Как найти длину периметра прямоугольника формула площади


Загрузить PDF


Загрузить PDF

Прямоугольник — это четырехугольник (двумерная фигура) с четырьмя прямыми углами. Параллельные стороны прямоугольника равны.[1]
Прямоугольник, у которого все стороны равны, называется квадратом. Все квадраты являются прямоугольниками, но не все прямоугольники — квадраты. Периметр фигуры равен сумме значений ее сторон.[2]
Площадь фигуры равна произведению ее длины на ширину.[3]

  1. Изображение с названием Find the Area and Perimeter of a Rectangle Step 1

    1

    Удостоверьтесь, что в задаче дан прямоугольник (показан на рисунке). Помните, что у прямоугольника противоположные стороны параллельны и равны (верхняя и нижняя стороны, а также боковые стороны). Более того, боковые стороны перпендикулярны (пересекают под 90°) верхней и нижней сторонам.[4]

    • Если у фигуры все стороны равны, в задаче дан квадрат. Квадрат является частным случаем прямоугольника.
    • Если данная в задаче фигура не соответствует приведенным условиям, она не является прямоугольником.
  2. Изображение с названием Find the Area and Perimeter of a Rectangle Step 2

    2

    Запишите формулу для вычисления площади прямоугольника: S = l x w.[5]
    В этой формуле S — площадь, l — длина прямоугольника, w — ширина прямоугольника. Единицами измерения площади являются квадратные единицы измерения длины, например, квадратные метры, квадратные сантиметры и так далее.

    • Единицы измерения площади записываются так: м2, см2 и так далее.
  3. Изображение с названием Find the Area and Perimeter of a Rectangle Step 3

    3

    Найдите длину и ширину прямоугольника. Длина прямоугольника — это его верхняя или нижняя сторона. Ширина прямоугольника — это одна из его боковых сторон. Измерьте стороны прямоугольника с помощью линейки, чтобы найти длину и ширину.

    • Например, длина прямоугольника равна 5 см, а ширина равна 2 см.
  4. Изображение с названием Find the Area and Perimeter of a Rectangle Step 4

    4

    В формулу подставьте значения переменных и вычислите площадь. В формулу подставьте значения длины и ширины, которые вы только что нашли, а затем перемножьте их, чтобы вычислить площадь прямоугольника.

    • В нашем примере: S = l x w = 5 x 2 = 10 см2.

    Реклама

  1. Изображение с названием Find the Area and Perimeter of a Rectangle Step 5

    1

    Удостоверьтесь, что в задаче дан прямоугольник (показан на рисунке). Помните, что у прямоугольника противоположные стороны параллельны и равны (верхняя и нижняя стороны, а также боковые стороны). Более того, боковые стороны перпендикулярны (пересекают под 90°) верхней и нижней сторонам.

    • Если у фигуры все стороны равны, в задаче дан квадрат. Квадрат является частным случаем прямоугольника.
    • Если данная в задаче фигура не соответствует приведенным условиям, она не является прямоугольником.
  2. Изображение с названием Find the Area and Perimeter of a Rectangle Step 6

    2

    Запишите формулу для вычисления периметра прямоугольника: P = 2 (l + w).[6]
    В этой формуле Р — периметр, l — длина прямоугольника, w — ширина прямоугольника. Иногда данная формула записывается так: P = 2l + 2w (эти формулы идентичны друг другу, но форма записи у них разная).

    • Единицами измерения периметра являются единицы измерения длины, например, метры, сантиметры и так далее.
  3. Изображение с названием Find the Area and Perimeter of a Rectangle Step 7

    3

    Найдите длину и ширину прямоугольника. Длина прямоугольника — это его верхняя или нижняя сторона. Ширина прямоугольника — это одна из его боковых сторон. Измерьте стороны прямоугольника с помощью линейки, чтобы найти длину и ширину.

    • Например, длина прямоугольника равна 5 см, а ширина равна 2 см.
  4. Изображение с названием Find the Area and Perimeter of a Rectangle Step 8

    4

    В формулу подставьте значения переменных и вычислите периметр. В формулу подставьте значения длины и ширины, которые вы только что нашли. Периметр можно вычислить двумя способами в зависимости от выбранной вами формулы. Если вы выбрали формулу P = 2(l + w), сложите значения длины и ширины, а затем сумму умножьте на 2. Если вы выбрали формулу P = 2l + 2w, умножьте длину на 2, затем ширину умножьте на 2, а затем сложите полученные значения.

