Призма. Формулы и свойства призмы
Определение.
Призма — это многогранная объемная фигура, которая состоит из двух одинаковых плоских многоугольников (основ), находящихся в двух параллельных плоскостях, а другие грани (боковые грани) – параллелограммы, что имеют общие стороны с этими многоугольниками.
Определение. Основы призмы – две грани, которые являются равными параллельными плоскими многоугольниками (ABCEF, GMNJK).
Определение. Боковые грани призмы – все остальные грани за исключением основ.
Определение. Боковая поверхность призмы – совокупность всех боковых граней призмы.
Определение. Поверхность призмы – это совокупность поверхностей двух оснований и боковой поверхности.
Определение. Боковое ребро призмы – общая сторона двух боковых граней.
Определение. Высота – это перпендикуляр, который соединяет две основы призмы под прямым углом.
Определение. Диагональ основания призмы – это отрезок, соединяющий две не соседние вершины, принадлежащие этой же основе.
Определение. Диагональ боковой грани призмы – это отрезок, соединяющий две противоположные вершины, лежащие на одной боковой грани однако принадлежат различным основам.
Определение. Диагональ призмы (AN) – это отрезок, соединяющий две вершины, лежащие на разных основаниях, но не лежат на одной боковой стороне.
Определение. Диагональное сечение – это пересечение призмы плоскостью, проходящей через диагональ основания призмы и боковое ребро. Треугольная призма (в основе призмы треугольники) не имеет диагональных сечений.
Определение. Перпендикулярное сечение – это пересечение призмы плоскостью, пересекающей боковые ребра призмы под прямым углом.
Определение. Прямая призма – это призма, в которой все боковые грани перпендикулярны к основанию. Высота равна длине бокового ребра.
Определение. Наклонная призма – это призма, в которой боковые грани не перпендикулярны к основанию.
Определение. Правильная призма – это призма, в которой основы являются правильными многоугольниками. Правильная призма может быть, как прямой, так и наклонной.
Определение. Усечённая призма – это призма, в которой две основы не параллельны (рис. 2). Усечённая призма может быть, как прямой, так наклонной.
Объём призмы
Формула. Объём призмы через площадь основания и высоту:
V = SоснH
Формула. Объём наклонной призмы через площадь перпендикулярного сечения и длину бокового ребра:
V = SпL
Формула.
Объём правильной прямой призмы через высоту (h), длину стороны (a) и количество сторон (n):
Площадь поверхности призмы
Формула. Площадь боковой поверхности призмы через периметр основания и высоту:
Sb = P·h
Формула. Площадь поверхности призмы через площадь основания, периметр основания и высоту:
S = 2Soсн + P·h
Формула.
Площадь поверхности правильной призмы через высоту (h), длину стороны (a) и количество сторон (n):
S = | n | a2ctg | π | + nah |
2 | n |
Основные свойства призмы
Основы призмы – равные многоугольники.
Боковые грани призмы – параллелограммы.
Боковые ребра призмы параллельны и равны между собой.
Перпендикулярное сечение перпендикулярно всем боковым ребрам и боковым граням.
Высота прямой призмы равна длине бокового ребра.
Высота наклонной призмы всегда меньше длины ребра.
В прямой призме гранями могут быть прямоугольниками или квадратами.
На этой странице вы узнаете
- Чем упаковка стикеров похожа на призму?
- Как можно попасть в призму в реальной жизни?
- Как сложить игральные кости из листа бумаги?
- Как найти объем воды в аквариуме?
Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.
Определение призмы
Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей.
Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу.
На самом деле, упаковка со стикерами является не чем иным, как призмой!
Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами.
Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы.
Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы.
Строение призмы
Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы.
Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы.
Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому.
Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами».
Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы.
Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы.
В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы.
Рассмотрим элементы призмы.
Ребро — это линия пересечения двух плоскостей.
Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.
Ребра бывают двух видов:
- ребра оснований,
- боковые ребра.
Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям.
У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны.
Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы.
Виды призм
Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.
Мы рассмотрим две классификации.
В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее.
В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:
- треугольная призма,
- четырехугольная призма,
- шестиугольная призма.
Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма.
В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они.
С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:
- прямые,
- наклонные.
Разберемся в них чуть подробнее.
