Как найти длину шкалы прибора

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) – это истинное значение, а (triangle a) – погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Шкала прибора

Движущаяся
стрелка и шкала образуют устройство
отсчета изме­рительного
прибора. Шкала представляет собой
совокупность отметок и
проставленных у некоторых из них чисел
отсчета, соответствующих ряду
последовательных значений измеряемой
величины. Промежуток между двумя
соседними отметками шкалы называется
делением шка­лы.
Разность значений измеряемой величины,
соответствующих сосед­ним
отметкам, называется ценой деления
шкалы. Наименьшее значе­ние
измеряемой величины, указанное на шкале,
называется нижним, а наибольшее – верхним
пределами измерения прибора; разность
между верхним и нижним пределами –
диапазон измерения прибора. Нижний
предел у электроизмерительных приборов
чаще всего устанавливается равным нулю,
однако он может быть как положительным,
так и отри­цательным
числом, отличным от нуля. В зависимости
от принципа
действия
и особенностей конструктивного устройства
измерительные приборы
могут иметь равномерную шкалу (длина
деления в угловых или
линейных единицах одинакова по всей
шкале) или неравномерную (длина деления
или цена деления разные на участках
шкалы). У прибо­ров
повышенной точности шкалу обычно
выполняют зеркальной, что снижает до
минимума ошибку при отсчете показания
прибора. Много­предельные или
универсальные приборы могут иметь не
одну, а иногда и несколько шкал с разной
ценой деления.

Для
правильного отсчета показания
измерительного прибора не­обходимо
предварительно определить цену деления
шкалы. Цена деле­ния
с определяется как отношение разности
двух значений А1
и
А2
измеряемой
величины, соответствующих двум числовым
отметкам шкалы,
в том числе нижнему и верхнему пределам
измерения, к числу делений
шкалы между этими отметками ΔN

У
многопредельных измерительных приборов
цена деления шка­лы определяется с
учетом конкретного верхнего предела
измерения, установленного с помощью
переключателя пределов. У многопредель­ных
ваттметров цена деления определяется
как отношение произведе­ния предельных
(номинальных) значений напряжения и
тока, подво­димых
к прибору и указанных у соответствующих
переключателей или присоединительных
клемм, к полному числу делений шкалы.

Точность измерительных приборов

Точность
– важнейшее свойство измерительных
приборов и изме­рений, выполняемых с
их помощью. Точность прибора характеризует­ся
его погрешностями. Различают несколько
видов погрешностей: аб­солютную,
относительную и приведенную. Абсолютная
погрешность Δ
представляет собой разность между
показанием прибора (значением измеряемой
величины) аи
и
действительным значением а0
измеряе­мой
величины

Относительная
δ и приведенная γ погрешности представляет
собой
отношение, в процентах, абсолютной
погрешности к действи­тельному
значению измеряемой величины или к
нормирующему зна­чению
аN,
в
качестве которого принимают диапазон
измерений или верхний
предел измерений прибора.

Погрешности
конкретных экземпляров измерительных
приборов носят
индивидуальный характер и могут принимать
разные значения, однако они у исправных
приборов не должны выходить за пределы
допускаемых погрешностей, устанавливаемых
в нормативной доку­ментации на приборы
данного типа. Для электроизмерительных
при­боров такой предел без учета знака
устанавливают для приведенной погрешности
γn

и называют его классом точности. Класс
точности указывается в документации
на измерительные приборы, а также
нано­сится на их лицевые панели или
циферблаты без указания обозначения
процента.
Количество и значения классов точности
установлены стан­дартами в виде
ограниченного числового ряда, который
для электро­измерительных
рабочих приборов имеет вид: 0,05; 0,1; 0,2;
0,5- 1015-2,5;
4,0.

Для
оценки точности результата конкретного
измерения с помо­щью данного
измерительного прибора необходимо
знать пределы до­пускаемой
абсолютной погрешности ± Δn,
которые можно вычислить по
известным классу точности и верхнему
пределу (диапазону) изме­рений
прибора по формуле

Зная
пределы допускаемой абсолютной
погрешности, можно представить
полный результат измерения в виде

Для измерения физических величин используют измерительные приборы. Например, для измерения высоты мы будем использовать такой измерительный прибор как линейка, для измерения массы тела – весы, для измерения температуры – термометр, а для измерения времени – часы и т.д..