    • В нашем примере: P = 2(l + w) = 2(2 + 5) = 2(7) = 14 см.
    • В нашем примере: P = 2l + 2w = (2 x 2) + (2 x 5) = 4 + 10 = 14 см.

    Реклама

Что вам понадобится

  • Бумага
  • Ручка или карандаш
  • Линейка, чтобы измерять стороны

Об этой статье

Эту страницу просматривали 19 298 раз.

Была ли эта статья полезной?

Прямоугольник – это четырёхугольник, у которого все углы прямые. Значит, противоположные стороны равны друг другу.

Квадрат – это прямоугольник, у которого равны и стороны, и углы. Его называют правильным четырёхугольником.

Математика – 3 класс. Прямоугольники

Периметр и площадь прямоугольника

Что такое прямоугольник и квадрат

Четырёхугольники, в том числе прямоугольники и квадраты, обозначаются 4 буквами – вершинами. Для обозначения вершин используют латинские буквы: A, B, C, D
Пример.Периметр и площадь прямоугольника

Что такое периметр прямоугольника? Формула расчета периметра

Периметр прямоугольника – это сумма длин всех сторон прямоугольника или сумма длины и ширины, умноженная на 2. Периметр обозначается латинской буквой P. Так как периметр – это длина всех сторон прямоугольника, то он периметр записывается в единицах длины: мм, см, м, дм, км.

Периметр и площадь прямоугольника
Например, периметр прямоугольника АВСD обозначается как PABCD, где А, В, С, D – это вершины прямоугольника.

PABCD = AB + BC + CD + AD = 2 * AB + 2 * BC = 2 * (AB + BC)

Определим PABCD.

Пример:

Задан прямоугольник ABCD со сторонами: AB=СD=5 см и AD=BC=3 см. Решение:

Нарисуем прямоугольник ABCD с исходными данными.Периметр и площадь прямоугольника

PABCD = 2 * (AB + BС)

Подставим в формулу наши данные:

PABCD = 2 * (5 см + 3 см) = 2 * 8 см = 16 см

Ответ: PABCD = 16 см.

Формула расчета периметра квадрата

У нас есть формула для определения периметра прямоугольника.

PABCD = 2 * (AB + BC)

Применим её для определения периметра квадрата. Учитывая, что все стороны квадрата равны, получаем:

PABCD= 4 * AB

Пример:

Задан квадрат ABCD со стороной, равной 6 см. Определим периметр квадрата. Решение:

Нарисуем квадрат ABCD с исходными данными.
Периметр и площадь прямоугольника

PABCD = 4 * AB

Подставим в формулу наши данные:

PABCD = 4 * 6 см = 24 см

Ответ: PABCD = 24 см.

Задачи на нахождение периметра прямоугольника

Измерь ширину и длину прямоугольников. Определи их периметр.

Периметр и площадь прямоугольника
Периметр и площадь прямоугольника

Нарисуй прямоугольник ABCD со сторонами 4 см и 6 см. Определи периметр прямоугольника. 3. Нарисуй квадрат СEOM со стороной 5 см. Определи периметр квадрата.

Где используется расчет периметра прямоугольника?

Задан участок земли, его нужно обнести забором. Какой длины будет забор?

В данной задаче необходимо точно рассчитать периметр участка, чтобы не купить лишний материал для постройки забора. 2. Родители решили сделать ремонт в детской комнате. Необходимо знать периметр комнаты и её площадь, чтобы правильно рассчитать количество обоев. Определи длину и ширину комнаты, в которой ты живешь. Определи периметр своей комнаты.

Что такое площадь прямоугольника?

Площадь – это числовая характеристика фигуры. Площадь измеряется квадратными единицами длины: см2, м2, дм2 и др. (сантиметр в квадрате, метр в квадрате, дециметр в квадрате и т.д.). В вычислениях обозначается латинской буквой S.

Для определения площади прямоугольника необходимо длину прямоугольника умножить на его ширину. Периметр и площадь прямоугольника

  1. S AKMO = AK * KM
  2. S AKMO= AK * KM = 7 см * 2 см = 14 см2.

Пример:

Чему равна площадь прямоугольника AKMO, если его стороны равны 7 см и 2 см?