Прямая призма — призма, боковые ребра которой перпендикулярны основаниям.
В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник.
Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям.
Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде.
Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами.
Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты?
Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм.
Свойство 1. Высота прямой призмы совпадает с её боковым ребром.
Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно?
Свойство 2. Все боковые грани прямой призмы — прямоугольники.
Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся внутри большой призмы.
Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.
Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.
Например, в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник.
Определение параллелепипеда
Еще одной разновидностью прямоугольной призмы является параллелепипед.
Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами.
Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда.
Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга.
Нельзя не упомянуть про одно очень важное свойство параллелепипеда:
- Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда.
Какие бывают параллелепипеды?
Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм.
Прямой параллелепипед
Рассмотрим несколько интересных свойств прямого параллелепипеда.
1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям.
2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра.
3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками.
Прямые параллелепипеды можно разделить еще на два вида:
- Прямой параллелепипед: в основании лежит параллелограмм;
- Прямоугольный параллелепипед: в основании лежит прямоугольник.
Рассмотрим свойства прямоугольного параллелепипеда.
1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками.
2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°.
3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты.
Таким образом, мы получаем важную формулу для параллелепипеда.
d2 = a2 + b2 + c2
Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt{35}) и (sqrt{46}). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда.
Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:
(15^2 = (sqrt{35})^2 + (sqrt{46})^2 + x^2)
225 = 35 + 46 + x2
x2 = 144
x = 12
Ответ: 12.
У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:
- Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник.
- Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат.
При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники.
- Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания.
В кубе все ребра равны, а все его грани будут квадратом.
Таким образом, мы рассмотрели все виды параллелепипеда.
Формулы для призмы
Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни.
Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить.
Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.
На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?
Нужно найти площади желтых квадратиков и сложить их.
Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней.
Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать.
Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой
Sбок. = P * h
В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани.
Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10.
Решение.
Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph.
Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12.
Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120.
Ответ: 120.
Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности.
Решение.
Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph.
Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt{12^2 + 5^2} = sqrt{144 + 25} = sqrt{169} = 13).
Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30.
Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390.
Ответ: 390.
Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований.
Площадь полной поверхности призмы — сумма площадей всех граней.
Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу.
S = Sбок + 2Sосн
Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем.
Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы.
Решение.
Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac{1}{2} * D_1 * D_2). Следовательно, площадь ромба равна (frac{1}{2} * 12 * 16 = 96).
Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10).
Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000.
Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.
Ответ: 1192
Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы.
Решение.
Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25.
Шаг 2. Подставим известные величины в формулу:
1980 = Sбок + 2 * 25
Sбок = 1930
Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:
20h = 1930
h = 96,5
Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.
Ответ: 96,5.
Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?
Для этого достаточно воспользоваться формулой объема призмы.
V = Sосн. * h
Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты.
Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh.
Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме.
Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы.
Решение.
Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac{1}{2}ab). Площадь равна (frac{1}{2} * 12 * 15 = 90).
Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины:
V = 90 * 4 = 360.
Ответ: 360.
Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика.
Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды.
Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема:
(S = frac{V}{h})
Тогда:
(S = frac{3000}{10} = 300)
Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200.
Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.
Ответ: 1200.
Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию.
Фактчек
- Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы.
- Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник.
- Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы.
- В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами.
Проверь себя
Задание 1.
Что такое диагональ призмы?
- Отрезок, соединяющий две соседние вершины в призме.
- Отрезок, соединяющий противоположные углы в боковой грани призмы.
- Отрезок, соединяющий противоположные углы в основании призмы.
- Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Задание 2.
Что такое прямая призма?
- Призма, боковые ребра которой перпендикулярны основаниям.
- Призма, боковые ребра которой расположены под острым углом относительно основания.
- Призма, боковые ребра которой расположены под тупым углом относительно основания.
- Призма, в основании которой лежит прямоугольник.
Задание 3.
Как найти высоту прямой призмы?
- Высоту нужно найти с помощью оснований.
- Высота совпадает с боковым ребром.
- Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
- В прямой призме невозможно найти высоту.
Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?
- Параллелограмм с острыми углами.
- Ромб с острыми углами.
- Трапеция.
- Прямоугольник.
Задание 5.
Как найти площадь полной поверхности призмы?