Многие измерительные приборы имеют шкалу. Шкала измерительного прибора представляет собой совокупность отметок (точек, штрихов) вместе со связанной с ними нумерацией (числами). Для того, чтобы определить с какой точностью может измерить тот или иной прибор, необходимо знать его цену деления.

Ценой деления шкалы прибора называет расстояние между двумя ближайшими штрихами на шкале прибора. Для того чтобы определить цену деления (С) надо найти два ближайших штриха шкалы, возле которых написаны значения величины;

вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

Например, рассмотрим такой измерительный прибор как шприц. Шприц нужен для измерения такой физической величины как объем (V). Рассмотрим шкалу шприца и определить ее цену деления (см.рис.).

Физика . Цена деления , объём, СИ, стандартный вид

Для того, чтобы определить цену деления данной шкалы мы возьмем два ближайших штриха, возле которых написаны значения, например 7 и 8.

Далее выполним вычитание, как указано в инструкции выше: 8-7=1. Затем, посчитаем сколько делений между большими штрихами (на рисунке отмечены зелеными черточками и подписаны цифрами снизу). У нас получилось 5 делений.

Разделим получившуюся разницу на 5: 1/5=0,2. Значит цена деления шкалы нашего измерительного прибора равна 0,2 мл.

Запишем наши вычисления формулой: С=(8-7)/5=0,2 мл.

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

Пример с мензуркой

С = 40 - 30/2 = 5 мл.
С = 40 – 30/2 = 5 мл.

С = 40 – 30/2 = 5 мл.

Если данную мензурку наполнить полностью жидкостью, то ее объем будет равен 50 мл. А если на­лить жидкость до первого значения, отличного от нуля, то её объем будет равен 5 мл. Между штрихами 40 и 30 вмещается 10 мл жидкости. Между самыми близкими штрихами объем налитой жидкости будет равен 5 мл. Эта величина и будет являться ценой деления мензурки.

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
v = нижний штрих (140) + 2 деления уровня поверхности жидкости . Теперь умножаем  на цену деления (8 мл.)+ 156 мл.  Погрешность -  8 мл (цена деления) делённая на 2  = 4 мл.  V = 156 мл. плюс минус 4 мл.
v = нижний штрих (140) + 2 деления уровня поверхности жидкости . Теперь умножаем на цену деления (8 мл.)+ 156 мл. Погрешность – 8 мл (цена деления) делённая на 2 = 4 мл. V = 156 мл. плюс минус 4 мл.
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

Для основных и производных единиц измерения в системе СИ используют дольные и кратные десятичные приставки для удобной записи чисел. Например: 6000000000=10М (приставки обозначают числа).

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

Задание. Приведите примеры известных Вам внесистемных единиц и соотношение их с единицами системы СИ.

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

В большинстве задач, где не дано обратное, желательно переводить скорость в метры/секунду (м/с). Для этого вспоминаем, что

1 км = 1000 м = 100 000 см = 1 000 000 мм

1 ч = 60 мин = 3600 с

Допустим, нам необходимо перевести 72 км/ч в метры в секунду.

Километры у нас находятся в числителе, часы в знаменателе, поэтому

72 км/ч * 1000 (домножаем на 1000, чтобы получить метры)

= 72000 м/ч / 3600 (делим на количество секунд в часе, чтобы получить из часов секунды; делим, поскольку часы у нас в знаменателе (снизу дроби), а не в числителе) = 20 м/с

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

Преобразовать – сначала перевести величину измерения в систему СИ, а потом преобразовать в стандартный вид.

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

Для того, чтобы определить, что такое миллисекунда, нужно понять, что представляет собой приставка “милли”. С помощью данной приставки образуются дольные единицы измерения в системе СИ. Приставка “милли” имеет латинское происхождение и означает “mille” – тысяча. Таким образом, единица измерения, образованная с помощью “милли” будет равна 0,001 от исходной единицы. Итак, миллисекунда – это одна из единиц измерения времени, она равна тысячной доле от 1 секунды.

Обозначается: мс (русский язык), ms (английский язык).

Чтобы перевести миллисекунды в секунды и наоборот, нужно помнить, что:

1 секунда = 1000 миллисекунд.

1 миллисекунда = 0,001 секунды.

Если нужно перевести миллисекунды в секунды, то достаточно заданное количество миллисекунд разделить на 1000. Например:

20 миллисекунд = 20 / 1000 = 0,02 секунды.