Ответ: 14 см2.

Формула вычисления площади квадрата

Площадь квадрата можно определить, умножив сторону саму на себя. Пример:

В данном примере площадь квадрата вычисляется умножением стороны АB на ширину BC, но так как они равны, получается умножение стороны AB на AB.

  • S AВСО = AB * BC = AB * AB
  • S AKMО = AK * KM = 8 см * 8 см = 64 см2

Пример:

Определи площадь квадрата AKMO со стороной 8 см.

Ответ: 64 см2.

Задачи на нахождение площади прямоугольника и квадрата:

  1. Задан прямоугольник со сторонами 20 мм и 60 мм. Вычисли его площадь. Запиши ответ в квадратных сантиметрах.
  2. Был куплен дачный участок размером 20 м на 30 м. Определи площадь дачного участка, ответ запиши в квадратных сантиметрах.

Источник: https://mathematics-tests.com/matematika-3-klass-urok-perimetr-ploshad-pryamougolnika

Что такое периметр и площадь

Периметр и площадь прямоугольника

Периметр – это геометрический термин, который часто встречается в задачах. Чтобы понять, что такое периметр, следует нарисовать произвольный многоугольник и вооружиться линейкой. В переводе с греческого языка этот термин обозначает «измеряю вокруг».

Периметр обозначается латинской буквой P. Его можно измерить в сантиметрах, миллиметрах, метрах или дециметрах. Чтобы узнать периметр, следует измерить длину всех сторон многоугольника. Полученные значения нужно сложить. Итоговая сумма и станет ответом на вопрос: «Чему равен периметр многоугольника».

Периметр – это длина линий, которые ограничивают замкнутую фигуру (квадрат, прямоугольник, треугольник и др.).

Периметр и площадь прямоугольника

Например, перед вами многоугольник со сторонами 10, 12, 13 и 11 см. Складываем вышеназванные числа (10+12+13+11) и получаем сумму 46. Это и есть периметр многоугольника.

Для удобства вычисления периметра в геометрии существует ряд формул. Каждая формула соответствует определенной фигуре.

Периметр и площадь прямоугольника

Периметр и площадь квадрата

Это сумма его четырех сторон. Как мы знаем, все стороны квадрата имеют равный размер. Поэтому мы можем узнать периметр квадрата, умножив длину его стороны на четыре:

  • P= a*4
  • P= a+a+a+a

Например, перед нами квадрат со стороной 10 см:

  • P= 10*4
  • P=40

Ответ: 40 см

  • P= 10+10+10+10
  • P=40

Ответ: 40 см

Периметр и площадь прямоугольника

Чтобы разобраться, что такое периметр и площадь, следует уяснить, что периметр вычисляет длину контура фигуры, а площадь – размер всей ее поверхности.

Чтобы узнать площадь квадрата, необходимо воспользоваться простой формулой:

  • S= a*a
  • S=a2

S – это площадь, а – сторона квадрата.

Например, в задаче указано, что длина стороны квадрата составляет 10см.

  • S=10*10
  • S= 100см2

Ответ: 100см2

Периметр и площадь прямоугольника

Стороны прямоугольника, находящиеся друг напротив друга и имеющие одинаковую длину, называются противолежащими. Это длина и ширина, они условно обозначаются латинскими буквами a и b. Формула для вычисления периметра прямоугольника выглядит так:

  • P= (a+b)*2

Используя эту формулу, мы сначала находим сумму ширины и длины, а затем умножаем ее на два. Например, перед нами прямоугольник, имеющий длину 6 см и ширину 2 см:

  • P= (6+2) * 2
  • P= 16

Ответ: 16 см

Периметр и площадь прямоугольника

Чтобы узнать площадь прямоугольника, следует длину умножить на ширину. Формула выглядит так:

  • S= a*b

Например, в условиях задачи сказано, что прямоугольник имеет длину 5 см и ширину 2см. Меняем буквы a и b на указанные числа:

  1. S= 5*2
  2. S=10см2

Ответ: 10 см2

Периметр круга (длина окружности)

Каждый круг имеет центр. Расстояние от центра круга до любой точки, расположенной на окружности, имеет название радиус круга. Часто ученики путают понятия «круг» и «окружность» и пытаются определить площадь окружности. Это серьезная ошибка. Следует разделить в голове понятия «круг» и «окружность». У окружности нет и не может быть площади, у нее есть только длина.