- Нужно найти сумму площадей всех боковых граней.
- Нужно сложить площадь боковой поверхности и площадь основания.
- Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
- Нужно сложить площади оснований.
Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3
Школьный курс геометрии делится на два больших раздела: планиметрию и стереометрию. Стереометрия изучает пространственные фигуры и их характеристики. В данной статье мы рассмотрим, что такое прямая призма, и приведем формулы, описывающие такие ее свойства, как длины диагоналей, объем и площадь поверхности.
Что такое призма?
Когда школьников просят назвать определение призмы, то они отвечают, что данная фигура представляет собой два одинаковых параллельных многоугольника, стороны которых соединены параллелограммами. Это определение является максимально общим, поскольку оно не накладывает условия на форму многоугольников, на их взаимное расположение в параллельных плоскостях. Кроме того, оно предполагает наличие соединяющих параллелограммов, к классу которых также относятся квадрат, ромб и прямоугольник. Ниже можно посмотреть, что собой представляет четырехугольная призма.
Вам будет интересно:Вес и масса: разница с точки зрения науки
Мы видим что призма – это многогранник (полиэдр), состоящий из n + 2 сторон, 2 × n вершин и 3 × n ребер, где n – количество сторон (вершин) одного из многоугольников.
Оба многоугольника принято называть основаниями фигуры, остальные грани – это боковые стороны призмы.
Понятие о прямой призме
Существуют призмы различных видов. Так, говорят о правильных и неправильных фигурах, о треугольных, пятиугольных и других призмах, бывают выпуклые и вогнутые фигуры, наконец, они бывают наклонными и прямыми. О последних поговорим подробнее.
Прямая призма – это такая фигура изучаемого класса полиэдров, все боковые четырехугольники которой имеют прямые углы. Существует всего два типа таких четырехугольников – это прямоугольник и квадрат.
Рассматриваемый вид фигуры обладает важным свойством: высота призмы прямой равна длине ее бокового ребра. Отметим, что все боковые ребра фигуры равны между собой. Что касается боковых граней, то в общем случае они друг другу не равны. Их равенство возможно если, помимо того что призма является прямой, будет еще правильной.
Ниже рисунок демонстрирует прямую фигуру с пятиугольным основанием. Видно, что все ее грани боковые – это прямоугольники.
Диагонали призмы и ее линейные параметры
Основными линейными характеристиками любой призмы являются ее высота h и длины сторон ее основания ai, где i = 1, …, n. Если основание является многоугольником правильным, тогда для описания его свойств достаточно знать длину a одной стороны. Знание отмеченных линейных параметров позволяет однозначно определить такие свойства фигуры, как ее объем или поверхность.
Диагонали прямой призмы представляют собой отрезки, которые соединяют любые две несмежные вершины. Такие диагонали могут быть трех типов:
- лежащие в плоскостях основания;
- находящиеся в плоскостях боковых прямоугольников;
- принадлежащие объему фигуры.
Длины тех диагоналей, что относятся к основанию, следует определять в зависимости от типа n-угольника.
Диагонали боковых прямоугольников рассчитываются по следующей формуле:
d1i = √(ai2 + h2).
Для определения объемных диагоналей необходимо знать значение длины соответствующей диагонали основания и высоты. Если некоторую диагональ основания обозначить буквой d0i, тогда объемная диагональ d2i вычисляется так:
d2i = √(d0i2 + h2).
Например, в случае правильной четырехугольной призмы длина объемной диагонали будет равна:
d2 = √(2 × a2 + h2).
Отметим, что прямая треугольная призма обладает лишь одним из трех названных типов диагоналей: диагональю боковой стороны.
Поверхность изучаемого класса фигур
Площадь поверхности представляет собой совокупность площадей всех граней фигуры. Чтобы наглядно себе представить все грани, следует сделать развертку призмы. В качестве примера такая развертка для пятиугольной фигуры приведена ниже.
Мы видим, что количество плоских фигур равно n + 2, причем n – это прямоугольники. Чтобы рассчитать площадь всей развертки, следует сложить площади двух одинаковых оснований и площади всех прямоугольников. Тогда соответствующая формула будет иметь вид:
S = 2 × So + h × ∑i=1n (ai).
