, если это не так, т.е. Решение прямоугольных треугольников с формулами и примерами вычисления такое натуральное число Решение прямоугольных треугольников с формулами и примерами вычисления что Решение прямоугольных треугольников с формулами и примерами вычисления Полученное противоречие доказывает, что площади прямоугольников с одним равным измерением относятся как длины других измерений.

Рассмотрим теперь прямоугольники Решение прямоугольных треугольников с формулами и примерами вычисления со сторонами Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления со сторонами Решение прямоугольных треугольников с формулами и примерами вычисления и 1 и квадрат Решение прямоугольных треугольников с формулами и примерами вычисления со стороной 1 (рис. 183, б).

Тогда по доказанному Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления кв. ед., то, перемножив полученные отношения, имеем Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема доказана.

Золотое сечение

С давних времен люди старались познать мир путем поиска гармонии и совершенства. Одним из вопросов, которыми задавались еще древние греки, был поиск наилучшего соотношения неравных частей одного целого. Таким соотношением еще со времен Пифагора считали гармоническое деление, при котором меньшая часть относится к большей, как большая часть относится ко всему целому. Такое деление отрезка на части описано во II книге «Начал» Евклида и названо делением в среднем и крайнем отношении. Рассмотрим деление отрезка Решение прямоугольных треугольников с формулами и примерами вычисления точкой Решение прямоугольных треугольников с формулами и примерами вычисления при котором Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 184). Пусть длина отрезка Решение прямоугольных треугольников с формулами и примерами вычисления равна Решение прямоугольных треугольников с формулами и примерами вычисления а длина отрезка Решение прямоугольных треугольников с формулами и примерами вычисления равна Решение прямоугольных треугольников с формулами и примерами вычисления Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления то геометрический смысл имеет только значение  Решение прямоугольных треугольников с формулами и примерами вычисления Значит, если длина данного отрезка равна 1, то при делении в крайнем и среднем отношении его большая часть приблизительно равна 0,6. Полученное число обозначают греческой буквой Решение прямоугольных треугольников с формулами и примерами вычисления Кроме того, часто рассматривают и отношение Решение прямоугольных треугольников с формулами и примерами вычисления Заметим, что Решение прямоугольных треугольников с формулами и примерами вычисления — первая буква имени древнегреческого скульптора Фидия, который часто использовал такое деление в своем творчестве (в частности, в знаменитой статуе Зевса Олимпийского, которую считают одним из семи чудес света).

В эпоху Возрождения (XV—XVII вв.) интерес к гармоническому делению чрезвычайно возрос. Выдающийся ученый и художник Леонардо да Винчи (1452—1519) назвал такое деление золотым сечением, а его современник и соотечественник, итальянский монах-математик Лука Па-чоли (1445—1514) — божественной пропорцией. Золотое сечение и близкие к нему пропорциональные отношения составляли основу композиционного построения многих произведений мирового искусства, в частности архитектуры Античности и Возрождения. Одно из величайших сооружений Древней Эллады — Парфенон в Афинах (V в. до н. э.) — содержит в себе золотые пропорции (в частности, отношение высоты к длине этого сооружения равно Решение прямоугольных треугольников с формулами и примерами вычисления

Итак, дадим определение золотому сечению.

Определение:

Золотым сечением называется такое деление величины на две неравные части, при котором меньшая часть относится к большей, как большая часть относится ко всему целому.

Иначе говоря, золотое сечение — это деление величины в отношении Решение прямоугольных треугольников с формулами и примерами вычисления (или Решение прямоугольных треугольников с формулами и примерами вычисления

Построить золотое сечение отрезка заданной длины Решение прямоугольных треугольников с формулами и примерами вычисления с помощью циркуля и линейки довольно просто: для этого достаточно построить прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления и провести две дуги из вершин острых углов так, как показано на рисунке 185.

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме о пропорциональности отрезков секущей и касательной Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку по построению Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления по определению золотого сечения. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления Убедиться в правильности построения можно также с помощью теоремы Пифагора (сделайте это самостоятельно.)

С золотым сечением связывают геометрические фигуры, при построении которых используются отношения Решение прямоугольных треугольников с формулами и примерами вычисления Рассмотрим некоторые из них.

