Как найти длину площадь грани а1а2а3

Пример 1:

Даны координаты вершин пирамиды А1А2А3А4.

Найти:

1) координаты и модули векторов А1 А2и А1 А4;  

2) угол между ребрами А1 А2и А1 А4;          

3) площадь грани А1 А2 А3;         

4) объем пирамиды;

5) уравнение прямой А1 А2;

6) уравнение плоскости А1 А2 А3;

7) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3.

Сделать чертеж.

А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).

Решение от преподавателя:

Пример 2:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

 Уравнение плоскости. 
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-3)(1*2-0*3) – (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y – 3z-38 = 0 

Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 
https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20%20=%20frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7bsqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7dsqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
Уравнение прямой A1A4
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%203%7d%7b-3%7d%20=%20frac%7by%20-%202%7d%7b0%7d%20=%20frac%7bz%20%2B%202%7d%7b4%7d
γ = arcsin(0.267) = 15.486o 

Уравнение высоты пирамиды через вершину A4(0,2,2) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%200%7d%7b2%7d%20=%20frac%7by%20-%202%7d%7b13%7d%20=%20frac%7bz%20-%202%7d%7b-3%7d

Уравнение плоскости через вершину A4(0,2,2) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
2(x-0)+13(y-2)-3(z-2) = 0 
или 
2x+13y-3z-20 = 0

Пример 4:

Решение от преподавателя:

Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 

  1. Уравнение плоскости
    Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-0)(3*2-8*3) – (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x – 15y + 33z-18 = 0 
Упростим выражение: -6x – 5y + 11z-6 = 0 

2) Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 

Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
Уравнение прямой A1A4

γ = arcsin(0.193) = 11.128o 

3) Уравнение высоты пирамиды через вершину A4(0,5,4) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 

4) Уравнение плоскости через вершину A4(0,5,4) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости

Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
-6(x-0)-5(y-5)+11(z-4) = 0 
или 
-6x-5y+11z-19 = 0 

5)  Координаты вектора  A1A4(0;4;3) 

Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:

Пример 5:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Пример 6:

Решение от преподавателя:

1) Даны координаты  вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 
Координаты векторов
Координаты векторов:       A1A2(3;3;3)        A1A4(0;4;3) 

Модули векторов (длина ребер пирамиды) 
Длина вектора a(X;Y;Z) выражается через его координаты формулой: 


Угол между ребрами.

 Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
   ,    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3): 

А1 = arccos(0,808)

Найдем площадь грани с учётом геометрического смысла векторного произведения: 
S =
Найдем векторное произведение

=i(3*2-8*3) – j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i – 15j + 33k 

3) Объем пирамиды
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

 

Координатывекторов:A1A2(3;3;3)    A1A3(-3;8;2) A1A4(0;4;3) :      

где определитель матрицы равен: 
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39 

Пример 7:

Решение от преподавателя:

  1. Угол между ребрами. 
    Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7ba_%7b1%7da_%7b2%7d%7d%7b|a_%7b1%7d|cdot%20|a_%7b2%7d|%7d
    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    γ = arccos(0) = 90.0030 
  2. Площадь грани 
    Площадь грани можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=S%20=%20frac%7b1%7d%7b2%7d%20|a|cdot%20|b|%20sin%20gamma
    где 
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%20cos%20gamma%5e%7b2%7d%7d
    Найдем площадь грани A1A2A3 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%200%5e%7b2%7d%7d%20=%201
    Площадь грани A1A2A3 
  3. Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

https://chart.googleapis.com/chart?cht=tx&chl=%20=%20frac%7b18%7d%7b6%7d%20=%203

где определитель матрицы равен: 
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18 

Пример 8:

Даны координаты вершин пирамиды А1А2А3А4 . Найти:

1) длину ребра А1А2;

2) угол между рёбрами А1Аи А1А4 ;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3; 5; 4),        А2(8; 7; 4),            А3(5; 10; 4),          А4(4; 7; 8).

Решение от преподавателя:

1) Длина ребра A1A2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1А2А3;

Найдем уравнение стороны А1А4:

Вектор нормали:  к плоскости А1А2А3.

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

Итак: z=4 – уравнение плоскости А1А2А3.

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

A4O – высота:

Уравнение A4O:

Т.к. , то

В результате получаем уравнение высоты:

Пример 9:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Светило науки – 9801 ответ – 46531 помощь

Точки A1,A2,A3,A4 являются вершинами пирамиды. Вычислить ее объем, площадь грани А1 А2 А3 и высоту пирамиды, опущенную на данную грань.  

А1(-2,-1,-1), А2(0,3,2), А3(3,1,-4), А4(-4,7,3).

1) Сначала находим площадь грани А1А2А3 как половину модуля векторного произведения векторов А1А2 и А1А3.

Находим векторы:

А1А2 = (0-(-2); 3-(-1); 2-(-1)) = (2; 4; 3).

А1А3 = (3-(-2); 1-(-1); -4-(-1)) = (5; 2; -3).

A1A2*A1A3=  I          j          k|         I           j

         A1A2= 2         4          3|        2          4

         A1A3=  5        2         -3|        5          2 = -12i + 15j + 4k – (-6)j – 6i – 20k =

-18i + 21j – 16k.

Нормальный вектор плоскости А1А2А3 равен (-18; 21; -16).

S(A1A2A3)= 0,5(√(324+441+256) = √1021/2 ≈ 15,9765.

2) Находим вектор А1А4.

А1А4 = (-4-(-2); 7-(-1); 3-(-1)) = (-2; 8; 4).