Из этого равенства видно, что площадь боковой поверхности для изучаемого вида призм равна произведению высоты фигуры на периметр ее основания.
Площадь основания So можно рассчитать, применяя соответствующую геометрическую формулу. Например, если основание прямой призмы – прямоугольный треугольник, тогда получаем:
So = a1 × a2 / 2.
Где a1 и a2 – катеты треугольника.
Если же основание представляет собой n-угольник с равными углами и сторонами, тогда будет справедливым применение такой формулы:
So = n / 4 × ctg (pi / n) × a2.
Формула объема
Определение объема призмы любого вида не является сложной задачей, если известны значения ее площади основания So и высоты h. Перемножив эти значения между собой, мы получим объем V фигуры, то есть:
V = So × h.
Поскольку у прямой призмы параметр h равен длине ребра бокового, то вся проблема вычисления объема сводится к расчету площади So. Выше мы уже сказали несколько слов и привели пару формул, позволяющих определить So. Здесь лишь отметим, что в случае основания произвольной формы, следует разбить его на простые сегменты (треугольники, прямоугольники), рассчитать площадь каждого, а затем сложить все площади, чтобы получить So.
Человеческая природа такова, что он постоянно стремится к совершенству геометрических форм создаваемых им произведений. Совершенные фигуры в пространстве изучает стереометрия. В данной статье рассмотрим одну из них, которая называется призмой. Формулы, описывающие важные свойства этой фигуры, также приводятся в статье.
Что такое призма?
В стереометрии под названной фигурой понимают пространственный объект, ограниченный двумя одинаковыми многоугольными гранями, находящимися в параллельных плоскостях, и несколькими параллелограммами, которые соединяют соответствующие стороны многоугольников в единую фигуру.
Покажем на примере шестиугольной призмы, как можно построить любую из данного класса фигур. Предположим, что у нас имеется плоский шестиугольник. Он может быть правильным или неправильным. Теперь выберем некоторый вектор в пространстве, который не будет находиться в плоскости шестиугольника, и переместим на этот вектор весь шестиугольник. В новой плоскости мы получим шестиугольник, аналогичный исходному, а фигуры, которые получились в процессе параллельного переноса, будут параллелограммами. Конечная объемная фигура показана ниже. Она называется шестиугольной призмой.
Какие призмы бывают?
Существует несколько видов рассматриваемых фигур, которые важно рассмотреть, поскольку форма описывающих разные свойства формул призм определяется типом последних.
В зависимости от многогранника в основании призмы бывают выпуклыми и вогнутыми, треугольными, четырехугольными и так далее. В зависимости от того, являются ли все параллелограммы призмы прямоугольниками, говорят о наклонных и прямых призмах. Специальный вид призм, изучению свойств которого уделяется должное внимание в курсе стереометрии, – это правильные фигуры, которые от остальных призм отличаются тем, что их основание является правильным многоугольником, и сами они прямые. Набор таких фигур показан ниже.
Далее приведем формулы объема призмы, площади ее поверхности и длины диагоналей, принимая во внимание вид фигуры.
Диагонали призм
Диагоналями призмы называют отрезки, которые соединяют любые две не соседние вершины фигуры. Диагонали могут располагаться как в одной плоскости, например в плоскости основания или боковой грани, так и в объеме призмы. Треугольная призма является единственной и рассматриваемого класса фигур, которая не имеет объемных диагоналей.
Не существует формул общего вида, которые позволяют рассчитать значение длины той или иной диагонали для призмы произвольного типа. Чтобы найти эту длину, необходимо провести некоторый геометрический анализ. Например, для четырехугольной прямой призмы с прямоугольным основанием объемная диагональ вычисляется по формуле:
d = √(a2 + b2 + h2)
Где a, b, h – длины сторон основания и высота фигуры.
В случае правильной шестиугольной призмы, длина диагонали, которая соединяет противоположные вершины разных оснований, вычисляется так:
d = √(4*a2 + h2)
Где h – также высота фигуры, a – длина стороны шестиугольника.
Подобные формулы можно записать для любой диагонали произвольной призмы.
Площадь поверхности призмы
Формулу для площади поверхности любой призмы можно записать, если для начала сделать ее развертку и проанализировать, из каких сторон состоит изучаемая фигура. Поскольку любая призма имеет два n-угольных основания и n параллелограммов, значит, складывая все площади этих фигур, можно получить искомый результат.
