Как найти длину средней линии квадрата

Всем привет,мои юные и не очень любители пошуршать мозгами! 🧠

Сегодня поговорим о задачах с фигурами,но не простыми,а на квадратной решетке. 🤓

Картинка автора
Картинка автора

Такого рода задачи часто попадаются на ОГЭ,поэтому рекомендую дочитать ЭТО ЧУДО до конца 🙂

Длина средней линии трапеции

Решим задачу с этой самой длиной. На клетчатой бумаге 1×1 изображена вот такая трапеция:

Найдем длину ее средней линии.

Сосчитаем клеточки оснований:

7 снизу,3 сверху.

Их складываем.

А потом делим ответ на 2:

Ответ: 5

Расстояние от и до

Теперь про более странную задачу поговорим.

На клетчатой бумаге 1×1 отмечены три точки: A,B и C.

  Ту ту ту ту...
Ту ту ту ту…

Нужно найти расстояние от точки A до середины отрезка BC.

Нужно ПРОСТО сосчитать три клетки до середины! ВСЕ!

Ответ: 3

Площадь ромба

На той же бумаге начертили ромб.

Нужно найти его площадь.

Как? Оч просто!

Нужно сделать из этого ромба прямоугольник:

Вот так
Вот так

А теперь посчитаем клеточки у сторон:

Пло­щадь ромба равна по­ло­ви­не про­из­ве­де­ния его диа­го­на­лей.

Ответ: 20.

Площадь странной фигуры

На этой же (ОПЯТЬ?!ААА!) бумаге Вася начертил странную фигуру. А мы должны найти ее площадь…)

Теперь внимание! Нужно просто посчитать квадратики! Считаем…

Усё
Усё

Ответ: 11

Длина большей диагонали ромба

Опять ромб. Только теперь нужно найти не площадь,а длину большей диагонали.

Давайте посчитаем:

Ответ: 8

Повторим расстояния…

Опять нужно найти расстояние от точки А,до прямой BC.

Проведем прямую от точки между точками B и C.

А теперь проведем линию от точки A,до отрезка ВС.

Ответ: 1

Площадь параллелограмма

Найдем площадь параллелограмма.

Как ее искать?

Нужно умножить высоту на основание:

Ответ: 20

Длина средней линии треугольника

У нас есть вот такой треугольник:

Нужно найти длину его средней линии,параллельной стороне AC.

Для этого мы узнаем длину основания и разделим ее на 2.

Ответ: 2

Длина большего катета

Нам дан такой прямоугольный треугольник:

Нужно найти длину его большего катета.

Вспомним про стороны прямоугольного треугольника:

Катет b (основание) больше. Он имеет 10 клеток,а катет а 5.

Ответ: 10.

На этом все!

Ждите более сложные задания в следующем посте!

Существет ли такое понятие как средняя линия квадрата??? Если да, то подскажите её признаки и свойства.

Аглик



Знаток

(474),
на голосовании



12 лет назад

Голосование за лучший ответ

таисия семенова

Мастер

(1314)


12 лет назад

Средняя линия треугольника, трапеции, про квадрат впервые слышу

fsdfsdfsd fsdfdsfsdfsfd

Ученик

(140)


6 лет назад

Средняя линия квадрата равна стороне квадрата. Вот и все свойства;)

Похожие вопросы

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 мая 2021 года; проверки требуют 16 правок.

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

Средняя линия треугольника[править | править код]

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины боковых сторон этого треугольника[1].

Свойства[править | править код]

  • средняя линия отсекает треугольник, подобный и гомететичный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника.
  • три средние линии делят исходный треугольник на четыре равных треугольника. Центральный из этих треугольников называется дополнительным или серединным треугольником.
  • Если из двух вершин треугольника провести сразу две пары биссектрис (две внутренние и две внешние), а затем на четыре полученные биссектрисы ортогонально спроектировать третью вершину, тогда полученные четыре точки проекций вершины на биссектрисы будут лежать на одной прямой (коллинеарными)[2]. Эта прямая является средней линией треугольника, параллельной той стороне, концами которой являются упомянутые выше две вершины. Точнее, часть этой средней линии оказывается её продолжением за пределы треугольника.