Объём пирамиды равен 1/6 смешанного произведения векторов (А1А2хА1А3)*А1А4.

(А1А2хА1А3) = -18; 21; -16

            А1А4 =   -2;   8;    4    

                          36 + 168 – 64 =   140.

V = (1/6)*140 = 70/3 ≈ 23,3333.

3) Высоту пирамиды  находим по формуле:

H = 3V/So = (3*(70/3))/( √1021/2 ) =  140/√1021 = 140*√1021/1021 ≈ 4,38142.

помогите решить задачу пожалуйста!



Ученик

(221),
на голосовании



12 лет назад

Голосование за лучший ответ

Андрей Степанов

Просветленный

(22757)


12 лет назад

1) а) Длина ребра А1А2 равна длине вектора А1А2. Координаты вектора вычисляются по координатам точек начала и конца вычисляются следующим образом:
пусть А1(х1, y1, z1) a A2(x2, y2, z2), тогда A1A2 (x2 – x1, y2 – y1, z2 – z1), а длина вектора А с координатами (x, y, z) вычисляется по формуле |A| = sqrt(x^2 + y^2 + z^2)
Подставляете в эти формулы свои данные – получаете ответ.
б) Геометрическое свойство векторного произведения: Модуль векторного произведения двух векторов равен площади параллелограмма построенного на этих векторах. Если на векторах А1А2 и А1А3 построить параллелограмм, то ребро А2А3 будет его диагональю, а площадь треугольника А1А2А3 будет равна половине площади параллелограмма. Решаем так:
– вычисляете координаты векторов А1А2 и А1А3. (см. формулу в п. а) )
– находите вектор, равный произведению этих векторов (с помощью определителя)
– вычисляете модуль найденного вектора (см. формулу в п. а) )
– разделив найденный модуль пополам находите искомую площадь
в) Угол между ребрами А1А2 и А1А4 есть угол между векторами А1А2 и А1А4. Как известно, скалярное произведение векторов а и b равно:
(a,b) = |a|*|b|*cos(a^b)
Так что cos(a^b) = (a,b)/|a|*|b|
– вычисляете координаты векторов А1А2 и А1А4 и их модули (см. п. а)) , подставляете в последнюю формулу и находите косинус угла. Смотрите в таблицы Брадиса (или в калькулятор, компьютер, суперкомпьютер, в общем в то, что у Вас есть) и находите искомый угол.
г) Объем пирамиды равен V = S*h/3, где S – площадь основания, h – высота пирамиды. Предположим что основанием является грань А1А2А3 (благо ее площадь Вы уже вычислили) . Нам надо найти длину высоты, опущенной из точки А4 на эту грань. Давайте сначала выполним задание:
2) а) – составим уравнение плоскости, проходящей через А1, А2, А3. Вычислите координаты векторов А1А2 и А1А3. Теперь возьмем нанашей плоскости произвольную точку Х (х, y, z). Координаты вектора А1Х будут равны:
(x -4, y+3, z+2). Все эти векторы компланарны, но вспомним, что смешанное произведение компланарных векторов равно 0. Составляете определитель смешанного произведения векторов А1Х, А1А2 и А1А3 и раскладываете его по первой строке (т. е. по строке в которой стоят координаты вектора А1Х) . Преобразовывая получившееся выражение к виду Ах + Ву + Cz + D и приравняв его к 0 получите искомое уравнене плоскости.
Теперь вернемся к заданию:
1) г) Расстояние от точки А (х0, y0, z0) до плоскости, заданной уравнением Ах + Ву + Cz + D = 0 вычисляется по формуле:
h = |Ax0 + By0 + Cz0 + D|/sqrt(A^2 + B^2 + C^2)
Вычисляете искомую высоту, подставляете в формулу для объема пирамиды, получаете ответ.
2) б) Каноническое уравнение прямой, проходящей через точку А (x1, y1, z1) имеет вид:
(x – x1)/k = (y – y1)/l = (z – z1)/m
где вектор q(k, l, m) – параллелен нашей прямой. Все хорошо, но только где же взять этот самый вектор, который будет параллелен нашей прямой. А вот где – найденное Вами в пункте а) уравнение плоскости имеет вид: Ax + By + Cz + D = 0. При этом оно имеет одно свойство – вектор с координатами (А, В, С) перпендикулярен этой плоскости! ! Вот он то нам и нужен. Берете координаты точки А4 и перпендикуляра к плоскости А1А2А3 и подставляете в формулу канонического уравнения – находите уравнение искомой прямой!
Вот и все!
Успехов!

Геометрия 10-11 класс

10 баллов

Даны координаты вершин пирамиды
A1A2A3A4. A1(2;5;8) A2(1;4;9) A3(2;1;6) A4(5;4;2)Найти:
1) длину ребра A1A2;
2) угол между ребрами A1A2 и A1A4;
3) уравнение плоскости A1A2A3 и угол между ребром A1A4 и плоскостью A1A2A3;
4) уравнение высоты, опущенной из вершины A4 на грань A1A2A3 и ее длину;
5) площадь грани A1A2A3 и объем пирамиды.
Сделать чертеж

Ирина Каминкова

14.12.2020 20:24:47

Ответ эксперта

Ирина Каминкова

14.12.2020 20:27:16

Ответ эксперта

Ирина Каминкова

14.12.2020 20:27:45

Ответ эксперта

Все предметы

Рейтинг пользователей

    А1(1; -1; 2), А2(0; -1; 6), А3(-1; 0; 2), А4(1; 1; 4).

    Вопрос задан анонимно

    18.01.20

    Учеба и наука / Математика

    1 ответ

    Добавить комментарий