Свойства параллелограмма:
1. Противоположные стороны равны и параллельны
2. Противоположные углы равны
3. Точка пересечения диагоналей, делит их пополам
1. Формулы длины сторон через диагонали и угол между ними.
a, b – стороны параллелограмма
D – большая диагональ
d – меньшая диагональ
α, β – углы между диагоналями
Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), (a, b):
Формулы сторон параллелограмма через диагонали и сторону, (a, b):
Формулы сторон параллелограмма , (a, b):
2. Формулы длины сторон параллелограмма через высоту.
a, b – стороны параллелограмма
Hb – высота на сторону b
Ha – высота на сторону a
α, β – углы параллелограмма
Формулы сторон параллелограмма через высоту, (a, b):
3. Дополнительные, интересные формулы параллелограмма:
a, b – стороны параллелограмма
D – большая диагональ
d – меньшая диагональ
α – острый угол между диагоналями
Формула суммы квадратов диагоналей:
Формула разности квадратов сторон:
Формулы площади параллелограмма
Формула периметра параллелограмма
Все формулы по геометрии
- Подробности
-
Опубликовано: 31 октября 2011
-
Обновлено: 13 августа 2021
Онлайн калькулятор длины сторон параллелограмма напишет подробное решение с ответом и пояснениями.
Калькулятор может:
- Сторона параллелограмма через площадь и высоту.
- Сторона параллелограмма через высоту и угол.
Где S – площадь параллелограмма,h – его высота.
Где h – его высота,α – острый угол.
- Параллелограмм- это четырехугольник у которого противоположные стороны параллельны.
- Противоположные стороны параллелограмма равны.
- Диагональные углы параллелограмма равны.
Как найти длину стороны параллелограмма ?
Сторона параллелограмма может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.
a = |
|
a = |
Параллелограмм. Формулы, признаки и свойства параллелограмма
Определение.
Параллелограмм – это четырехугольник у которого противоположные стороны попарно параллельны (лежат на параллельных прямых).
Параллелограммы отличаются между собой как размером прилегающих сторон, так и углами, однако противоположные углы одинаковые.
Признаки параллелограмма
Четырехугольник ABCD будет параллелограммом, если выполняется хотя бы одно из следующих условий:
1. Четырехугольник имеет две пары параллельных сторон:
AB||CD, BC||AD
2. Четырехугольник имеет пару параллельных и равных сторон:
AB||CD, AB = CD (или BC||AD, BC = AD)
3. В четырехугольнике противоположные стороны попарно равны:
AB = CD, BC = AD
4. В четырехугольнике противоположные углы попарно равны:
∠DAB = ∠BCD, ∠ABC = ∠CDA
5. В четырехугольнике диагонали точкой пересечения делятся пополам:
AO = OC, BO = OD
6. Сумма углов четырехугольника прилегающих к любой стороне равна 180°:
∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°
7. В четырехугольнике сумма квадратов диагоналей равна сумме квадратов его сторон:
AC2 + BD2 = AB2 + BC2 + CD2 + AD2
Основные свойства параллелограмма
Квадрат, прямоугольник и ромб – есть параллелограммом.
1. Противоположные стороны параллелограмма имеют одинаковую длину:
AB = CD, BC = AD
2. Противоположные стороны параллелограмма параллельны:
AB||CD, BC||AD
3. Противоположные углы параллелограмма одинаковые:
∠ABC = ∠CDA, ∠BCD = ∠DAB
4. Сумма углов параллелограмма равна 360°:
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
5. Сумма углов параллелограмма прилегающих к любой стороне равна 180°:
∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°
6. Каждая диагональ делит параллелограмма на два равных треугольника
7. Две диагональ делят параллелограмм на две пары равных треугольников
8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:
AO = CO = | d1 |
2 | |
BO = DO = | d2 |
2 |
9. Точка пересечения диагоналей называется центром симметрии параллелограмма
10. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон:
AC2 + BD2 = 2AB2 + 2BC2
11. Биссектрисы противоположных углов параллелограмма всегда параллельны
12. Биссектрисы соседних углов параллелограмма всегда пересекаются под прямым углом (90°)
Стороны параллелограмма
Формулы определения длин сторон параллелограмма:
1. Формула сторон параллелограмма через диагонали и угол между ними:
a =
√d12 + d22 – 2d1d2·cosγ
2
=
√d12 + d22 + 2d1d2·cosδ
2
b =
√d12 + d22 + 2d1d2·cosγ
2
=
√d12 + d22 – 2d1d2·cosδ
2
2. Формула сторон параллелограмма через диагонали и другую сторону:
3. Формула сторон параллелограмма через высоту и синус угла:
4. Формула сторон параллелограмма через площадь и высоту:
Диагонали параллелограмма
Определение.