2000 миллисекунд = 2000 / 1000 = 2 секунды.

Если наоборот нужно перевести секунды в миллисекунды, то умножаем имеющееся число секунд на 1000. Например:

3 секунды = 3 * 1000 = 3000 миллисекунд.

0,05 секунды = 0,05 * 1000 = 50 миллисекунд.

0,15 : 1000=0,00015

Физика . Цена деления , объём, СИ, стандартный вид

Физические величины при измерениях и вычислениях обычно выражают числами. Они могут значительно отличаться друг от друга и выражаться как чрезвычайно малыми, так и гигантскими числами. Например, размеры различных тел лежат в пределах от микроскопических до космических масштабов и различаются в 1000000000000000000000000000000… раз (всего надо написать 60 нулей) – такое число даже сложно прочитать!

Как же записать очень малое или очень большое число, чтобы сэкономить бумагу и чтобы легко оперировать этими числами – складывать, вычитать, умножать, делить, да и вообще быстро прочитать и понять записанное?

Наиболее удобный способ записи малых и больших чисел заключается в использовании множителя 10 в некоторой степени. Например, число 2000 можно записать как 2·1000 или 2·10^3. Степень десяти (в данном случае «3») показывает, сколько нулей нужно приписать справа за первым множителем (в нашем примере «2»). Это называют записью числа в стандартной форме. Если число содержит более, чем одну значащую цифру, например 21500, то его можно записать как 21500·10^0 или 2150·10^1 или 215·10^2 или 21,5·10^3 или 2,15·10^4 или 0,215·10^5 или 0,0215·10^6 и так далее.

Запомним: в стандартной форме числа до запятой всегда оставляют только одну цифру, отличную от нуля, а остальные цифры записывают после запятой. Например, в стандартной форме число 21500 = 2,15·10^4.

Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид
Физика . Цена деления , объём, СИ, стандартный вид

math-prosto@mail.ru

Материал взят с инета.

Цена деления i шкалы прибора — значение измеряемой величины, соответствующее одному делению шкалы, основная характеристика прибора.

Интервал деления или деление шкалы c — расстояние между осями двух рядов лежащих штрихов, один из основных признаков, определяющих удобство, точность и надежность отсчета. В стрелочных приборах обычно c=0.9÷2.5 мм. Качество шкалы определяется так же толщиной штрихов, длинной их, разницей в длине и толщиной между различными (десятые, пятые и так далее) штрихами, а так же цветом поля шкалы и штрихов. Шкалы должны обеспечить наиболее производительный и надежный отсчет целых делений. Отсчет долей деления, как правило, не производится ввиду его трудоемкости, а так же потому, что погрешность показаний приборов обычно близка к цене деления. В настоящее время ширина штрихов составляет не редко (0,15÷0,25) с, длинна их — с, пятые и десятые штрихи выделяются утолщением, пятые штрихи имеют туже длину что и остальные.

Для уменьшения ошибок отсчета, вызванных параллаксом, у микрометрического и штангенинструмента нормируют расстояние от шкалы и толщину скоса барабанов и нониусов, у стрелочных приборов нормируют расстояние стрелки от шкалы, у оптических приборов применяют оптическое совмещение шкал.

Пределы измерения по шкале прибора и прибора в целом определяют область, в которой нормируются его показания.

Погрешность показаний — разность между показаниями прибора и действительным значением измеряемой величины. Нормируется либо погрешность в плюс минус от нуля, либо сумма абсолютных величин наибольших положительной и отрицательной погрешностей (амплитуда погрешностей). Характер нормирования определяется конструкцией прибора и условиями применения.

Погрешность обратного хода — разность показаний прибора при установки наконечника прибора в одно и тоже положение путем перемещения его в прямом и обратном направлении; особенно существенна при проверки биения, овальности и так далее.

Вариация (нестабильность) — наибольшая полученная экспериментально разность между результатами отдельных повторных измерений одного и того же размера при неизменных внешних условиях.

Измерительное усилие — усилие контакта между измерительным наконечником прибора и поверхностью измеряемой детали.

К приборам предъявляют следующие требования: технологичность конструкции, малый вес и габариты, износостойкость, возможность легкого ремонта и регулировки, малая инерционность. Иногда также необходима отделение контактной части от отсчетной (дистанционность).