Равнобедренный треугольник называется золотым, если две его стороны относятся в золотом сечении. Докажем, что треугольник с углами Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 186, а) является золотым. Действительно, пусть в треугольнике  Решение прямоугольных треугольников с формулами и примерами вычисления биссектриса. Тогда Решение прямоугольных треугольников с формулами и примерами вычисления по двум углам. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления т. е. треугольник Решение прямоугольных треугольников с формулами и примерами вычисления — золотой.

И наоборот: если в равнобедренном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления то такой треугольник подобен треугольнику Решение прямоугольных треугольников с формулами и примерами вычисления т. е. имеет углы Решение прямоугольных треугольников с формулами и примерами вычисления

Предлагаем самостоятельно убедиться в том, что золотым является также треугольник с углами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186, б) и других золотых треугольников не существует.

Решение прямоугольных треугольников с формулами и примерами вычисления

Золотые треугольники связаны с правильным пятиугольником (т.е. выпуклым пятиугольником, у которого все стороны равны и все углы равны).

В правильном пятиугольнике:

1) диагональ относится к стороне в золотом сечении;

2) точка пересечения диагоналей делит каждую из них в золотом сечении;

3) диагональ делит другую диагональ на два отрезка, один из которых делится в золотом сечении еще одной диагональю.

Решение прямоугольных треугольников с формулами и примерами вычисления

Согласно обозначениям рисунка 187 это означает, что Решение прямоугольных треугольников с формулами и примерами вычисления Для доказательства этих свойств достаточно заметить, что в правильном пятиугольнике все углы равны Решение прямоугольных треугольников с формулами и примерами вычисленияследовательно, треугольники Решение прямоугольных треугольников с формулами и примерами вычисления являются золотыми. Подробные доказательства предлагаем провести самостоятельно.

Диагонали правильного пятиугольника образуют звезду, которая в древние времена олицетворяла совершенство и имела мистическое значение. Пифагорейцы называли ее пентаграммой и избрали символом своей научной школы. В наши дни пятиконечная звезда — самая распространенная геометрическая фигура на флагах и гербах многих стран (приведите соответствующие примеры из истории и географии).

Прямоугольник называется золотым, если его стороны относятся в золотом сечении. Для построения золотого прямоугольника произвольный квадрат перегибаем пополам (рис. 188, а), проводим диагональ одного из полученных прямоугольников (рис. 188, б) и радиусом, равным этой диагонали, проводим дугу окружности с центром Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 188, в). Полученный прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления — золотой (убедитесь в этом самостоятельно).

Решение прямоугольных треугольников с формулами и примерами вычисления
Если от золотого прямоугольника отрезать квадрат со стороной, равной меньшей стороне прямоугольника, то оставшийся прямоугольник также будет золотым. Действительно, на рисунке 189, а имеем Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления Неограниченно продолжая этот процесс (рис. 189, б), можно получить так называемые вращающиеся квадраты, и весь данный прямоугольник будет составлен из таких квадратов.Решение прямоугольных треугольников с формулами и примерами вычисления

Через противолежащие вершины квадратов проходит так называемая золотая спираль, которая часто встречается в природе. Например, по принципу золотой спирали располагаются семена в подсолнечнике; по золотой спирали закручены раковины улиток, рога архаров, паутина отдельных видов пауков и даже наша Солнечная система, как и некоторые другие галактики.

Отметим также, что золотое сечение имеет немало алгебраических свойств. Отношение Решение прямоугольных треугольников с формулами и примерами вычисления приближенно может быть выражено дробями Решение прямоугольных треугольников с формулами и примерами вычисления так называемые числа Фибоначчи. Приведем без доказательства две алгебраические формулы, связанные с числами Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Золотое сечение, золотые многоугольники и золотая спираль являются математическими воплощениями идеальных пропорций в природе. Недаром великий немецкий поэт Иоганн Вольфганг Гете считал их математическими символами жизни и духовного развития.
Приложение 3. Таблица значений тригонометрических функций

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Значение тригонометрических функций острых углов можно приближенно определять с помощью специальных таблиц. Одна из таких таблиц представлена выше.