Задача вычисления площади поверхности облегчается, если призма является прямой. В такой фигуре все боковые стороны – это прямоугольники, площадь которых легко найти, зная высоту фигуры и длины сторон основания.
Общую для площади призм формулу можно привести только для случая правильной фигуры. Напомним, что правильные призмы состоят из равносторонних и равноугольных оснований и одинаковых прямоугольников боковой поверхности. Для площади основания призмы формула носит универсальный характер:
Sn = n/4*a2*ctg(pi/n)
Площадь произвольной боковой грани вычисляется так:
S1 = a*h
Теперь остается сложить записанные выражения, учитывая количество сторон фигуры, чтобы получить искомую формулу для площади S всей поверхности призмы:
S = 2*Sn + n*S1 = n/2*a2*ctg(pi/n) + n*a*h
Как видно, для вычисления величины S правильной призмы достаточно знать длину стороны основания, количество его вершин и высоту фигуры.
Если призма является наклонной, то рассчитать для нее площадь боковой поверхности можно, если вычислить периметр среза Psr, плоскость которого будет перпендикулярна всем боковым граням, а затем умножить этот периметр на длину бокового ребра c. То есть:
Sb = Psr*c
Добавив к величине Sb две площади основания So, мы получим площадь всей поверхности S наклонной фигуры.
Объем фигуры
Для любой призмы, независимо от ее вида, объем вычисляется по следующей универсальной формуле:
V = So*h
Очевидно, что для правильной призмы формула объема приобретает вид:
V = n/4*a2*h*ctg(pi/n)
Что касается наклонных призм, то объем для них вычислить несколько сложнее, поскольку необходимо сначала определить значение высоты h. Чтобы это сделать, следует учитывать значения углов между боковыми гранями и ребрами и основанием.
Содержание:
Ранее вы уже знакомились с призмой, т. е. многогранником, две грани которого — равные
Что такое призма
Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.
Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.
Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.
Прямая призма, основаниями которой являются правильные многоугольники, называется правильной призмой. В прямой призме все боковые грани — прямоугольники, а в правильной — равные прямоугольники.
Перпендикуляр, проведенный из какой-либо точки одного основания призмы к плоскости другого основания, называется высотой призмы. На рисунке 3 показаны две высоты и призмы . У прямой призмы ее высота равна боковому ребру.
Боковые грани составляют боковую поверхность призмы, а боковые грани вместе с основаниями — полную поверхность призмы.
Теорема 1.
Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра:
Доказательство:
Пусть имеется -угольная призма . Пересечем ее плоскостью , перпендикулярной боковому ребру. Получим перпендикулярное сечение , стороны которого перпендикулярны сторонам параллелограммов, составляющим боковую поверхность призмы. Поэтому для боковой поверхности получим:
При переходе (1) мы учли, что все боковые ребра призмы равны друг другу, при переходе (2) — то, что сумма выражает периметр перпендикулярного сечения призмы, а множитель — длину бокового ребра.
Следствие 1.
Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты.
Действительно, перпендикулярное сечение прямой призмы равно ее основанию, а боковое ребро является высотой.
Частным видом призмы является параллелепипед, т. е. призма, основанием которой является параллелограмм. Параллелепипед, как и призма, может быть прямым или наклонным. Прямой параллелепипед, основаниями которого являются прямоугольники, называется прямоугольным параллелепипедом. Прямоугольный параллелепипед, у которого три ребра, выходящие из одной вершины, равны друг другу, называется кубом.
У параллелепипеда все грани — параллелограммы, из которых у прямого параллелепипеда прямоугольниками являются боковые грани, а у прямоугольного параллелепипеда — все грани.
12 ребер параллелепипеда разделяются на три четверки равных ребер (рис. 5), его 6 граней — на три пары равных граней (рис. 6), а 4 диагонали пересекаются в одной точке, являющейся центром симметрии параллелепипеда (рис. 7).
Прямой параллелепипед еще имеет ось симметрии (рис. 8) и плоскость симметрии (рис. 9). Прямоугольный параллелепипед имеет три оси симметрии (рис. 10) и три плоскости симметрии (рис. 11).