Чтобы найти периметр круга, следует вычислить длину его окружности. Существует формула для нахождения длины окружности:

  • L = 2πr
  • L= 2πd

L – длина окружности

π – это число «пи», математическая константа. Она равна отношению длины окружности к длине ее диаметра. Древнее название числа «пи» – лудольфово число. Это число иррационально, его десятичное представление после точки никогда не заканчивается.

π = 3.141 592 653 589 793 238 462 643 383 279 502

Для удобства вычислений обычно используют значение 3.14

R – это радиус окружности

D – Диаметр окружности

Итак, чтобы определить периметр круга, надо найти произведение радиуса и 2π. Если в задаче указан диаметр, то

Например, перед нами круг с радиусом 3 см. Найдем его периметр:

  • L= 2*3,14*3
  • L=6π
  • L=6*3.14
  • L = 18.84 см
  • Pк= 18,84 см

Ответ: 18.84 см

Отличие периметра от площади

Площадь – это размер поверхности фигуры, а периметр – это сумма ее границ. Площадь всегда измеряется в квадратных единицах (см2, м2, мм2). Периметр измеряется в единицах длины – в сантиметрах, миллиметрах, метрах, дециметрах.

Источник: https://topkin.ru/voprosy/nauka-voprosy/chto-takoe-perimetr-i-ploshhad/

Площадь прямоугольника

Площадь прямоугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками, угол между которыми равен 90 градусов и параллельные отрезки при этом равны.

Наш калькулятор поможет вам бесплатно в режиме онлайн вычислить площадь прямоугольника с помощью различных формул или проверить уже выполненные вычисления.

Площадь прямоугольника через две стороны

Периметр и площадь прямоугольника

a — сторона

b — сторонаПериметр и площадь прямоугольника

a (или b) — сторона

P — периметрПериметр и площадь прямоугольника

a (или b) — сторона

d — диагональПериметр и площадь прямоугольника

d — диагональ

α° — угол между диагоналямиПериметр и площадь прямоугольника

a (или b) — сторона

R — радиус описанной окружности

Периметр и площадь прямоугольника

a (или b) — сторона

D — диаметр описанной окружности

Прямоугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками, угол между которыми равен 90 градусов и параллельные отрезки при этом равны.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.

Источник: https://doza.pro/art/math/geometry/area-rectangle

Как найти периметр прямоугольника

Вас ждут четыре простых способа.

Как найти периметр прямоугольника

Напомним, периметром называют суммарную длину всех сторон. Вычислить её можно по‑разному. Выбирайте формулу в зависимости от известных вам данных.

Зная все или две соседние стороны

Для полноты упомянем простейшие классические формулы.

  1. Если известна длина всех сторон прямоугольника, просто посчитайте сумму этих величин.
  2. Если вы знаете только две соседние стороны, суммируйте их и умножьте результат на два.
  • P — искомый периметр;
  • a, b, c, d — стороны прямоугольника.

Зная любую сторону и площадь

  1. Поделите площадь на длину известной стороны.
  2. Прибавьте результат к известной стороне.
  3. Умножьте полученное число на два.
  • P — искомый периметр прямоугольника;
  • a — известная сторона;
  • S — площадь прямоугольника.

Зная любую сторону и диагональ

  1. Посчитайте разность квадратов диагонали и стороны.
  2. Найдите корень из результата.
  3. Прибавьте полученное число к известной стороне.
  4. Умножьте результат на два.
  • P — искомый периметр прямоугольника;
  • a — известная сторона;
  • d — диагональ прямоугольника.

Зная одну любую сторону и радиус описанной окружности

  1. Умножьте квадрат радиуса на четыре.
  2. Посчитайте разность полученного числа и квадрата известной стороны.
  3. Найдите корень из результата.
  4. Прибавьте полученное число к известной стороне.
  5. Умножьте результат на два.
  • P — искомый периметр прямоугольника;
  • a — известная сторона;
  • R — радиус окружности, описанной вокруг прямоугольника.