Таблица составлена с учетом формул дополнения. В двух крайних столбцах указаны градусные меры углов (в левом — от Решение прямоугольных треугольников с формулами и примерами вычисления в правом — от Решение прямоугольных треугольников с формулами и примерами вычисления Между этими столбцами содержатся четыре столбца значений тригонометрических функций:

1-й    — синусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или косинусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

2-й    — тангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или котангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

3-й    — котангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или тангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

4-й    — косинусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или синусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим несколько примеров применения данной таблицы. 1) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления найдем в крайнем левом столбце значение 25 и рассмотрим соответствующую строку первого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в ней соответствует число 0,423. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

2) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку 45° < 72° <90°, найдем в крайнем правом столбце значение 72 и рассмотрим соответствующую строку четвертого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в нем соответствует число 0,951. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

3) Определим угол, синус которого равен 0,839. Для этого в первом или четвертом столбце значений найдем число 0,839. Оно содержится в четвертом столбце, т. е. искомый угол больше Решение прямоугольных треугольников с формулами и примерами вычисления и меньше Решение прямоугольных треугольников с формулами и примерами вычисления В соответствующей строке правого столбца значений находим число 57. Следовательно, искомый угол приблизительно равен Решение прямоугольных треугольников с формулами и примерами вычисления

4) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления найдем в крайнем левом столбце значений 14 и рассмотрим соответствующую строку четвертого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в нем соответствует число 0,970. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

5) Определим угол, тангенс которого равен 0,7. Для этого во втором или третьем столбце значений найдем число 0,700. Оно находится во втором столбце, т.е. искомый угол меньше Решение прямоугольных треугольников с формулами и примерами вычисления В соответствующей строке левого столбца значений находим число 35. Следовательно, искомый угол приблизительно равен Решение прямоугольных треугольников с формулами и примерами вычисления

С большей точностью значения тригонометрических функций можно определять по «Четырехзначным математическим таблицам» В. М. Брадиса или с помощью калькулятора.

Теорема Пифагора. Перпендикуляр и наклонная с решением

Докажем теорему, открытие которой связано с именем древнегреческого учёного Пифагора (VI в. до н. э.).

Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано:

∆АВС, ےC = 90° (рис. 412).

Доказать: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство. Проведём из вершины прямого угла С высоту CD. Каждый катет прямоугольного треугольника является средним пропорциональным между гипотенузой и его проекцией на гипотенузу. Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления. Сложив равенства почленно и зная, что AD+ DB= АВ, получим: Решение прямоугольных треугольников с формулами и примерами вычисления. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Если а и b — катеты прямоугольного треугольника, с – его гипотенуза, то из формулы Решение прямоугольных треугольников с формулами и примерами вычисления получим следующие формулы:

Решение прямоугольных треугольников с формулами и примерами вычисления

Используя эти формулы, по двум любым сторонам прямоугольного треугольника находим его третью сторону (табл. 28).

Решение прямоугольных треугольников с формулами и примерами вычисления

Например:

Решение прямоугольных треугольников с формулами и примерами вычисления

Справедлива и теорема, обратная теореме Пифагора: если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то этот треугольник – прямоугольный.

Согласно теореме, обратной теореме Пифагора, треугольник со сторонами 3 см, 4 см и 5 см – прямоугольный, поскольку Решение прямоугольных треугольников с формулами и примерами вычисления. Такой треугольник иногда называют египетским.

Пример №27

Сторона ромба равна 10 см, а одна из его диагоналей — 16 см. Найдите другую диагональ ромба.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABCD— ромб (рис. 413), АС= 16см,AD = 10см. Найдём диагональ BD. Как известно, диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Поэтому ∆AOD — прямоугольный (ے0= 90°). АС 16

В нём: катет Решение прямоугольных треугольников с формулами и примерами вычислениягипотенуза AD= 10 см.

Решение прямоугольных треугольников с формулами и примерами вычисления

Для того чтобы найти определённый элемент фигуры (сторону, высоту, диагональ), выделите на рисунке прямоугольный треугольник, воспользовавшись свойствами фигуры, и примените теорему Пифагора.

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Пусть ВС – перпендикуляр, проведённый из точки В на прямую а (рис. 414). Возьмём произвольную точку А на прямой а, отличную от точки С, и соединим точки А и В. Отрезок АВ называется наклонной, проведённой из точки В на прямую а. Точка А называется основанием наклонной, а отрезок АС – проекцией наклонной.

Наклонные имеют следующие свойства. Если из данной точки к прямой провести перпендикуляр и наклонные, то:

  1. любая наклонная больше перпендикуляра;
  2. равные наклонные имеют равные проекции;
  3. из двух наклонных больше та, проекция которой больше.

Решение прямоугольных треугольников с формулами и примерами вычисления

Покажем, что свойства наклонных следуют из теоремы Пифагора.

  1. По теореме Пифагора, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 415), тогда Решение прямоугольных треугольников с формулами и примерами вычисления или АВ > ВС.
  2. Из прямоугольных треугольников ABD и CBD (рис. 416) имеем:
  3. Решение прямоугольных треугольников с формулами и примерами вычисленияПоскольку в этих равенствах АВ = ВС (по условию), то AD = DC.
  4. Из прямоугольных треугольников ABD и CBD (рис. 417) имеем: Решение прямоугольных треугольников с формулами и примерами вычисления. В этих равенствах AD > DC. Тогда АВ > ВС.

Пример №28

Из точки к прямой проведены две наклонные, проекции которых равны 5 см и 9 см. Найдите наклонные, если одна из них на 2 см больше другой.

Решение:

Пусть AD = 5 см, DC = 9 см (рис. 418). Поскольку AD < DC, то, по свойству трёх наклонных, АВ < ВС. Обозначим АВ через х, тогда ВС = х + 2. Из прямоугольных треугольников ABD и CBD находим Решение прямоугольных треугольников с формулами и примерами вычисления. Решение прямоугольных треугольников с формулами и примерами вычисления

Приравниваем правые части равенств и получаем: Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда 4х=52, х= 13см. Следовательно, АВ= 13см, ВС=х+2= 15(см).

Если в условии задачи даны две наклонные, проведённые из одной точки к прямой, то рассматриваем два прямоугольных треугольника, общим катетом которых является перпендикуляр, проведённый из общей точки к этой прямой.

Теорема Пифагора — одна из наиболее значимых теорем математики. На протяжении многих столетий она являлась толчком для важнейших математических исследований. Предлагаем вам несколько интересных фактов, связанных с этой теоремой и её автором.

Пифагор (570 — 496 гг. до н. э.) родился на острове Самос (южная часть Эгейского моря). Длительное время изучал математику в Египте и Вавилоне. В г. Кротоне, на юге Италии, основал научную школу — так называемый пифагорейский союз. Пифагор и его ученики занимались математикой, философией, астрономией и теорией музыки. Вследствие противоречий и противодействия со стороны общества здание школы было разгромлено, а сам Пифагор убит. Среди важнейших достижений пифагорейцев — теорема, которую называют теоремой Пифагора, и её доказательство. (Ныне установлено, что эта теорема была известна за 1500 лет до Пифагора в древнем Вавилоне.) Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах (рис. 419).

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательством теоремы Пифагора занимались многие математики на протяжении столетий. Известно более 150 доказательств этой теоремы. Так, индийский математик Бхаскара (XII в.) предложил такую фигуру, как на рисунке 420, без каких-либо объяснений. Под рисунком лишь одно слово — «смотри». Попытайтесь объяснить справедливость теоремы по этому рисунку. Теорема Пифагора допускает интересные обобщения. Одно из них: если на сторонах прямоугольного треугольника построить произвольные, подобные между собой фигуры, то справедливо равенство Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления~ площади построенных фигур.

Решение прямоугольных треугольников с формулами и примерами вычисления

С теоремой Пифагора связаны школьные шутки: рисунок к теореме для случая равнобедренного прямоугольного треугольника ученики называли «пифагоровы штаны» (рис. 422), а также изображали в виде смешных фигурок (рис. 423 и 424).

Синус, косинус и тангенс острого угла прямоугольного треугольника

Пусть ABC – прямоугольный треугольник с катетами ВС = а, АС = by гипотенузой АВ = с и ےA = a (рис. 441). Вы знаете, что катет а – противолежащий углу а, катет b – прилежащий к углу a. Отношение каждого катета к гипотенузе, а также катета к катету имеют специальные обозначения:

  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают sin а и читают «синус альфа»;
  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают cos а и читают «косинус альфа»;
  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают tg а и читают «тангенс альфа».