Ребра прямоугольного параллелепипеда, выходящие из одной вершины, называют измерениями прямоугольного параллелепипеда. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (рис. 12), и все его диагонали равны друг другу.
Важной характеристикой плоской фигуры является ее площадь. Подобной характеристикой тела является его объем. Будем считать, что изучаемые нами тела имеют объем.
За единицу объема принимают объем куба с ребром 1. На практике пользуются разными единицами объема: как метрическими — кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр, кубический километр, так и неметрическими — галлон, барель, бушель, кварта.
Для объема тела выполняются его основные свойства:
- равные тела имеют равные объемы;
- если тело разделено на части, то его объем равен сумме объемов этих частей.
При этом равными фигурами называют фигуры, которые преобразуются друг в друга определенным движением. Например, равными являются две шестиугольные правильные призмы, у которых соответственно равны стороны оснований и высоты (рис. 13), или два цилиндра с соответственно равными радиусами оснований и образующими (рис. 14). Тело, изображенное на рисунке 15, можно разделить на цилиндр и конус, и его объем равен сумме объемов этих цилиндра и конуса.
Два тела с равными объемами называют равновеликими телами. Равные тела являются равновеликими, но не наоборот.
Вы знаете, что объем прямоугольного параллелепипеда равен произведению трех его измерений , , (рис. 16): .
Учитывая, что в формуле произведение выражает площадь основания прямоугольного параллелепипеда, а число — его высоту , получим, что объем прямоугольного параллелепипеда равен произведению площади его основания и высоты: .
Теорема 2.
Объем произвольного параллелепипеда равен произведению площади его основания и высоты:
Доказательство:
Пусть имеется произвольный параллелепипед (рис. 17). Через ребро проведем плоскость, перпендикулярную ребру , она отсечет от параллелепипеда треугольную призму (рис. 18). После параллельного сдвига этой призмы в направлении отрезка получим призму . Параллелепипед равновелик с данным параллелепипедом . Выполненное преобразование параллелепипеда также сохраняет объем параллелепипеда, площадь его основания и высоту.
У параллелепипеда его боковые грани и перпендикулярны плоскости основания. К граням и , которые не перпендикулярны плоскости основания, применим такое же преобразование, в результате которого получим прямой параллелепипед (рис. 19), в котором сохраняются объем, площадь основания и высота.
Наконец, применив еще раз такое преобразование к граням и прямого параллелепипеда , получим прямоугольный параллелепипед (рис. 20), сохранив объем параллелепипеда, площадь его основания и высоту.
Значит,
Множитель есть площадь основания параллелепипеда , а множитель выражает его высоту, так как есть перпендикуляр, возведенный из точки основания к другому основанию . Значит, объем произвольного параллелепипеда равен произведению площади его основания и высоты.
Теорема 3.
Объем призмы равен произведению площади ее основания и высоты:
Доказательство:
Рассмотрим сначала треугольную призму (рис. 21). Дополним ее до параллелепипеда (рис. 22). Точка пересечения диагоналей диагонального сечения этого параллелепипеда является его центром симметрии. Это означает, что достроенная призма симметрична данной призме относительно центра , а потому эти призмы равны друг другу. Значит, объем параллелепипеда равен удвоенному объему данной призмы.
Объем параллелепипеда равен произведению площади его основания и высоты. Но площадь его основания равна удвоенной площади основания данной призмы, а высота параллелепипеда равна высоте призмы.
Отсюда следует, что объем призмы равен площади ее основания и высоты. Теперь рассмотрим произвольную призму (рис. 23).
Диагональными сечениями, проходящими через вершину , разобьем ее на треугольные призмы-части , , …, , , которые все имеют одну и ту же высоту, равную высоте данной призмы. Объем данной призмы равен сумме объемов призм-частей. По уже доказанному для объема данной призмы получим:
Учитывая, что сумма в скобках выражает площадь S основания данной призмы, получим:
Следствие 2.
Объем прямой призмы равен произведению площади ее основания и бокового ребра.
Призма и её сечения
С призмой вы уже знакомы. Несмотря на это, мы напомним определение призмы и её свойства.
Призма -это многогранник, две грани которого равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (рис. 22).