Psidial.jpg

Шкала́ (лат. scala — лестница) — часть показывающего устройства средства измерений, представляющая собой упорядоченный ряд отметок вместе со связанной с ними нумерацией или техническая отметка на шкале измерительного прибора. Шкалы могут располагаться по окружности, дуге или прямой линии. Показания отсчитываются невооружённым глазом при расстояниях между делениями до 0,7 мм, при меньших — при помощи лупы или микроскопа, для долевой оценки делений применяют дополнительные шкалы — нониусы.

Следует заметить, что термин «шкала» в метрологической практике имеет, по крайней мере, два различных значения. Во-первых, шкалой или, точнее, шкалой измерений (шкалой физической величины) называют принятый по соглашению порядок определения и обозначения всевозможных проявлений (значений) конкретного свойства (величины). Во-вторых, шкалой называют отсчётные устройства аналоговых средств измерений, это значение используется в данной статье.

Круговую шкалу часов, курвиметров и некоторых других приборов называют циферблатом.

Элементы шкалы[править | править код]

  • Отметка шкалы — знак на шкале (чёрточка, зубец, точка и т.д.), соответствующий некоторому значению физической величины.
  • Числовая отметка шкалы — отметка шкалы, у которой проставлено число.
  • Нулевая отметка — отметка шкалы, соответствующая нулевому значению измеряемой величины.
  • Деление шкалы — промежуток между двумя соседними отметками шкалы.
  • Длина деления шкалы — расстояние между осями (или центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходящей через середины самых коротких отметок шкалы.
  • Цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы.
  • Длина шкалы — длина линии, проходящей через центры всех самых коротких отметок шкалы и ограниченной начальной и конечной отметками. Линия может быть реальной или воображаемой, кривой или прямой.

Интервал деления шкалы (деление шкалы) — расстояние между осями симметрии двух рядом лежащих штрихов (выражается в линейных или в угловых единицах)

Виды шкал средств измерений[править | править код]

  • Односторонняя шкала — шкала с нулевой отметкой, расположенной в начале или в конце шкалы
  • Двусторонняя шкала — шкала с нулевой отметкой, расположенной между начальной и конечной отметками. Различают симметричные (начальная и конечная отметки соответствуют одинаковым значениям измеряемой величины) и несимметричные двусторонние шкалы (начальной и конечной отметкам соответствуют разные значения).

Свойства шкал[править | править код]

Неравномерная шкала омметра

  • Начальное значение шкалы — наименьшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений. Во многих случаях шкала начинается с нулевой отметки, однако могут быть и другие значения — например, у медицинского термометра это 34,3 °C.
  • Конечное значение шкалы — наибольшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений.
  • Характер шкалы — функциональная зависимость a = f(x) между линейным (или угловым) расстоянием a какой-либо отметки от начальной отметки шкалы, выраженным в долях всей длины шкалы, и значением x измеряемой величины, соответствующим этой отметке:
    • Равномерная шкала — шкала, отметки на которой нанесены равномерно.
    • Неравномерная шкала — шкала, отметки на которой нанесены неравномерно.
    • Логарифмическая или гиперболическая шкала — шкала с сужающимися делениями, характеризуемыми тем, что отметка, соответствующая полусумме начального и конечного значений, расположена между 65 и 100 % длины шкалы. Следует заметить, что выражение «логарифмическая шкала» используется и по отношению к другому значению понятия «шкала» (см.: Шкала физической величины, Логарифмический масштаб).
    • Степенная шкала — шкала с расширяющимися или сужающимися делениями, но не подпадающая под определение логарифмической (гиперболической) шкалы.

См. также[править | править код]

  • Измерительный прибор
  • Измерительный механизм
  • Циферблат
  • Шкальный индикатор

Литература[править | править код]

  • Справочник по электроизмерительным приборам / Под ред. К. К. Илюнина — Л.: Энергоатомиздат, 1983
Нормативно-техническая документация
  • РМГ 29-2013 ГСИ. Метрология, Основные термины и определения
  • ГОСТ 5365-83 Приборы электроизмерительные. Циферблаты и шкалы. Общие технические требования
  • ГОСТ 25741-83 Циферблаты и шкалы манометрических термометров. Технические требования и маркировка

Ссылки[править | править код]

  • Метрологические характеристики средств измерений
  • ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТРОЛОГИИ

Добавить комментарий