Как найти длину отрезка по координатам прямой


Загрузить PDF


Загрузить PDF

Найти длину вертикального или горизонтального отрезка на координатной плоскости можно с помощью координат, а вот сделать это с диагональным отрезком сложнее. Длину диагонального отрезка можно вычислить по формуле, которая основана на теореме Пифагора, где гипотенузой прямоугольного треугольника является наш диагональный отрезок.[1]
С помощью этой формулы можно быстро найти длину любого отрезка на координатной плоскости.

  1. Изображение с названием Use Distance Formula to Find the Length of a Line Step 1

    1

    Запишите формулу для вычисления длины. Формула: d={sqrt  {(x_{{2}}-x_{{1}})^{{2}}+(y_{{2}}-y_{{1}})^{{2}}}}, где d — длина отрезка, (x_{{1}},y_{{1}}) — координаты начальной точки отрезка, (x_{{2}},y_{{2}}) — координаты конечной точки отрезка.[2]

  2. Изображение с названием Use Distance Formula to Find the Length of a Line Step 2

    2

    Найдите координаты точек отрезка. Возможно, они будут даны. Если нет, найдите их по осям Х и Y.[3]

  3. Изображение с названием Use Distance Formula to Find the Length of a Line Step 3

    3

    Подставьте координаты в формулу. Будьте внимательны и подставьте значения соответствующих переменных. Две координаты x должны находится внутри первой пары скобок, а две координаты y — внутри второй пары скобок.[4]

    Реклама

  1. Изображение с названием Use Distance Formula to Find the Length of a Line Step 4

    1

    Выполните вычитание в скобках. Сделайте это, потому что операции в скобках имеют приоритет.[5]

  2. Изображение с названием Use Distance Formula to Find the Length of a Line Step 5

    2

    Возведите в квадрат полученные значения. В нашем случае возведение в степень — это вторая по важности операция.[6]

  3. Изображение с названием Use Distance Formula to Find the Length of a Line Step 6

    3

    Сложите числа под знаком корня. Делайте вычисления так, как будто работаете с целыми числами.

  4. Изображение с названием Use Distance Formula to Find the Length of a Line Step 7

    4

    Вычислите длину отрезка d. Для этого извлеките корень из полученной суммы чисел.

    Реклама

Советы

  • Не путайте эту формулу с другими, например, с формулой для вычисления углового коэффициента или с линейным уравнением.
  • Помните о порядке выполнения математических операций. Сначала вычтите, затем возведите в квадрат, затем сложите, а затем извлеките квадратный корень.

Реклама

Об этой статье

Эту страницу просматривали 24 315 раз.

Была ли эта статья полезной?

Длина отрезка. Расстояние между точками: онлайн-калькулятор

Чтобы найти расстояние между точками (длину отрезка) онлайн, необходимо:

  1. Задать размерность (плоскость или пространство).
  2. Ввести в поля координаты точек.
  3. Нажать «рассчитать».

Расстояние между точками онлайн

Для нахождения длины отрезка по координатам существует формула. Для отрезка AB в трехмерном пространстве она имеет вид:

d=xb-xa2+yb-ya2+zb-za2

Даже если вы забыли данную формулу, расстояние между точками всегда можно найти по координатам онлайн. Калькулятор не только предоставляет правильный ответ, но и подробно расписывает решение.

Онлайн-калькулятор нахождения длины отрезка по координатам будет полезен школьникам и студентам в самостоятельной подготовке, а также преподавателям и всем любителям математики.

Длина отрезка

Отрезком называют часть прямой линии, состоящей из всех точек этой линии, которые расположены между данными двумя точками — их называют концами отрезка. 

рис.1 (2)

Рассмотрим первый пример.  Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.

Итак, в системе координат начертим отрезок с заданными координатами его концов (x1; y1) и (x2; y2). На оси X и Y из концов отрезка опустим перпендикуляры. Отметим красным цветом отрезки, которые являются на оси координат проекциями от исходного отрезка.  После этого перенесем параллельно к концам отрезков отрезки-проекции. Получаем треугольник (прямоугольный). Гипотенузой у данного треугольника станет сам отрезок АВ, а его катетами являются перенесенные проекции.

Вычислим длину данных проекций. Итак, на ось Y длина проекции равна y2-y1, а на ось Х длина проекции равна x2-x1. Применим теорему Пифагора: |AB|² = (y2 – y1)² + (x2 – x1)². В данном случае |AB| является длиной отрезка.

Если использовать данную схему для вычисления длины отрезка, то можно даже отрезок и не строить. Теперь высчитаем, какова длина отрезка с координатами (1;3) и (2;5). Применяя теорему Пифагора, получаем: |AB|² = (2 – 1)² + (5 – 3)² = 1 + 4 = 5. А это значит, что длина нашего отрезка равна 5:1/2.

Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную  Декартову систему координат.

рис.2

Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки,  они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.

Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.

Рассчитаем длину отрезка А, для этого найдем квадратный корень:

A = √(X²+Y²) = √ ((X2-X1)²+(Y2-Y1)²).

Если наш отрезок расположен между точками, координаты которых 2;4 и 4;1, то его длина, соответственно, равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.