В зависимости от того перпендикулярны ли боковые грани призмы его основаниям или нет, призмы делят на прямые или наклонные. На рисунке 23.а изображена прямая призма, а на рисунке 23.b – наклонная. Очевидно, что боковые грани прямой призмы – прямоугольники.
Если основания прямой призмы являются правильными многоугольниками, то её называют правильной (рис. 24). Боковые грани правильной призмы это равные между собой прямоугольники.
Перпендикуляр, опущенный из некоторой точки одного основания к другому, называют его перпендикуляром (рис. 23.b).
Сечение призмы, проходящее через соответствующие диагонали его оснований, называют диагональным сечением (рис. 24.а) и их число равно числу диагоналей одного из оснований.
Перпендикулярным сечением призмы называют сечение перпендикулярное всем его боковым рёбрам (рис. 25). так как число диагоналси выпуклого n-угольника, то число диагональных сeчeний n-угольной призмы также равно .
В каждом диагональном сечении призмы можно провести две диагонали. Следовательно, n-угольная призма имеет диагоналей.
Пример:
В наклонной треугольной призме расстояния между боковыми ребрами соответственно равны 7 см, 15 см и 20 см. Найдите расстояние между большей боковой гранью и противолежащим боковым ребром.
Решение:
Известно, что расстояние между параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки одной прямой на другую. Тогда длины сторон перпендикулярного сечения ABC (рис. 26). Наибольшая грань призмы проходит через наибольшую сторону АС= 20 см этого сечения. Расстояние от рёбра призмы В2В1 до плоскости грани равно высоте BD треугольника ABC.
Тогда по формуле Герона получаем:
,
.
С другой стороны, .
Отсюда или см.
Ответ: 4,2 см.
Параллелепипед и куб
Призма, основаниями которой являются параллелограммы, называют параллелепипедом (рис. 27). Параллелепипеды также как и призмы могут быть прямыми (рис. 27.а) и наклонными (рис. 27.b).
Грани параллелепипеда, не имеющие общую вершину, называют противоположными гранями.
У параллелепипеда:
- —12 рёбер, каждые четыре из которых равны (рис. 28.а),
- —6 граней, которые попарно параллельны и равны (рис. 28.b),
- —4 диагонали, которые пересекаются и точкой пересечения делятся пополам (рис. 28.с),
- —точка пересечения диагоналей – центр его симметрии (рис. 28.с). Прямой параллелепипед имеет ось симметрии (рис. 28.d) и плоскость симметрии (рис. 28.e).
Прямой параллелепипед, основания которого являются прямоугольники, называют прямоугольным параллелепипедом (рис. 29). Очевидно, что все грани прямоугольного параллелепипеда являются прямоугольниками.
Прямоугольный параллелепипед имеет три оси симметрии (рис. 30) и три плоскости симметрии (рис. 31).
Длины трех рёбер, исходящих из одной вершины прямоугольного параллелепипеда называют его измерениями.
Свойство: В прямоугольном параллелепипеде квадрат любой диагонали d равен сумме квадратов его измерений: а, b и с (рис.32):
.
Прямоугольный параллелепипед, все измерения которого равны, называют кубом. Очевидно, что все грани куба являются равными квадратами. Куб имеет один центр симметрии, 9 осей симметрии и 9 плоскостей симметрии.
Выше были перечислены свойства призмы. Некоторые из них были показаны в 10 классе. Доказательства остальных свойств проще, поэтому их доказательства вы можете провести самостоятельно.
Площади боковой и полной поверхности призмы
На рисунке 33 проведены высоты НН1 DD1 призмы
АВСDЕ–А1В1С1D1Е1. Очевидно, что высоты правильной призмы будут равны её боковому рёбру.
Боковая поверхность призмы (точнее, площадь боковой поверхности)равна сумме боковых поверхностей ее граней, а полная поверхнасть равна сумме боковой поверхности и площадей двух ее оснований.
Теорема. Боковая поверхность прямой призмы равна произведению периметра ее основания на высоту:
Доказательство. Пусть высота данной прямой призмы равна , а периметр основания (рис. 34). Известно, что каждая грань прямой призмы является прямоугольником. Основания прямоугольников равны соответствующим сторонам основания призмы, а высоты равны высоте призмы.