Читайте также 📐✂️📌

  • Как научить ребёнка считать играючи
  • Как перевести обычную дробь в десятичную
  • 6 способов посчитать проценты от суммы с калькулятором и без
  • 9 логических задач, которые по зубам только настоящим интеллектуалам
  • 11 книг, которые прокачают математическое мышление

Как найти периметр прямоугольника если известна площадь и длина.

Вера Тишина



Ученик

(214),
закрыт



8 лет назад

Марьяна Карпушина

Профи

(565)


8 лет назад

Зная, что формула нахождения площади S=a*b, мы делим площадь на длину. Получаем ширину. А теперь, пользуясь формулой нахождения периметра P=(a+b)*2 собственно и находим периметр, складывая длину и ширину и умножая их на два.

Источник: Мозг

Содержание материала

  1. Периметр геометрической фигуры
  2. Видео
  3. Как найти периметр прямоугольника, зная его площадь?
  4. Прямоугольный параллелепипед и куб
  5. Инструкция
  6. Многоугольник
  7. Треугольник
  8. Прямоугольный треугольник
  9. Формулы нахождения периметра
  10. Равносторонний многоугольник
  11. Прямоугольник и параллелограмм
  12. Окружность
  13. Навигация по записям

Периметр геометрической фигуры

Периметр геометрической фигуры — это сумма всех её сторон. Чтобы вычислить периметр, нужно измерить каждую сторону и сложить результаты измерений.

Вычислим периметр следующей фигуры:

Это прямоугольник. Детальнее мы поговорим об этой

Это прямоугольник. Детальнее мы поговорим об этой фигуре позже. Сейчас просто вычислим периметр этого прямоугольника. Длина его равна 9 см, а ширина 4 см.

У прямоугольника противоположные стороны равны. Это видно на рисунке. Если длина равна 9 см, а ширина равна 4 см, то противоположные стороны будут равны 9 см и 4 см соответственно:

Найдём периметр. Для этого сложим все стороны. Скл

Найдём периметр. Для этого сложим все стороны. Складывать их можно в любом порядке, поскольку от перестановки мест слагаемых сумма не меняется. Периметр часто обозначается заглавной латинской буквой P (англ. perimeters). Тогда получим:

P = 9 см + 4 см + 9 см + 4 см = 26 см.

Поскольку у прямоугольника противоположные стороны равны, нахождение периметра записывают короче — складывают длину и ширину, и умножают её на 2, что будет означать «повторить длину и ширину два раза»

P = 2 × (9 + 4) = 18 + 8 = 26 см.

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, найдём периметр квадрата со стороной 5 см. Фразу «со стороной 5 см» нужно понимать как «длина каждой стороны квадрата равна 5 см»

Чтобы вычислить периметр, сложим все стороны:

Чтобы вычислить периметр, сложим все стороны:

P = 5 см + 5 см + 5 см + 5 см = 20 см

Но поскольку все стороны равны, вычисление периметра можно записать в виде произведения. Сторона квадрата равна 5 см, и таких сторон 4. Тогда эту сторону, равную 5 см нужно повторить 4 раза

P = 5 см × 4 = 20 см

Как найти периметр прямоугольника, зная его площадь?

этого не достаточно. Надо еще знать одну из сторон

Ни по какой. Вариантов будет бесконечное множество

Прямоугольник — это четырёхугольник, у которого четыре прямых угла. Размеры прямоугольника задаются длиной его сторон, обозначаемых обычно a и b. Прямоугольник, все стороны которого равны (a=b) называется квадратом. Свойства прямоугольника противолежащие стороны равны и параллельны друг другу; диагонали равны и в точке пересечения делятся пополам; сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон. Периметр P прямоугольника равен удвоенной сумме сторон, прилежащих к одному углу P = 2(a + b). Длина диагонали d прямоугольника вычисляется по теореме Пифагора: d = √(a2 + b2). Углы между диагоналями прямоугльника определяются соотношением сторон: α = 2arctg(a/b), β = 2arctg(b/a), α + β = 180°. Площадь S прямоугольника равна произведению сторон, прилежащих к одному углу: S = a·b. Также можно выразить площадь прямоугольника через длину диагоналей и угол между ними: S = d2·sin(α/2)·cos(α/2). Радиус описанной вокруг прямоугольника окружности равен половине длины диагонали: R = √(a2 + b2)/2. В прямоугольник (если он не квадрат) нельзя вписать окружность так, чтобы она касалась всех его сторон. Максимальный радиус окружности, которая может поместиться внутри прямоугольника, равен половине его меньшей стороны.

