Как найти длину сегмента окружности формулы

У этого термина существуют и другие значения, см. Сегмент.

Сегмент круга закрашен зелёным цветом

Сегме́нт кру́гакругово́й сегмент — часть круга, ограниченная дугой окружности и её хордой или секущей.

Соотношения[править | править код]

Пусть R — радиус круга, c — длина хорды сегмента, s — длина дуги сегмента, h — высота сегмента, также называемая стрелкой сегмента, theta — угол дуги сегмента выраженный в радианах. Размер сегмента круга однозначно задаётся любой парой этих величин и любая величина выражается через любую другую пару. Тогда:

{displaystyle R={frac {s}{theta }}={frac {h}{1-cos {frac {theta }{2}}}}={frac {d}{cos {tfrac {theta }{2}}}}={frac {c}{2sin {tfrac {theta }{2}}}}=h+d={frac {c^{2}+4h^{2}}{8h}}={frac {1}{2}}{sqrt {4d^{2}+c^{2}}};}
{displaystyle s=theta cdot R=2Rarccos left(1-{tfrac {h}{R}}right)=2Rarccos {tfrac {d}{R}}=2Rarcsin {frac {c}{2R}}=}

{displaystyle ={frac {theta }{h}}}{1-cos {frac {theta }{2}}={frac {theta d}{cos {tfrac {theta }{2}}}}={frac {theta c}{2sin {tfrac {theta }{2}}}}=}
{displaystyle =2(h+d)arccos {tfrac {d}{h+d}}={frac {c^{2}+4h^{2}}{4h}}}arcsin {{tfrac {4hc}{c^{2}+4h^{2}}}=}
{displaystyle ={sqrt {4d^{2}+c^{2}}}}arcsin {{frac {c}{sqrt {4d^{2}+c^{2}}}};}
{displaystyle c=2Rsin {tfrac {theta }{2}}=R{sqrt {2-2cos theta }}=2{sqrt {h(2R-h)}};}
{displaystyle h=R(1-cos {tfrac {theta }{2}})=R-{sqrt {R^{2}-{tfrac {c^{2}}{4}}}};}
{displaystyle theta =2arccos {frac {d}{R}}={frac {s}{R}}=2arccos {frac {R-h}{R}}=2arcsin {frac {c}{2R}}.}

Площадь кругового сегмента вычисляется по формуле:

{displaystyle S={frac {1}{2}}R^{2}(theta -sin theta )={frac {1}{2}}R^{2}left({frac {s}{R}}-sin {tfrac {s}{R}}right).}

См. также[править | править код]

Логотип Викисловаря В Викисловаре есть статья «сегмент»
  • Сектор круга
  • Шаровой сегмент
  • Шаровой слой
  • Коническое сечение
  • Дуга окружности
  • Разрез

Формула

Это статья-заготовка по математике. Помогите Википедии, дополнив эту статью, как и любую другую.

В статье не хватает ссылок на источники (см. рекомендации по поиску).

Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (3 марта 2023)

Сегмент круга
Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
S=frac{1}{2}R^2(alpha-sin{alpha}) [1]
Длина дуги:
L={alpha}R
Длина хорды:
c=2{R}{sin{frac{alpha}{2}}}
Высота сегмента:
h={R}left(1-{cos{frac{alpha}{2}}}right)

PLANETCALC, Сегмент

Сегмент

Угол в градусах, образуемый радиусами сектора

Точность вычисления

Знаков после запятой: 2

Однако, как справедливо заметил наш пользователь:«на практике часто случается, что как радиус дуги, так и угол неизвестны» (см. длина дуги ). Для этого случая для расчета площади сегмента и длины дуги можно использовать следующий калькулятор:

PLANETCALC, Параметры сегмента по хорде и высоте

Параметры сегмента по хорде и высоте

Точность вычисления

Знаков после запятой: 2

Калькулятор вычисляет радиус круга по длине хорды и высоте сегмента по следующей формуле:
R=frac{h}{2}+frac{c^2}{8h}

Далее, зная радиус и длину хорды, легко найти угол сегмента по формуле:
alpha=2arcsin{ frac{c}{2R} }
Остальные параметры сегмента вычисляются аналогично первому калькулятору, по формулам, приведенным в начале статьи.