Решение прямоугольных треугольников с формулами и примерами вычисления

Сформулируем определения sin a, cos а и tg а.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Отношение сторон прямоугольного треугольника и их обозначения указаны в Решение прямоугольных треугольников с формулами и примерами вычисления

Зависят ли синус, косинус и тангенс острого угла от размеров треугольника?

Решение прямоугольных треугольников с формулами и примерами вычисления

Нет, не зависят. Итак, пусть ABC и Решение прямоугольных треугольников с формулами и примерами вычисления -два прямоугольных треугольника, в которых Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 442). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления по двум углам (Решение прямоугольных треугольников с формулами и примерами вычисления). Соответствующие стороны этих треугольников пропорциональны: Решение прямоугольных треугольников с формулами и примерами вычисления

Из этих равенств следует:

Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, в прямоугольных треугольниках с одним и тем же острым углом синусы этого утла равны, косинусы и тангенсы – равны. Если градусную меру угла изменить, то изменится и соотношение сторон прямоугольного треугольника. Это означает, что синус, косинус и тангенс острого угла прямоугольного треугольника зависят только от градусной меры угла и не зависят от размеров треугольника.

По исходному значению sin A, cos А или tg А можно построить угол А.

Пример №29

Постройте угол, синус которого равен Решение прямоугольных треугольников с формулами и примерами вычисления.

Решение:

Выбираем некоторый единичный отрезок (1 мм, 1 см, 1 дм). Строим прямоугольный треугольник, катет ВС которого равен двум единичным отрезкам, а гипотенуза АВ — трём (рис. 443). Угол А, лежащий против катета ВС, — искомый, поскольку sin А = Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

В прямоугольном треугольнике любой из двух катетов меньше гипотенузы. Поэтому sin а < 1 и cos а < 1 для любого острого угла а. Поскольку один катет может быть и больше, и меньше другого катета, и быть равный ему, то tg а может быть и больше 1, и меньше 1, и быть равным 1.

1. Кроме косинуса, синуса и тангенса угла а есть ещё одно соотношение сторон прямоугольного треугольника, имеющее особое название — котангенс. Это отношение катета b, прилежащего к углу а, к противолежащему катету а (рис. 444). Обозначается: ctg а. СледовательноРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

2. Индийский математик Ариабхата (V в.) отношение противолежащего катета к гипотенузе назвал ordhajyo — ардхажиа (полухорда), в переводе — тетива лука. В XII в. европейские учёные перевели это название на латинский язык как sinus — синус. Слово cosinus— косинус состоит из двух слов: complement — дополнение и sinus — синус, то есть дополнительный синус. Почему — узнаете из § 23 этой главы. Арабские астрономы-математики аль-Баттани (858 — 929 гг.) и Абу-ль-Вефа (940 — 998 гг.) определили понятие тангенса, измеряя угловую высоту Солнца по тени от жерди. Поэтому отношение катета, противолежащего углу а, к прилежащему катету они называли словом «тень». Позднее, в XVI в., это отношение получило название «тангенс», что в переводе с латинского означает «касательная». Знаки «sin», «cos», «tg» ввёл Леонард Эйлер в XVIII веке.

Соотношения между сторонами и углами прямоугольного треугольника

Вы знаете, что Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 451). Отсюда: 1) а=с sina, 2) b=c cosa, 3) a=b tga.

Решение прямоугольных треугольников с формулами и примерами вычисления

Эти равенства формулируются следующим образом.

  1. Катет, противолежащий углу а, равен произведению гипотенузы на sin a.
  2. Катет, прилежащий к углу а, равен произведению гипотенузы на cos a.
  3. Катет, противолежащий углу а, равен произведению другого катета на tg a.

Из равенств 1) и 2) можно найти гипотенузу с прямоугольного треугольника по катету а или b и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления

Из равенства 3) можно найти катет b по прилежащему к нему углу а и катету а: Решение прямоугольных треугольников с формулами и примерами вычисления

Для того чтобы найти по одной из сторон прямоугольного треугольника и острому углу две другие его стороны, используйте равенства 1) — 6) (табл.33). Таблица 3 3 Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №30

Найдите основание равнобедренного треугольника с боковой стороной о и углом а при основании.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABC— равнобедренный треугольник с боковой стороной ВС = а и ےC = а (рис. 452). Проведём высоту BD. В прямоугольном треугольнике DBCкатет DC, прилежащий к углу а, равен произведению гипотенузы а на cos a: DC = a cos а. Поскольку высота равнобедренного треугольника, опущенная на основание, является медианой, то DC = AD. Тогда основание АС = 2 DC =2 a cos а.