Диагональю параллелограмма называется любой отрезок соединяющий две вершины противоположных углов параллелограмма.
Параллелограмм имеет две диагонали – длинную d1, и короткую – d2
Формулы определения длины диагонали параллелограмма:
1. Формулы диагоналей параллелограмма через стороны и косинус угла β (по теореме косинусов)
d1 = √a2 + b2 – 2ab·cosβ
d2 = √a2 + b2 + 2ab·cosβ
2. Формулы диагоналей параллелограмма через стороны и косинус угла α (по теореме косинусов)
d1 = √a2 + b2 + 2ab·cosα
d2 = √a2 + b2 – 2ab·cosα
3. Формула диагонали параллелограмма через две стороны и известную другую диагональ:
d1 = √2a2 + 2b2 – d22
d2 = √2a2 + 2b2 – d12
4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:
d1 = | 2S | = | 2S |
d2·sinγ | d2·sinδ |
d2 = | 2S | = | 2S |
d1·sinγ | d1·sinδ |
Периметр параллелограмма
Определение.
Периметром параллелограмма называется сумма длин всех сторон параллелограмма.
Формулы определения длины периметра параллелограмма:
1. Формула периметра параллелограмма через стороны параллелограмма:
P = 2a + 2b = 2(a + b)
2. Формула периметра параллелограмма через одну сторону и две диагонали:
P = 2a + √2d12 + 2d22 – 4a2
P = 2b + √2d12 + 2d22 – 4b2
3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:
Площадь параллелограмма
Определение.
Площадью параллелограмма называется пространство ограниченный сторонами параллелограмма, т.е. в пределах периметра параллелограмма.
Формулы определения площади параллелограмма:
1. Формула площади параллелограмма через сторону и высоту, проведенную к этой стороне:
S = a · ha
S = b · hb
2. Формула площади параллелограмма через две стороны и синус угла между ними:
S = ab sinα
S = ab sinβ
3. Формула площади параллелограмма через две диагонали и синус угла между ними:
Параллелограммом называют четырёхугольный многоугольник, две соседние стороны которого равны и
параллельны противоположным. Помимо этого, есть ещё несколько важных условий определения фигуры как
параллелограмма:
- В месте пересечения диагонали делятся пополам, а точка, в которой пересекаются диагонали,
является одновременно центром этих двух отрезков. При этом она всегда лежит внутри фигуры. - Любая диагональ данного четырёхугольника разделяет его на одинаковые треугольники, так как
проходит из одной вершины к противоположной, то есть по центру четырёхугольника. - Сумма квадратов сторон равна сумме квадратов диагоналей.
- Углы фигуры, расположенные друг напротив друга, попарно равны. Это условие вытекает из
утверждения, что параллельные стороны фигуры равны. - Сумма двух односторонних углов равна 180°. Это условие напрямую связано с теоремой о двух
параллельных прямых и секущей. И действительно, если рассматривать две противоположные и третью
между ними стороны параллелограмма как две параллельные прямые и секущую, то можно заметить, что
углы, принадлежащие одной стороне, будут соответствовать односторонним углам, сумма которых,
согласно теореме, равна 180°.
Только при выполнении всех условий четырёхугольный многоугольник будет считаться
параллелограммом.
- Длинная сторона параллелограмма через две диагонали и
острый угол между ними - Длинная сторона параллелограмма через две диагонали и тупой
угол между ними - Короткая сторона параллелограмма через две диагонали и
острый угол между ними - Короткая сторона параллелограмма через две диагонали и
тупой угол между ними - Сторона параллелограмма через две диагонали и другую
известную сторону - Сторона параллелограмма через высоту и синус угла
- Сторона параллелограмма через площадь и высоту
Нахождение длинной стороны через две диагонали и острый угол между ними
Длинную сторону параллелограмма можно найти, зная обе диагонали и острый угол между ними, по
формуле:
a = (√(D² + d² — 2 (D * d) * cosα)) / 2
где D – длинная диагональ, d – короткая диагональ, α — острый угол между диагоналями.
Цифр после
запятой:
Результат в:
Пример. Допустим, дан параллелограмм, у которого диагонали 7 и 4 см, а угол между
ними 68º. Тогда, согласно формуле, сторона будет равна: a = (√(7² + 4² — 2 (7 * 4) * cos68º)) / 2 = 3,317 см. Ответ:
3,317 см.
Нахождение короткой стороны через две диагонали и острый угол между ними
Можно вычислить и короткую сторону по формуле:
b = (√(D² + d² + 2 (D * d) * cosα)) / 2
где D – длинная диагональ, d – короткая диагональ, α — острый угол между диагоналями.