Следующий калькулятор вычисляет площадь сегмента по высоте и радиусу:

PLANETCALC, Площадь сегмента круга по радиусу и высоте

Площадь сегмента круга по радиусу и высоте

Точность вычисления

Знаков после запятой: 2

Этот калькулятор вычисляет угол из высоты и радиуса по следующей формуле:
alpha=2arccosleft(1-frac{h}{R}right)
далее используется формула [1] для получения площади.

15 вычислений по сегменту круга в одной программе

Последний калькулятор включает в себя все оставшиеся вычисления параметров кругового сегмента:

  • длина дуги
  • угол
  • хорда
  • высота
  • радиус
  • площадь

Выберите два известных аргумента и калькулятор выдаст вам все оставшиеся.

PLANETCALC, Круговой сегмент - все варианты расчета

Круговой сегмент – все варианты расчета

Точность вычисления

Знаков после запятой: 2

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Сегмент круга

Вычисляет площадь, длину дуги, длину хорды, высоту и периметр сегмента круга. Описывается несколько вариантов расчета по параметрам сегмента – по углу, по хорде, по радиусу, по высоте и длине дуги.

Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
[1]
Длина дуги:

Длина дуги сегмента круга по хорде и высоте — онлайн-калькулятор

Формулы расчета длины дуги

Длина дуги вычисляется по стандартной формуле (1), однако в этом расчете все переменные неизвестны, соответственно их нужно вывести из других формул геометрии круга. Радиус круга (4) выражается через формулы хорды (2) и высоты сегмента (3), по этим же формулам можно получить значение угла сегмента (5).

R = h/2 + W 2 /(8 × h) (4)
α = 2 × arcsin[W / (2 × R)] (5)

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

[spoiler title=”источники:”]

http://kalk.pro/math/dlina-dugi-segmenta-kruga/

http://www.resolventa.ru/demo/diaggia6.htm

[/spoiler]

Данный сайт находится в режиме тестирования, обо всех выявленных проблемах Вы можете сообщить на почту

Формулы сегмента круга

Для расчёта всех основных параметров сегмента круга воспользуйтесь калькулятором.

Формулы высоты сегмента круга

  • Высота сегмента круга через радиус и угол α

    $$
    h = R * (1 – cos({α over 2}))
    $$

  • Высота сегмента круга через хорду (AB) и центральный угол α

    $$
    h = {1 over 2} * AB * tg({α over 4})
    $$

  • Высота сегмента круга через хорду (AB) и радиус

    $$
    h = R – sqrt{R^2 – {L^2 over 4}}
    $$

Формула площади сегмента круга

$$
S = {R^2 over 2} * (pi * {α over 180} – sin(α))
$$

Формула длины хорды сегмента круга

$$
AB = 2 * R * sin({α over 2})
$$

Формула длины дуги сегмента круга

$$
L = α * R
$$

Сегмент круга

Данный калькулятор считает параметры сегмента круга, а именно:

  • длину дуги (L),
  • длину хорды (C),
  • площадь (S),
  • высоту (h),

Перед вами 2 калькулятора, чтобы рассчитать параметры сегмента:

1) сегмент круга решается с помощью радиуса (R) и угла (A).

2) сегмент круга находим с помощью высоты и длины хорды.

Однако, как справедливо заметил наш пользователь:“на практике hourто случается, что как радиус дуги, так и угол неизвестны” (см. длина дуги ). Для этого случая для расчета площади сегмента и длины дуги можно использовать следующий калькулятор:

Параметры сегмента по хорде и высоте

Калькулятор вычисляет радиус круга по длине хорды и высоте сегмента по следующей формуле:
R=frac{h}{2}+frac{c^2}{8h}

Далее зная радиус и длину хорды, легко найти угол сегмента по формуле:
alpha=2arcsin{ frac{c}{2R} }
Остальные параметры сегмента, вычисляются аналогично первому калькулятору, по формулам, приведенным в начале статьи.

Следующий калькулятор вычисляет площадь сегмента по высоте и радиусу:

Добавить комментарий