Признаки[править | править код]

  • Если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок — средняя линия.

Средняя линия четырёхугольника[править | править код]

Средняя линия четырёхугольника — отрезок, соединяющий середины противолежащих сторон четырёхугольника.

Свойства[править | править код]

Первая линия соединяет 2 противоположные стороны.
Вторая соединяет 2 другие противоположные стороны.

  • Если в выпуклом четырёхугольнике средняя линия образует равные углы с диагоналями четырёхугольника, то диагонали равны.
  • Длина средней линии четырёхугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырёхугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;
  • Последний пункт означает следующее: В выпуклом четырёхугольнике можно провести четыре средние линии второго рода. Средние линии второго рода — четыре отрезка внутри четырёхугольника, проходящие через середины его смежных сторон параллельно диагоналям. Четыре средние линии второго рода выпуклого четырёхугольника разрезают его на четыре треугольника и один центральный четырёхугольник. Этот центральный четырёхугольник является параллелограммом Вариньона.
  • Точка пересечения средних линий четырёхугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырёхугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции[править | править код]

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Она рассчитывается по формуле: EF=frac{AD+BC}{2}, где AD и BC — основания трапеции.

Свойства[править | править код]

  • средняя линия параллельна основаниям
  • средняя линия равна полусумме оснований
  • средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как [1] Архивная копия от 12 августа 2017 на Wayback Machine
{displaystyle {frac {S_{1}}{S_{2}}}={frac {3,BC+AD}{BC+3,AD}}}

См. также[править | править код]

  • Теорема Вариньона (геометрия)

Примечания[править | править код]

  1. Справочник. Треугольники. Дата обращения: 14 апреля 2008. Архивировано из оригинала 20 апреля 2016 года.
  2. Дмитрий Ефремов. Новая геометрия треугольника Архивная копия от 25 февраля 2020 на Wayback Machine. — Одесса, 1902. — С. 6. Глава I, п.8

геометрические фигурыВ статье описываются геометрические фигуры: определение, основные свойства и формулы.

Плоские геометрические фигуры:

  • Четырехугольник (общее для всех четырехугольников)
  • Квадрат
  • Прямоугольник
  • Параллелограмм
  • Ромб
  • Трапеция
  • Треугольник
  • Окружность

Геометрические фигуры — это любое сочетание точек, линий и поверхностей. Геометрические фигуры разделяются на плоские и объемные.

Плоские геометрические фигуры — это фигуры, все точки которых лежат на одной плоскости. Объемные геометрические фигуры — это фигуры, не все точки которых лежат на одной плоскости.

Четырёхугольник

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.

Основные свойства четырехугольника:

  • Сумма углов четырёхугольника равна 360°
  • Не существует четырёхугольников, у которых все углы острые или все углы тупые.
  • Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов.
  • Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон.

В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны. Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Четырёхугольник можно описать окружностью, если сумма его противолежащих углов равна 180°.Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Квадрат

Квадрат —  правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.

Основные формулы:

Периметр: P=4a, где P-периметр, a-сторона
Площадь: S=a2или S=d2/2
Сторона и диагональ связаны соотношениями: a=d/√2, d=a√2
Радиус описанной окружности: R=d/2 или R=a√(2)/2
Радиус вписанной окружности: r=a/2

Окружностьгде a-сторона, d-диагональ, P-периметр, S-площадь
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(2) – корень квадратный из 2.

Свойства квадрата:

  • Все стороны равны, все углы равны и составляют 90°;
  • Диагонали квадрата равны и перпендикулярны;
  • У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей;
  • Квадрат является одновременно частным случаем ромба и прямоугольника

Калькулятор для квадрата поможет вычислить все характеристики квадрата по одной из известных величин. .