Цифр после
запятой:
Результат в:
Пример. Теперь необходимо найти другую сторону параллелограмма. Данные останутся те
же, что и в прошлой задаче, но в уравнении поменяется знак, так как по отношению к углу поменялась
сторона, которую надо найти. Сторона b будет равна: b = (√(7² + 4² + 2 (7 * 4) * cos68º)) / 2 = 4.64.
Ответ: 4,64 см.
Нахождение длинной стороны через две диагонали и тупой угол между ними
Стороны параллелограмма можно найти, зная диагонали и тупой угол между ними. Для этого нужно
использовать следующую формулу:
a = (√(D² + d² + 2 (D * d) * cosβ)) / 2
где D – длинная диагональ, d – короткая диагональ, β — тупой угол между диагоналями.
Цифр после
запятой:
Результат в:
Пример. Рассмотрим нахождение сторон всё того же параллелограмма с диагоналями 7 и 4
см. Однако на этот раз возьмём между диагоналями другой угол: β=112º. В таком случае для стороны a
минус меняется на плюс, а сама сторона равна: a = (√(7² + 4² + 2 (7 * 4) * cos112º)) / 2 = 3.914
Нахождение короткой стороны через две диагонали и тупой угол между ними
Аналогично можно найти и короткую сторону, зная диагонали и тупой угол между ними:
b = (√(D² + d² — 2 (D * d) * cosβ)) / 2
где D – длинная диагональ, d – короткая диагональ, β — тупой угол между диагоналями.
Цифр после
запятой:
Результат в:
Пример. Для стороны b так же изменится знак в формуле, но наоборот: плюс на минус. Тогда
получается: b = (√(7² + 4² — 2 (7 * 4) * cos112)) / 2 = 4,64 см. Ответ совпал с ответом второй
задачи, все опять решено верно, а сторона в воображаемом параллелограмме действительно равна 4,64
см.
Нахождение стороны параллелограмма через диагонали и другую сторону
Как и в случае с прошлыми пунктами, существуют формула, которая позволяет найти сторону
параллелограмма с использованием диагоналей и известной стороны. Вот она:
a = √(D² + d² — 2b² / 2)
где D, d — диагонали, b — сторона.
Цифр после
запятой:
Результат в:
Выводится данная формулы из первого следствия теоремы косинусов.
Пример. Используем для следующих задач другой параллелограмм. Эта фигура будет с
диагоналями 9 и 5 см и стороной 6 см. Тогда другая сторона данного параллелограмма равна: a = √(9² + 5² — 2 * 6² / 2) = 4,1 см. Ответ: 4,1 см.
Для проверки ответа можем решить обратную задачу, при которой нам не известна сторона b, но известна
сторона a = 4,1 см. По обратной формуле получается b = √(9² + 5² — 2 * 4,1² / 2) = 6 см. Ответ
совпадает с изначальными данными первой задачи. А значит и этот воображаемый параллелограмм
действительно существует.
Нахождение стороны через синус угла и высоту
Высота – это отрезок, опущенный перпендикулярно из вершины фигуры на противоположную сторону. Есть
несколько интересных свойств у неё. Например, высоты, проведенные из острых углов, будут всегда
лежать вне фигуры, в то время как высоты из тупых углов всегда лежат внутри. Если из одного угла
опустить две высоты, то между ними образуется угол, равный смежному углу параллелограмма. Равными
будут те высоты, что заключены между параллельными сторонами четырёхугольника. Найти сторону
параллелограмма через эту величину достаточно просто, по формуле:
a = h / sinα
где: h — высота параллелограмма, sin α — угол.
Цифр после
запятой:
Результат в:
Стоит заметить, что высота должна быть опущена не к искомой стороне, а к соседней. При этом для
формулы сойдет синус любого известного угла параллелограмма.
Пример. Найти сторону параллелограмма, если высота, опущенная на соседнюю сторону
равна 10 см, а острый угол — 30º. Решение: a=10 / 0,5 = 20 см
Нахождение стороны через площадь и высоту
Более подробно о площади и высоте параллелограмма рассказано в пунктах выше. В этом достаточно легко
вывести единственную формулу, по которой можно найти сторону. Если площадь является произведением
стороны на высоту, то сторона будет равна отношению площади к высоте:
a = S / h
где S — площадь параллелограмма, h — высота.
Цифр после
запятой:
Результат в:
Причем не имеет значения, к какой стороне опущена высота: к искомой или соседней.
Пример. Найти сторону параллелограмма, если его площадь равна 20 см, а высота,
опущенная на одну из сторон — 5 см. Решение: a = 20 / 5 = 4 см.
Фигура кажется сложной для восприятия из-за того, что её нельзя постоянно наблюдать где-то в
повседневной жизни. Однако всё становится проще, если вспомнить, что есть более известные широкой
публике частные случаи параллелограмма. Их-то человек обычно наблюдает ежедневно. Это ромб,
прямоугольник и квадрат. Причем последний, хоть и наиболее известен, является и наиболее
интересным.