Длина отрезка – это то же самое, что и расстояние между двумя точками.

Можно рассмотреть несколько случаев, когда эта длина неизвестна

пример 1

есть на прямой три точки, которые образуют три отрезка

Чтобы найти отрезок побольше, нужно два меньших сложить.

Чтобы найти меньший отрезок, нужно от большого отнять другой меньший

АС=АВ-СВ или СВ=АВ-АС

пример 2

найдем длину отрезка на координатной прямой.

отрезок лежит между точками А(-5) и В(9), тогда его длина 9-(-5)=14

пример 3

найдем длину отрезка на координатной плоскости.

здесь тоже все просто – по координатам находим длину условных катетов прямоугольного треугольника а дальше по формуле Пифагора находим длину.

Отрезок. Формула длины отрезка.

Отрезком обозначают ограниченный двумя точками участок прямой. Точки – концы отрезка.

Общеизвестный факт, что каждая точка А плоскости имеет свои координаты (х, у).

Формула длины отрезка.

В данном примере вектор AB задан координатами (х2— х1, y2— y1). Квадрат длины вектора будет равен сумме квадратов его координат. Следовательно, расстояние d между точками А и В, или, что то же самое, длина вектора АВ, вычисляется согласно формуле:

Формула длины отрезка.

Эта формула длины отрезка предоставляет возможность рассчитывать расстояние между двумя произвольными точками плоскости, при условии, что известны координаты этих точек

Вышеуказанную формулу длины отрезка можно доказать и другим способом. В системе координат заданы координаты крайних точек отрезка координатами его концов1y1) и 22).

Прочертим прямые лини через эти точки перпендикулярно к осям координат, в результате имеем прямоугольный треугольник. Первоначальный отрезок является гипотенузой образовавшегося треугольника. Катеты треугольника сформированы отрезками, их длиной будет проекция гипотенузы на оси координат.

Установим длину этих проекций.

На ось у длина проекции равна y2 — y1, а на ось х длина проекции равна х2 — х1. На основании теоремы Пифагора видим, что |AB|² = (y2 – y1)² + (x2 – x1.

В рассмотренном случае |AB| выступает длиной отрезка.

Вычислим длину отрезка АВ, для этого извлечем квадратный корень. Результатом является все та же формула длины отрезков по известным координатам конца и начала.

Как вычислить длину отрезка по координатам

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Количество просмотров этой статьи: 15 763.

Найти длину вертикального или горизонтального отрезка на координатной плоскости можно с помощью координат, а вот сделать это с диагональным отрезком сложнее. Длину диагонального отрезка можно вычислить по формуле, которая основана на теореме Пифагора, где гипотенузой прямоугольного треугольника является наш диагональный отрезок. [1] X Источник информации С помощью этой формулы можно быстро найти длину любого отрезка на координатной плоскости.

Длина отрезка. Расстояние между точками: онлайн-калькулятор

Чтобы найти расстояние между точками (длину отрезка) онлайн, необходимо:

  1. Задать размерность (плоскость или пространство).
  2. Ввести в поля координаты точек.
  3. Нажать «рассчитать».

Как найти длину отрезка (расстояние между точками) с помощью онлайн-калькулятора

Рассмотрим пример, наглядно демонстрирующий работу с онлайн-калькулятором. Найдем длину произвольного отрезка, начальная и конечная точки которого имеют координаты (1;4) и (3;0). Для этого:

  1. Выберем размерность (2 или 3). Калькулятор позволяет задать отрезок соответственно на плоскости, или в пространстве. В нашем конкретном примере выберем плоскость (2):
    Длина отрезка. Расстояние между точками: онлайн-калькулятор
  2. Введем в пустые поля координаты начальной и конечной точек отрезка:
    Длина отрезка. Расстояние между точками: онлайн-калькулятор
  3. После ввода координат остается нажать «Рассчитать» и получить ответ с решением:
    Длина отрезка. Расстояние между точками: онлайн-калькулятор

Материалы, которые помогут вам лучше разобраться в теме:

  • Середина отрезка
  • Каноническое уравнение прямой проходящей через две точки
  • Параметрическое Уравнение прямой проходящей через две точки
  • Расстояние от точки до прямой на плоскости
  • Уравнение плоскости (координаты трех точек)
  • Уравнение плоскости (координаты вектора нормали и точки)
  • Точка пересечения прямых (с угловыми коэффициентами)
  • Расстояние от точки до прямой в пространстве
  • Расстояние от точки до плоскости
  • Расстояние между плоскостями
  • Угол между плоскостями
  • Угол между прямой и плоскостью

Расстояние между точками онлайн

Для нахождения длины отрезка по координатам существует формула. Для отрезка AB в трехмерном пространстве она имеет вид:

d = x b — x a 2 + y b — y a 2 + z b — z a 2

Даже если вы забыли данную формулу, расстояние между точками всегда можно найти по координатам онлайн. Калькулятор не только предоставляет правильный ответ, но и подробно расписывает решение.

Онлайн-калькулятор нахождения длины отрезка по координатам будет полезен школьникам и студентам в самостоятельной подготовке, а также преподавателям и всем любителям математики.

Добавить комментарий