В этой главе вы ознакомились с новыми приёмами вычисления длин сторон и градусных мер углов прямоугольного треугольника. Может возникнуть вопрос: Какова необходимость использования этих приёмов? Вы знаете, что в древности расстояния и углы сначала измеряли непосредственно инструментами. Например, транспортиром пользовались вавилоняне ещё за 2 ООО лет до н. э.

Но на практике непосредственно измерять расстояния и углы не всегда возможно. Как вычислить расстояние между двумя пунктами, которые разделяет препятствие (река, озеро, лес), расстояние до Солнца, Луны, как измерить высоту дерева, горы, как найти угол подъёма дороги либо угол при спуске с горы? Поэтому были открыты приёмы опосредствованного измерения расстояний и углов. При этом использовали равные либо подобные треугольники и геометрические построения. Строили на местности вспомогательный треугольник и измеряли необходимые его элементы.

Итак, вы знаете, как определить расстояние между пунктами А и В, разделёнными препятствием (рис. 453). Для этого строим ∆COD = ∆АОВ и вместо искомого расстояния Ив измеряем равное ему расстояние CD.

Решение прямоугольных треугольников с формулами и примерами вычисления

Но при использовании этих приёмов получали недостаточно точные результаты, особенно при измерении значительных расстояний на местности. Кроме того, без угломерных инструментов нельзя найти градусные меры углов по длинам тех или других отрезков. Поэтому возникла необходимость в таких приёмах, когда непосредственные измерения сводились к минимуму, а результаты получали преимущественно вычислением элементов прямоугольного треугольника. В основе таких приёмов лежит использование cos а, sin а и tg а. Накопление вычислительных приёмов решения задач обусловило создание нового раздела математики, который в XVI в. назвали тригонометрией. Слово «тригонометрия» происходит от греческих слов trigonon — треугольник и metreo — измеряю. Греческих математиков Гиппарха (II в. до н. э.) и Птолемея (II в.) считают первыми, кто использовал тригонометрические приёмы для решения разных задач. В дальнейшем их усовершенствовали индийский математик Брамагупта (VI в.), узбекские математики аль-Каши и Улугбек (XII в.). В работах академика Леонарда Эйлера (XVIII в.) тригонометрия приобретает тот вид, который в основном имеет и в наше время.

Вычисление значений sin a, cos а и tg а

ЕЭ| Пусть в прямоугольном треугольнике ABC ZA = а, тогда ZB – 90° – а (рис. 467). Из определения синуса и косинуса следует:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления Сравнивая эти два столбца, находим: sin а = cos (90° – а), cos а = sin (90° – а).

Как видим, между синусом и косинусом углов а и 90° – а, которые дополняют друг друга до 90°, существует зависимость: синус одного из этих углов равен косинусу другого.

Например: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Найдём значения синуса, косинуса и тангенса для углов 45°, 30°, 60°. 1) Для угла 45°. Пусть ABC – прямоугольный треугольник с гипотенузой С и ےA = 45° (рис. 468). Тогда ےB = 45°. Следовательно, ∆ABC – равнобедренный. Пусть АС = ВС = а. Согласно теореме Пифагора,

Решение прямоугольных треугольников с формулами и примерами вычисления

2) Для углов 30° и 60°.

Пусть ABC – прямоугольный треугольник с гипотенузой с и ےA = 30″ (рис. 469). Найдём катеты АС и ВС.

ВС = Решение прямоугольных треугольников с формулами и примерами вычисления как катет, лежащий против угла 30°.