решить систему уравнений одно из которых — формула площади второе формула периметра

периметер p=2*a+(2*s)/a, где а от 0 до s

надо решить систему уравнений например если пл-дь равна 16, то ситема примет вид. при учете что х это периметр, а и в стороны прямоугольника, то а*в=16 2а+2в=х отсюда верхнее уравнее системы можно выразить одну сторну через другую и подставить в нижнее уравнение, например: а=16/в то 2(16/в) +2в=х вот только надо знать сторону хоть одну чтобы определить вторую, а строна в как как писал выше Aqni имеет значения почти от нуля и почти до S внашем почти до 16….пиши мне на мыло если не понятно до сих пор )

Встречный вопрос — в доме 40 квартир — сколько это этажей? — емкость в 1 литр — какой диаметр емкости? Продолжить?…

S=a*b=к примеру 45см ^2 разложим на простые множители 45 45/3=15 15/3=5 5/5=1 НОД=1 Р=2(3^2+5^1)=2(9+5)=28 P.S. Как разложить число на простые множители см. <a rel=»nofollow» href=»https:///question/14487466″ target=»_blank»>https:///question/14487466</a>

Чтобы найти периметр прямоугольника надо сложить все его стороны.

плюс минус при подборе вручную по формуле будет иногда разницы втрое

Видео

Прямоугольный параллелепипед и куб

Прямоугольный параллелепипед — это геометрическая фигура, состоящая из грáней, рёбер и вершин. На рисунке показан прямоугольный параллелепипед:

Желтым цветом показаны грáни параллелепипеда, чёрн

Желтым цветом показаны грáни параллелепипеда, чёрным цветом — рёбра, красным — вершины.

Прямоугольный параллелепипед обладает длиной, шириной и высотой. На рисунке показано где длина, ширина и высота:

Параллелепипед, у которого длина, ширина и высота

Параллелепипед, у которого длина, ширина и высота равны между собой, называется кубом. На рисунке показан куб:

Инструкция

Периметр для квадратов и ромбов рассчитывается по формуле Р=4а, где а – это длина одной стороны фигуры. От того что все ее стороны равны, измерьте одну сторону и полученное число умножьте на число сторон, т.е. на четыре. 2. Для прямоугольников и параллелограммов, т.к. у них равны не все стороны, а только противоположные, существует иная формула: Р=2(а+b). Под а и b подразумеваются смежные стороны. Их всеобщую длину умножьте на два.

Дабы получить периметр трапеции суммируйте длины всех ее сторон (у трапеции они не идентичны), т.е. в данном случае воспользуйтесь формулой P=а+b+с+d.

Всеобщая формула для расчета периметра треугольника выглядит как Р=а+b+с, т. е. вы обязаны будете сложить длины сторон треугольника.

Но от того что треугольники бывают различных видов

Но от того что треугольники бывают различных видов, то вычисления могут производиться напротив. Скажем, если вам вестимо, что измеряемый треугольник – равносторонний, то умножьте длину его стороны на три.

Больше трудно вычислить периметр круга (длина окружности, р). Вестимо, что длина окружности составляет 317 от длины диаметра круга (d). В математике это соотношение принято обозначать буквой “Пи” (?) и усреднено считать как 3,14. Получается, что рd=?. Отсель p=?d=2?r, где r – это радиус имеющейся окружности. Следственно, дабы вычислить периметр круга, вам нужно вначале обнаружить радиус окружности, а после этого умножить это число на 2 и на 3,14.

Если же у вас появилась надобность узнать периметр дуги, то для начала вам необходимо замерить две величины – длину радиуса дуги и центральный, т.е. образованный двумя радиусами (в градусах, n). Подставьте полученные величины в формулу p=Пrn180°.

Видео по теме

Видео по теме

[custom_ads_shortcode3]

Многоугольник

Правильный полигон — это выпуклая фигура на плоскости, которая имеет равные стороны и равные углы. В зависимости от количества сторон многоугольники имеют собственные названия:

  • пять сторон — пентагон;
  • шесть — гексагон;
  • восемь — октагон;
  • двенадцать — додекагон.