Прямоугольник

Прямоугольник — четырехугольник, у которого все углы прямые.

Основные формулы:

Периметр: P=(a+b)*2
Площадь по сторонам: a*b
Площадь по диагонали и углу между ними: S =  d²* sin γ. / 2
Стороны и диагональ связаны соотношением: d=√(a2+b2) (теорема Пифагора)
Радиус описанной окружности: R= √(a2+b2)/2 (теорема Пифагора)

прямоугольникгде a, b — длины сторон прямоугольника, d-диагональ, P-периметр, S-площадь
γ угол между диагоналями
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(a2+b2) – корень квадратный из (a2+b2).

Свойства прямоугольника:

  • Диагонали прямоугольника равны и делятся точкой пересечения пополам.
  • Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали.

.

Параллелограмм

Параллелограмм — четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Определения:

Высота параллелограмма — это перпендикуляр, проведённый из вершины параллелограмма к противоположной стороне.

Основные формулы:

Стороны и диагональ связаны соотношением: (d1)2+(d2)2=(a2+b2)*2
Периметр: P=(a+b)*2
Площадь по стороне и высоте:  = a*h
S (Площадь) по двум сторонам и углу между ними: S=a*b*sin α
S (Площадь) по двум диагоналям и углу между ними:  S=(d1*d2)/2*sin γ

Параллелограммгде a, b — длины сторон, d1, d2 –диагонали, P-периметр, S-площадь,
h-высота, проведенная к противоположной стороне
α — угол между сторонами параллелограмма,
γ — угол между диагоналями параллелограмма (острый).

Свойства параллелограмма:

  • У параллелограмма противоположные стороны равны и противоположные углы равны.
  • Сумма любых двух соседних углов параллелограмма равна 180°.
  • Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
  • Каждая диагональ делит параллелограмм на два равных треугольника.
  • Две диагонали параллелограмма делят его на четыре равновеликих треугольника (равны площади всех 4-х треугольников)
  • Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
  • Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Ромб

Ромб — это параллелограмм, у которого все стороны равны.

Основные формулы:

Периметр: P=4*a
Площадь по стороне и высоте: S=a*h
Площадь по диагоналям: = (d1*d2)/2
Радиус окружности, вписанной в ромб: r=h/2 или  r =(d1*d2)/4a
Площадь по стороне и радиусу вписанной окружности: S=2*a*r
Площадь по стороне и углу: S = a2 · sin α

ромбгде a — длина стороны, d1, d2 –диагонали, P-периметр, S-площадь,
h -высота, проведенная к противоположной стороне
α — угол между сторонами ромба

Свойства ромба:

  • Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
  • В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей. Радиус окружности: r=h/2 или r = d1*d2/4a.

Трапеция

Трапеция — четырёхугольник, у которого только две противолежащие стороны параллельны.

Определения:

  • Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
  • Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.  
  • Средняя линия (первая средняя линия) трапеции — отрезок, который соединяет середины боковых сторон данной трапеции. Средняя линия трапеции параллельна её основаниям и равна их полусумме.
  • Средняя линия (вторая средняя линия) — отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей.
  • Равнобокая трапеция – трапеция, у которой боковые стороны равны (c=d). У равнобокой трапеции: диагонали равны, углы при основании равны, сумма противолежащих углов равна 180°.Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
  • Прямоугольная трапеция — трапеция, у которой одна из её боковых сторон перпендикулярна основаниям.

Основные формулы:

Периметр: P=a+b+c+d
Площадь определить: S=h*(a+b)/2
Стороны и диагональ равнобокой трапеции: d² = ab+c²
Радиус вписанной окружности: r = h/2

трапециягде a,b — основания, c,d — боковые стороны (с – боковые стороны в случае, если трапеция равнобокая), d1, d2 –диагонали,
P-периметр, S-площадь, h -высота, проведенная к противоположной стороне

Свойства трапеции:

В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон (a+b=c+d). Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.