Согласно теореме Пифагора, Решение прямоугольных треугольников с формулами и примерами вычисления

ТогдаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Если в прямоугольном треугольнике ABC ےA = 30° (рис. 469),

Решение прямоугольных треугольников с формулами и примерами вычисления

Составим таблицу 35 значений синуса, косинуса и тангенса для углов 30°, 45°, 60°

Таблица 35 Решение прямоугольных треугольников с формулами и примерами вычисления

Из таблицы видно, что при увеличении угла синус и тангенс острого угла возрастают, а косинус — уменьшается. При уменьшении угла синус и тангенс острого угла уменьшаются, а косинус – увеличивается. Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №31

Сторона ромба равна 6 см, а один из его углов Найдите высоту ромба.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABCD — ромб (рис. 470), в котором АВ = 6 см, ےА = 60°. Проведём высоту ВМ. Из прямоугольного треугольника АВМ: Решение прямоугольных треугольников с формулами и примерами вычисления Как вычислить значения синусов, косинусов и тангенсов углов, отличных от 30°, 45°, 60°?

При помощи инженерных калькуляторов (или программы «калькулятор» компьютера) либо специальных таблиц можно решить две задачи:

1) для заданного угла а найти sin a, cos а, tg а;

2) по заданному значению sin a, cos а, tg а найти угол а.

Если вы используете калькулятор, а угол указан в градусах и минутах, то минуты переведите в десятые доли градуса (разделите их на 60). Например, для угла 55°42° получите 55,7°. Если, например, для cos Решение прямоугольных треугольников с формулами и примерами вычисления 0,8796 нашли Решение прямоугольных треугольников с формулами и примерами вычисления28,40585° то доли градуса переведите в минуты (умножьте дробную часть на 60). Округлив, получите: Решение прямоугольных треугольников с формулами и примерами вычисления 28°24°.

Значение sin a, cos а, tg а находим по таблицам.

Таблица синусов и косинусов (см. приложение 1) состоит из четырёх столбцов. В первом столбце слева указаны градусы от 0° до 45°, а в четвёртом – от 90° до 45°. Над вторым и третьим столбцами указаны названия «синусы» и «косинусы», а в нижней части этих столбцов – «косинусы» и «синусы».

Верхние названия «синусы» и «косинусы» отображают значения углов, которые меньше 45°, а нижние – больше 45°. Например, по таблице находим: sin34° Решение прямоугольных треугольников с формулами и примерами вычисления 0,559, cos67°Решение прямоугольных треугольников с формулами и примерами вычисления 0,391, sin85° Решение прямоугольных треугольников с формулами и примерами вычисления 0,996 и т. д. По таблице можно найти угол а по заданному значению sin a, cos а. Например, нужно найти угол а, если sin Решение прямоугольных треугольников с формулами и примерами вычисления 0,615. В столбцах синусов находим число, приближённое к 0,615. Таким числом является 0,616. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления 38″.

Таблица тангенсов (см. приложение 2) состоит из двух столбцов: в одном указаны углы от 0° до 89°, в другом – значения тангенсов этих углов.

Например, tg 19° Решение прямоугольных треугольников с формулами и примерами вычисления0,344. Если tg Решение прямоугольных треугольников с формулами и примерами вычисления0,869, то Решение прямоугольных треугольников с формулами и примерами вычисления41°.

1. Вы уже знаете, что каждой градусной мере угла а прямоугольного треугольника соответствует единственное значение sin a, cos а, tg а. Поэтому синус, косинус и тангенс угла а являются функциями данного угла. Эти функции называются тригонометрическими функциями, аргумент которых изменяется от О° до 90°.

2. Уточним происхождение слова «косинус». Именно равенство cos а = sin (90° — а) явилось основой образования латинского слова cosinus — дополнительный синус, то есть синус угла, дополняющий заданный до 90°.

3. Первые таблицы синусов углов от 0° до 90° составил греческий математик Гиппарх (II в. до н. э.). Эти таблицы не сохранились. Нам известны только тригонометрические таблицы, помещённые в работе «Альмагест» александрийского учёного Клавдия Птолемея (II в.). Птолемей Также сохранились таблицы синусов и косинусов индийского учёного Ариаб-хаты (V в.), таблицы тангенсов арабских учёных аль-Баттани и Абу-ль-Вефа (X в.).

Как решать прямоугольные треугольники

Решить прямоугольный треугольник – это означает по заданным двум сторонам либо стороне и острому углу найти другие его стороны и острые углы.