Ромб считается частным случаем, потому что представляет собой параллелограмм, диагонали которого в
точке пересечения образуют прямой угол. Прямоугольник является частным случаем, потому что это
параллелограмм, у которого все углы прямые. У квадрата же положение ещё интереснее, так как его
можно назвать не только частным случаем параллелограмма, но и прямоугольника, и ромба. Квадрат – это
комбо трёх предыдущих определений. Можно даже сказать, что квадрат одновременно является особенным
случаем и для параллелограмма, и для прямоугольника, и для ромба. Все его стороны равны,
противоположные стороны параллельны. Все углы являются прямыми, даже образующиеся при пересечении
диагоналей, которые к тому же делятся пополам в точке пересечения.
Как найти длину одной из сторон параллелограмма? Чтобы найти сторону параллелограмма, необходимо наличие некоторых других значений, которые бы были известны. Далее попросту использовать одну из подходящих формул. Например, по теореме косинусов, это формулы сторон через диагонали и находящийся между ними угол: Другим решением, являются формулы, где стороны рассчитываются по диагонали и одной из известной стороны: Вот еще формулы сторон параллелепипеда, через вторую сторону, диагонали и косинус угла: Стоит напомнить и про формулы длин сторон, через высоту и синус угла: Так же длину стороны параллелограмма, можно определить если известны площадь и высота: Как видим, вариантов расчета высоты параллелограмма достаточно много и хотелось напомнить основные характеристики этой геометрической фигуры: Во первых, параллелограммом называется четырехугольник, имеющий параллельно расположенные противоположные стороны , т. е. находящиеся на параллельных прямых. Квадраты, прямоугольники и ромбы, также являются параллелограммами. система выбрала этот ответ лучшим Для нахождения стороны параллелограмма есть более десятка разных формул (они перечислены в ответе автора Бульбозавр), но для решения задач на эту тему, далеко не всегда их можно применить. На мой взгляд лучше всего разобрать несколько примеров и на практике увидеть, как находить сторону этой фигуры – в наших случаях с помощью уравнений. Пример 1 Нужно найти стороны параллелограмма, если одна из сторон больше другой в два раза а периметр равен 30 см. Даже не нужно чертить рисунок, а просто составить уравнение и решить его периметр(30см) = 2(х+2х) откуда х=5см, следовательно одна сторона равна 5см, другая – 10см. Пример 2 АВСД – параллелограмм, нужно найти его стороны если – ВМ перпендикуляр к АС, АМ=6см, МС=15см, ВС больше АВ на 6 см Для решения этой задачи сначала рассматриваем два прямоугольных треугольника АВМ и ВСМ у которых общий катет h. Согласно Пифагору h*h=a*a-6*6=b*b-15*15 откуда b*b-a*a=(b-a)(b+a)=225-36=189 по условию задачи b-a=7 тогда b+a=189/7=27 решив эту простенькую систему уравнений найдем стороны a=10см b=17cм Alexsandr82 5 лет назад Есть еще несколько формул которые будут скорее вспомогательными при решении задач по нахождению стороны паралелограмма но тем не менее их тоже нужно знать. Например одну из сторон паралеллограмма можно найти если известна вторая сторона и периметр фигуры по формуле: Р = 2(а+b), тогда а = (Р/2 – b), или b = (P/2 – a), где Р – периметр, а и b – стороны. Также можно найти сторону паралеллограмма зная его площадь и высоту опущенную на искомую сторону: S = a*H1 = b*H2, тогда а = S/H1 или b = S/H2, где S – площадь, а – меньшая сторона паралелограмма, b – большая сторона, Н1 – высота построенная к меньшей стороне, Н2 – сторна построенная к большей стороне паралеллограмма. Vector 60 8 месяцев назад Существует несколько формул для вычисления сторон параллелограмма (a и b). 1) Для нахождения сторон параллелограмма можно воспользоваться длиной диагоналей, а также величиной углов между диагоналями. Формулы будут такими: 2) Если известна одна из сторон и диагонали, то другую сторону можно найти так: 3) Если известна высота и величина одного из углов, то стороны параллелограмма можно найти по таким формулам: 4) Еще можно использовать значение площади и высоты: Stasy12 более года назад Формул, конечно много, с помощью которых можно найти сторону параллелограмма. Например можно найти стороны паралелограмма, зная размеры диагоналей и угла между ними(формула 1и 2) Зная длины диагоналей и одну из сторон, легко можно найти вторую(формулы 3 и 4) Через высоту, которая опущена на сторону и угол между сторонами(формулы 5 и 6) Зная площадь и высоту, которая опущена на заданную сторону можно найти длину стороны(формулы 7 и 8). Знаете ответ? |