Треугольник

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Определения:

  • Углами (внутренними углами) треугольника называются три угла, каждый из которых образован лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
  • Высота треугольника — перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны
  • Медиана треугольника — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
  • Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне
  • Равные треугольники – треугольники, у которых соответствующие стороны равны и соответствующие углы равны
  • Равнобедренный треугольник— треугольник, у которого две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
  • Равносторонний или правильный треугольник – треугольник, у которого все стороны равны.
  • Прямоугольный треугольник — треугольник, у которого есть прямой угол. Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Основные формулы:

Периметр: P=a+b+c
Площадь по стороне и высоте: S=(a*h)/2
Площадь: по сторонам и углу между ними:  S=(a*b)/2* sin γ
                        по трем сторонам и радиусу описанной окружности: S=(a*b*c)/4R
                        по трем сторонам и радиусу вписанной окружности: S=(a+b+c)/2*r
Площадь прямоугольного треугольника: S=(a*b)/2
Стороны прямоугольного треугольника: c2=a2+b2 (Теорема Пифагора)

Треугольникгде a,b, c — стороны (a,b –катеты , с – гипотенуза в случае прямоугольного треугольника)
h -высота, проведенная к противоположной стороне,
P-периметр, S-площадь, γ  — угол между сторонами a и b
r — радиус вписанной окружности, R — радиус описанной окружности.

Для нахождения характеристик простого, равнобедренного или равностороннего треугольника, воспользуйтесь калькулятором для треугольника.

Чтобы вычислить все характеристики прямоугольного треугольника, воспользуйтесь калькулятором для прямоугольного треугольника.

Свойства треугольника:

  • В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол.
  • Сумма углов треугольника равна 180°:
  • Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:
    |a-b| <c<a+b
  • Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
  • Медиана делит треугольник на два равновеликих (с равными площадями) треугольника. Три медианы треугольника делят его на шесть равновеликих треугольников
  • Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник
  • В равнобедренном треугольнике углы при основании равны. В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой и высотой.
  • Все углы равностороннего треугольника равны 60°. Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c2=a2+b2 (Теорема Пифагора).В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.

Окружность

Окружность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.

Определения:

  • Радиус — отрезок, который соединяет центр окружности с любой её точкой.
  • Хорда — отрезок, который соединяет какие-либо две точки окружности (AB).
  • Диаметр — хорда, проходящая через центр окружности(d).  Диаметр – наибольшая хорда окружности. Наименьшей хорды окружности не существует. 
  • Касательная — прямая, которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку (E)
  • Секущая — прямая, которая пересекает окружность в двух различных точках.

Основные формулы:

Длина окружности: L = 2πR
Площадь круга: S = π*r2 или S = π*d2/4

Окружностьгде π = 3,14 (3,1415926535) – величина постоянная,
где r-радиус, d –диаметр, L – длина окружности, S-площадь.

Калькулятор для окружности и круга поможет вычислить все характеристики круга по одной из известных величин.

В заключении

Весь курс начальной школы (за 1-4 классы) в краткой форме на сайте edu.intmag24.ru. С помощью курса можно быстро повторить основные моменты и правила по предметам: русский язык, математика, окружающий мир.

Прочитайте внимательно текст и выполните задания №1-5.

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.


Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объекты яблони теплица сарай жилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж – 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объекты яблони теплица сарай жилой дом
Цифры 3 5 1 7

Записываем ответ: 3517


Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

C:UsersУчительDesktopплан 1.jpg

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Ответ: 11


Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

C:UsersУчительDesktopплан 3.jpg

Ответ: 4


Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина – 6 м (3 клетки).

C:UsersУчительDesktopгараж.jpg

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Ответ: 48


Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер

магазина

Расход

краски

Масса краски

в одной банке

Стоимость одной банки краски Стоимость доставки заказа
1 0,25 кг/кв.м 6 кг 3000 руб. 500 руб.
2 0,4 кг/кв.м 5 кг 1900 руб. 800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: 30500

Ответ: см. решение

Добавить комментарий