Возможны следующие виды задач, в которых требуется решить прямоугольный треугольник по: 1) катетам; 2) гипотенузе и катету; 3) гипотенузе и острому углу; 4) катету и острому углу. Алгоритмы решения этих четырёх видов задач изложены в таблице 36.

Таблица 36

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №32

Решите прямоугольный треугольник по гипотенузе с= 16 и углу а = 76°21′ (рис. 482).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение. Это задача третьего вида. Алгоритм её решения указан в таблице 38.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение многих прикладных задач основано на решении прямоугольных треугольников. Рассмотрим некоторые виды прикладных задач.

1. Задачи на нахождение высоты предмета, основание которого доступно.

Пример №33

Найдите высоту дерева (рис. 483).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На некотором расстоянии MN= а от дерева устанавливаем угломерный прибор AM (например, теодолит) и находим угол а между горизонтальным направлением АС и направлением на верхнюю точку В дерева. Из прямоугольного треугольника ABC получим: ВС= a • tg а. С учётом высоты угломерного прибора AM= h имеем формулу для вычисления высоты дерева: BN= о • tg а + h.

Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления.

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления(м).

2. Задачи на нахождение высоты предмета, основание которого недоступно.

Пример №34

Найдите высоту башни, которая отделена от вас рекой (рис. 484).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На горизонтальной прямой, проходящей через основание башни (рис. 484), обозначим две точки М и N, измерим отрезок MN= а и углы Решение прямоугольных треугольников с формулами и примерами вычисления. Из прямоугольных треугольников ADC и BDC получим: Решение прямоугольных треугольников с формулами и примерами вычисления

Почленно вычитаем полученные равенства: Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Прибавив к DC высоту прибора AM= Н, которым измеряли углы, получим

формулу для вычисления высоты башни: Решение прямоугольных треугольников с формулами и примерами вычисления

Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

3. Задачи на нахождение расстояния между двумя пунктами, которые разделяет препятствие.

Пример №35

Найдите расстояние между пунктами А и В, разделёнными рекой (рис. 485).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Провешиваем прямую Решение прямоугольных треугольников с формулами и примерами вычисления и отмечаем на ней точку С. Измеряем расстояние АС= а и угол а. Из прямоугольного треугольника ABC получим формулу АВ= a- tg а для определения расстояния между пунктами А и В. Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда АВ = Решение прямоугольных треугольников с формулами и примерами вычисления

4. Задачи на нахождение углов (угла подъёма дороги; угла уклона; угла, под которым виден некоторый предмет, и т. д.).

Пример №36

Найдите угол подъёма шоссе, если на расстоянии 200 м высота подъёма составляет 8 м.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На рисунке 486 угол a — это угол подъёма дороги, АС— горизонтальная прямая. Проведём Решение прямоугольных треугольников с формулами и примерами вычисления, тогда ВС- высота подъёма дороги. По условию, АВ = 200 м, ВС = 8 м. Угол a найдём из прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

У вас может возникнуть вопрос: Почему в геометрии особое внимание уделяется прямоугольному треугольнику, хотя не часто встречаются предметы подобной формы?

Итак, поразмышляем. Как в химии изучают вначале элементы, а затем — их соединения, в биологии — одноклеточные, а потом — многоклеточные организмы, так и в геометрии изучают сначала простые геометрические фигуры — точки, отрезки и треугольники, из которых состоят другие геометрические фигуры. Среди этих фигур прямоугольный треугольник играет особую роль. Действительно, любой многоугольник можно разбить на треугольники (рис. 487).

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Умея находить угловые и линейные элементы этих треугольников, можно найти все элементы многоугольника. В свою очередь, любой треугольник можно разбить одной из его высот на два прямоугольных треугольника, элементы которых связаны более простой зависимостью (рис. 488). Найти элементы треугольника можно, если свести задачу к решению этих двух прямоугольных треугольников. Проиллюстрируем это на примере.

Пример №37

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 489). Найдите ےB, ےC и сторону а.

Решение:

Проведём высоту BD. Точка D будет лежать между точками А и С, поскольку ےA — острый и b> с.

Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника ABD:

Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника BDC:Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

  • Параллелограмм
  • Теорема синусов и  теорема косинусов
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Площадь трапеции
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве
  • Подобие треугольников

Добавить комментарий