И так далее. Геометры шутят, что круг — это многоугольник с бесконечным количеством углов. Наш калькулятор запрограммирован на определение периметров и площадей только правильных многоугольников. Он использует общие формулы для всех правильных полигонов. Для вычисления периметра используется формула:

P = n × a,

где n – количество сторон многоугольника, a – длина стороны.

Для определения площади используется выражение:

S = n/4 × a2 × ctg(pi/n).

Подставляя соответствующее n, мы можем подобрать формулу для любого правильного многоугольника, к которым также относятся равносторонний треугольник и квадрат.

Многоугольники имеют большое распространение в реальной жизни. Так форму пятиугольника имеет здание министерства обороны США — Пентагон, гексагона — пчелиные соты или кристаллы снежинки, октагона — дорожные знаки. Кроме того, многие простейшие, например радиолярии, имеют форму правильных полигонов.

Треугольник

Треугольник — первая гармоничная фигура на плоскости, ограниченная тремя отрезками. Свойства треугольника известны людям с античных времен: изучение фигуры стартовало в Древнем Египте и не завершено до сих пор. Огромный вклад в изучение свойств фигуры внесли Евклид, Эйлер и Лобачевский, но даже сегодня продолжается работа над поиском замечательных точек треугольника, которых на данный момент найдено более 6 тысяч. Для определения периметра фигуры достаточно сложить длины всех сторон треугольника по формуле:

P = a + b + c,

где a, b, c – стороны.

Для вычисления площади треугольника используется 5 различных формул плюс нахождение площади через определенный интеграл. Самое простое выражение для вычисления площади:

S = 0,5 a × h,

где a — сторона треугольника, h — его высота.

Наш калькулятор позволяет отыскать площадь или периметр треугольника, зная разные комбинации нескольких параметров, таких как углы, стороны или радиусы связанных окружностей.

Треугольники не слишком распространены в реальной повседневности. В природе они практически не встречаются, за исключением кристаллических решеток некоторых молекул или формы ушей у рыси. А вот в технике, геометрии и прикладных науках треугольник — царь и бог. Наибольшее применение находит следующий тип фигуры.

Прямоугольный треугольник

Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой. Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора. Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.

Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.

Формулы нахождения периметра

Как мы только что узнали, периметр — это сумма длин всех сторон многоугольника. А значит, чтобы его найти, нам надо знать длины этих сторон. Давайте посмотрим, как найти периметр, на примерах нескольких фигур.

Равносторонний многоугольник

У равностороннего треугольника все стороны равны. А значит, периметр равностороннего треугольника можно найти как произведение длины стороны на их количество, т. е. на 3.

P = 3 ⋅ a, где a — длина стороны.

P = 3 ⋅ a, где a — длина стороны.

Периметр любого другого равностороннего многоугольника можно найти тем же способом: умножив длину его стороны на их количество. Например, у квадрата и ромба все стороны равны, а значит, их периметр можно найти по формуле P = 4 ⋅ a, где a — длина стороны.

А формула для любого равностороннего n-угольника будет такая: P = n ⋅ a, где a — длина стороны, n — количество сторон.

Прямоугольник и параллелограмм

У прямоугольника и параллелограмма противоположные стороны равны, а значит, найти их периметр легко, зная две соседние стороны.

P = 2 ⋅ (a + b), где a — одна сторона, b — соседняя сторона.

Окружность

У окружности нет периметра, потому что это не многоугольник. Но у нее есть длина, которую можно найти, зная радиус. Длина окружности — это произведение пи на два радиуса или произведение пи на диаметр.

L = d ⋅ π = 2 ⋅ r ⋅ π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она приблизительно равна 3,14.

Можно выучить все формулы, а можно, запомнив определение о сумме всех сторон, каждый раз проявлять смекалку и вычислять самостоятельно. Давайте потренируемся, как определять периметр фигур!

Навигация по записям

Предыдущая статьяПостроить 3д график онлайн: 3D Calculator — GeoGebra

Следующая статья Пдф в текст онлайн конвертер: Преобразовать PDF в текстовый файл — Конвертируйте PDF в текстовый файл онлайн

Теги

Добавить комментарий