Тогда
Теорема. Боковая поверхность произвольной призмы равна произведению периметра перпендикулярного сечения призмы на ее боковое ребро:
Доказательство. Пусть периметр перпендикулярного сечения призмы равен Р (рис. 35). Сечение делит призму на две части (рис. 36.а). Совершим параллельный перенос одной из этих частей так, чтобы основания нашей призмы совпали. В результате мы получим новую прямую призму (рис. 36.b). Очевидно, что, боковая поверхность этой призмы равна боковой поверхности данной. Её основанием является перпендикулярное сечение, а боковое ребро равно .
Тогда по доказанной выше теореме:
Объем призмы
Одним из свойств, характеризующих геометрические тела в пространстве, является понятие объема. Каждый предмет (тело) занимает некоторую часть пространства. Например, кирпич по сравнению со спичечным коробком занимает большую часть пространства. Для сравнения этих частей между собой вводится понятие объёма.
Объём – это величина, численное значение которой обладает следующими свойствами:
- Любое тело имеет определённый объём, выраженный положительным числом.
- Равные тела имеют равные объёмы.
- Если тело разбито на несколько частей, то его объём равен сумме объёмов этих частей.
- Объём куба, ребро которого равно единице, равен единице.
Объём – также как длина и площадь, является величиной. В зависимости от выбора единицы длины, объём единого куба измеряют в кубических единицах:
1 см3, 1 дм3, 1 м3 и т. д.
Объёмы тел измеряют различными способами или вычисляют. Например, объёмы маленьких предметов можно измерить с помощью сосудов (мензурки) с мелкими делениями (шкалами) (рис. 46). А объём ведра можно измерить с помощью сосуда, имеющего единичный объём, наполнив его водой (рис. 47). Но таким способом мы не можем измерить объёмы всех тел. В таких случаях объём вычисляют различными способами. Ниже рассмотрим их без доказательств.
Объём параллелепипеда
Теорема. Объём прямоугольного параллелепипеда равен произведению трех его измерeний (рис.48): .
Следствие. Объём прямоугольного параллелепипеда равен произведению площади его основания на высоту (рис. 49): .
Теорема. Объём произвольного параллелепипеда равен произведению площади его основания на высоту (рис. 50): .
Это свойство вытекает из вышеупомянутого следствия. На рисунке 50 показано как данный параллелепипед преобразовать в прямоугольный параллелепипед. Воспользовавшись этим самостоятельно обоснуйте свойство.
Нахождение объёма призмы
Теорема. Объём прямой призмы равен произведению площади его основания на высоту (рис. 51): .
Доказательство. 1 случай. Пусть основанием призмы будет прямоугольный треугольник (рис 51.а). Эту призму можно дополнить равной ей призмой до прямоугольного параллелепипеда (рис. 51 .b).
Если объём данной призмы, площадь её основания и высота V, S и h, то объём полученного прямоугольного параллелепипеда, площадь его основания и высота будут соответственно равны 2V, 2S и h.
Следовательно или
2 случай. Пусть S – площадь произвольной n – угольной прямой призмы и h – её высота. Основание призмы – n-угольник делится диагоналями на треугольники, каждый из которых можно разделить на прямоугольные треугольники (рис. 52). В результате данная призма разделится на конечное число прямых призм, основания которых являются прямоугольными треугольниками. Высоты этих призм равны h , а сумма площадей оснований этих призм равна площади основания данной призмы:
Объём данной призмы равен сумме объёмов составляющих её треугольных призм:
или
Теорема. Объём произвольной призмы равен произведению площади его основания на высоту:
По рисунку 5.3 докажите эту теорему самостоятельно, сначала для треугольной призмы (рис. 5.3.а), затем для любой призмы (рис. 5.3.b).
Пример:
Стороны основания прямого параллелепипеда равны а и b, а угол между ними 30°. Найдите его объём, если площадь его боковой поверхности равна S.
Решение:
Обозначим высоту параллелепипеда h(рис. 54).
Тогда по условию задачи:
- Цилиндр в геометрии
- Пирамида в геометрии
- Конус в геометрии
- Сфера в геометрии
- Возникновение геометрии
- Геометрические преобразования в геометрии
- Планиметрия – формулы, определение и вычисление
- Стереометрия – формулы, определение и вычисление