Как найти длину прямой через координаты


Загрузить PDF


Загрузить PDF

Найти длину вертикального или горизонтального отрезка на координатной плоскости можно с помощью координат, а вот сделать это с диагональным отрезком сложнее. Длину диагонального отрезка можно вычислить по формуле, которая основана на теореме Пифагора, где гипотенузой прямоугольного треугольника является наш диагональный отрезок.[1]
С помощью этой формулы можно быстро найти длину любого отрезка на координатной плоскости.

  1. Изображение с названием Use Distance Formula to Find the Length of a Line Step 1

    1

    Запишите формулу для вычисления длины. Формула: d={sqrt  {(x_{{2}}-x_{{1}})^{{2}}+(y_{{2}}-y_{{1}})^{{2}}}}, где d — длина отрезка, (x_{{1}},y_{{1}}) — координаты начальной точки отрезка, (x_{{2}},y_{{2}}) — координаты конечной точки отрезка.[2]

  2. Изображение с названием Use Distance Formula to Find the Length of a Line Step 2

    2

    Найдите координаты точек отрезка. Возможно, они будут даны. Если нет, найдите их по осям Х и Y.[3]

  3. Изображение с названием Use Distance Formula to Find the Length of a Line Step 3

    3

    Подставьте координаты в формулу. Будьте внимательны и подставьте значения соответствующих переменных. Две координаты x должны находится внутри первой пары скобок, а две координаты y — внутри второй пары скобок.[4]

    Реклама

  1. Изображение с названием Use Distance Formula to Find the Length of a Line Step 4

    1

    Выполните вычитание в скобках. Сделайте это, потому что операции в скобках имеют приоритет.[5]

  2. Изображение с названием Use Distance Formula to Find the Length of a Line Step 5

    2

    Возведите в квадрат полученные значения. В нашем случае возведение в степень — это вторая по важности операция.[6]

  3. Изображение с названием Use Distance Formula to Find the Length of a Line Step 6

    3

    Сложите числа под знаком корня. Делайте вычисления так, как будто работаете с целыми числами.

  4. Изображение с названием Use Distance Formula to Find the Length of a Line Step 7

    4

    Вычислите длину отрезка d. Для этого извлеките корень из полученной суммы чисел.

    Реклама

Советы

  • Не путайте эту формулу с другими, например, с формулой для вычисления углового коэффициента или с линейным уравнением.
  • Помните о порядке выполнения математических операций. Сначала вычтите, затем возведите в квадрат, затем сложите, а затем извлеките квадратный корень.

Реклама

Об этой статье

Эту страницу просматривали 24 603 раза.

Была ли эта статья полезной?

Длина отрезка

Отрезком называют часть прямой линии, состоящей из всех точек этой линии, которые расположены между данными двумя точками — их называют концами отрезка. 

рис.1 (2)

Рассмотрим первый пример.  Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.

Итак, в системе координат начертим отрезок с заданными координатами его концов (x1; y1) и (x2; y2). На оси X и Y из концов отрезка опустим перпендикуляры. Отметим красным цветом отрезки, которые являются на оси координат проекциями от исходного отрезка.  После этого перенесем параллельно к концам отрезков отрезки-проекции. Получаем треугольник (прямоугольный). Гипотенузой у данного треугольника станет сам отрезок АВ, а его катетами являются перенесенные проекции.

Вычислим длину данных проекций. Итак, на ось Y длина проекции равна y2-y1, а на ось Х длина проекции равна x2-x1. Применим теорему Пифагора: |AB|² = (y2 – y1)² + (x2 – x1)². В данном случае |AB| является длиной отрезка.

Если использовать данную схему для вычисления длины отрезка, то можно даже отрезок и не строить. Теперь высчитаем, какова длина отрезка с координатами (1;3) и (2;5). Применяя теорему Пифагора, получаем: |AB|² = (2 – 1)² + (5 – 3)² = 1 + 4 = 5. А это значит, что длина нашего отрезка равна 5:1/2.

Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную  Декартову систему координат.

рис.2

Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки,  они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.

Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.

Рассчитаем длину отрезка А, для этого найдем квадратный корень:

A = √(X²+Y²) = √ ((X2-X1)²+(Y2-Y1)²).

Если наш отрезок расположен между точками, координаты которых 2;4 и 4;1, то его длина, соответственно, равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.

Онлайн калькулятор. Длина отрезка. Расстояние между точками.

Предлагаю вам воспользоваться онлайн калькулятором для вычисления расстояния между точками.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление расстояния между точками и закрепить пройденный материал.

Калькулятор для вычисления расстояния между двумя точками

расстояние между точками

Выберите необходимую вам размерность:

Размерность:

Введите координаты точек.

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Excelsior

Просветленный

(43602)


11 лет назад

Переформулируйте вопрос более аккуратно. Длина прямой бесконечна.

Вообще же, длина участка кривой между точками, задаваемыми значениями параметра а и b, вычисляется по формуле:

Альберт Хаимов

Мастер

(1599)


11 лет назад

Конечно, длину прямой вычислить нельзя. А вот длину отрезка между двумя точками вполне возможно. Если координаты первой и второй точек обозначить соответственно (Х₁; У₁) и (Х₂; У₂), то длина отрезка вычисляется по формуле:
S = √(Х₂ – Х₁)² + (У₂ – У₁)²

Как найти длину отрезка по точкам

Зная пространственные координаты двух точек в какой-либо системе можно без затруднений определить длину отрезка прямой между ними. Ниже описано как это сделать применительно к двухмерной и трехмерной Декартовой (прямоугольной) системе координат.

Как найти длину отрезка по точкам

Инструкция

Если координаты крайних точек отрезка даны в двухмерной системе координат, то проведя через эти точки прямые линии, перпендикулярные осям координат, вы получите прямоугольный треугольник. Его гипотенузой будет исходный отрезок, а катеты образуют отрезки, длина которых равна проекции гипотенузы на каждую из координатных осей. Из теоремы Пифагора, определяющей квадрат длины гипотенузы как сумму квадратов длин катетов, можно сделать вывод, что для нахождения длины исходного отрезка достаточно найти длины двух его проекций на координатные оси.

Найдите длины (X и Y) проекций исходного отрезка на каждую ось системы координат. В двухмерной системе каждая из крайних точек представлена парой числовых значений (X1;Y1 и X2;Y2). Длины проекций вычисляются нахождением разницы координат этих точек по каждой оси: X = X2-X1, Y = Y2-Y1. Возможно, что одно или оба полученных значения будут отрицательными, но в данном случае это не играет никакой роли.

Рассчитайте длину исходного отрезка (A), найдя квадратный корень из суммы квадратов рассчитанных на предыдущем шаге длин проекций на оси координат: A = √(X²+Y²) = √ ((X2-X1)²+(Y2-Y1)²). Например, если отрезок проведен между точками с координатами 2;4 и 4;1, то длина его будет равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.

Если координаты точек, ограничивающих отрезок, даны в трехмерной системе координат (X1;Y1;Z1 и X2;Y2;Z2), то формула нахождения длины (A) этого отрезка будет аналогична полученной на предыдущем шаге. В этом случае надо найти квадратный корень из суммы квадратов проекций на три координатные оси: A = √((X2-X1)²+(Y2-Y1)²+(Z2-Z1)²). Например, если отрезок проведен между точками, с координатами 2;4;1 и 4;1;3, то длина его будет равна √((4-2)²+(1-4)²+(3-1)²) = √17 ≈ 4,12.

Источники:

  • длина отрезка формула

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий